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Abstract

The performance of Land Use Change (LUC) models is influenced by the regional spatial char-
acteristics that trigger the changes. However, the literature on LUC models generally reports
validation results for entire regions without considering subregions that differ significantly in their
LUC drivers. This research explores how the LUC driving forces differ among subregions and
whether regionalization can improve the performance of LUC models in areas undergoing rapid
urbanization. We analyzed the Geomod, Cellular Automata-Markov, and Land Change Modeler
models across rural and urbanized subregions on the western edge of Mexico City. Regionalization
significantly enhanced the overall accuracy of the models and the concordance of spatial patterns
with the reference data in rural regions but was of limited benefit in urbanized regions. This shows
the need to consider regionalized modeling to improve the performance of LUC models when
there are noticeable differences in LUC drivers between subregions. These findings will enhance the
usefulness of LUC models for urban planning and land management policies, promoting more
precise and effective decision-making.
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Introduction

Spatially explicit Land Use Change (LUC) modeling has contributed to territorial planning by
predicting the change and spatial distribution of land uses (Heidarlou et al., 2019; Ren et al., 2019;
Wang et al., 2023). The models can also help to build future land-use change scenarios according to
a given social and ecological environment (Lopes et al., 2023; Seevarethnam et al., 2022). However,
the model’s output must correspond to real-world behavior before it can lead to well-founded
decision-making (Aguejdad et al., 2017; Di Lucia et al., 2021; Li et al., 2020; Saltelli and
Funtowicz, 2014); crucially, the predictions of LUC models are sometimes inaccurate (Brown et al.,
2013) because of the complex dynamics of land-use change, which involves biophysical processes
and human decisions. Thus, it is essential to assess the performance of LUC models (the agreement
between observed and predicted land use) (Amiri et al., 2017; Dezhkam et al., 2017; Pacgelow et al.,
2014). For this assessment to be accurate, it is necessary to consider the main drivers of land use and
land cover change: socioeconomic factors, proximity, site factors, and planning and policy
(Camacho, 2022; Naikoo et al., 2022); these can significantly differ amongst subregions, driving
diverse LUC behaviors (Yang et al., 2014). For instance, it has been reported that urban expansion
generally occurs around pre-existing urban areas (Pribadi and Pauleit, 2015; Tian, 2015; Winarso
et al., 2015) and not in areas far from them. Linked with this is that areas with higher population
densities generally have more dynamic land use changes due to more economic and social in-
centives for development (Gomes, 2020). Proximity to roads also triggers land use change by
facilitating resource access for people while the change decreases with increasing slope (Arfasa
etal., 2023). Despite the differences in land-use change dynamics between subregions, many studies
do not consider differences between subregions and the effects that these may have on the per-
formance of a model (Kumar et al., 2016; Sakieh and Salmanmahiny, 2016; Subedi et al., 2013;
Yang et al., 2014). For instance, a model developed for a large area might assume uniformity in
factors such as agricultural practices, urbanization rates, or conservation policies, whereas these
may differ significantly across smaller regions (Brown et al., 2013). This can lead to less accurate or
less applicable results for specific subregions. Focusing on smaller subregions allows researchers to
capture the nuances and local variations in land-use changes that might be averaged out or
overlooked in a study across a larger area. These variations can include specific socioeconomic and
biophysical drivers critical for a more granular understanding and prediction of land-use dynamics
(Gaur and Singh, 2023). Owing to this spatial non-stationarity of land use change, it is essential to
assess which model best fits the actual trends in each subregion. Regionalization, that is, grouping
locations with similar characteristics into the same subregion, can help to account for spatial non-
stationarity (Verburg et al., 2002); it can capture the behaviors in each subregion, thus improving a
model’s accuracy (Briassoulis, 2020).

Comparison of the performance of models can help to identify which model(s) provide(s) the
best predictions for a subregion or an entire area. It may be possible that those models that include
the socioeconomic and biophysical drivers of land-use change in their algorithms might capture
more appropriately the particular land-use process in a subregion, leading to higher performance
than those models that rely solely on the previous land-use state and the state of the neighboring
area. Therefore, this article aims to evaluate how subregional spatial characteristics influence the
performance of Land Use Change (LUC) models by focusing on two contrasting subregions:
urbanized (built-up land) and rural (agricultural land and natural vegetation), in an area of rapid
urban growth in the western part of Mexico City. It compares the performance, with and without
regionalization, of three of the most widely used LUC models applied in different contexts around
the world: Geomod (Cruz-Bello et al., 2023; Mirzapour et al., 2020; Nahib et al., 2018; Sakieh and
Salmanmahiny, 2016; Shade and Kremer, 2019), Cellular Automata Markov (Amiri et al., 2017;
Dezhkam et al., 2017; Garcia-Alvarez et al., 2019; Khwarahm et al., 2021; Seevarethnam et al.,
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2022), and Land Change Modeler (Aguejdad et al., 2017; Camacho et al., 2015; Garcia-Alvarez
et al., 2019; Shade and Kremer, 2019; Shooshtari and Gholamalifard, 2015). The aim is to improve
the predictive accuracy of Land Use Change models by accounting for regional differences, which
will enhance their usefulness for planning and policy-making in rapidly urbanizing areas.

Materials and methods

Study area

The study area encompassed 30,801 hectares within three municipalities of western Mexico City
(Huixquilucan de Degollado, Cuajimalpa de Morelos, and Alvaro Obregon) (Figure 1). We rec-
ognized two subregions, urbanized and rural, according to the classification into basic geostatistical
areas (AGEBSs), which are the smallest geographic units used by the geography and statistics agency
of the Mexican government (INEGI, 2014). An urban AGEB is an area between 1 and 50 blocks
delimited by streets, avenues, and walkways, with land use mainly residential, industrial, service, or
commercial. A rural AGEB is in rural areas with variable sizes characterized by agricultural or forest
land use and rural localities (INEGI, 2010, 2020). This regionalization omits the peri-urban
transition zones between rural and urban areas, the delimitation of which is still a topic of
research (Gonzalez-Arellano et al., 2021). In the urbanized subregion (urban AGEBs), which
covered 14,510 ha, the population density is 149.5 inhabitants per hectare and the road density
285 m/ha. In the rural subregion (rural AGEBs), which comprised 16,291 ha, the population density
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Figure |. Study area. Urbanized and rural subregions on the western edge of Mexico City.
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is 20.5 inhabitants per hectare and the road density 178 m/ha. The densities were calculated using
data from INEGI (2010, 2015).

Methods

Driving forces selection and comparison. To verify that these subregions differ in the values of the
possible LUC drivers, we selected from the specialized literature some of the most frequently
reported drivers (Aguejdad et al., 2017; Ahmed and Ahmed 2012; Amiri et al., 2017; Arfasa et al.,
2023; Camacho, 2022; Cruz-Bello et al., 2023; de Souza et al., 2022; Garcia-Alvarez et al., 2019;
Mirzapour et al., 2020; Mohamed and Worku 2020; Seevarethnam et al., 2022; Shade and Kremer,
2019). To look for distinct patterns for the driver in the two subregions, indicating differences in its
distribution, we generated and compared the histograms of the following variables for each
subregion: Distance to roads (m) (INEGI, 2015); Protected Areas (presence) (CONANP, 2015);
Distance to urban areas (m); Population density (persons per hectare) (INEGI, 2010); Elevation (m
a.s.1.) (INEGI, 2013); Slope (%); and Land-use. The same interval was used for each variable in both
subregions. To confirm that driver distributions in the two subregions are significantly different, we
performed a Chi-square test for each variable to compare the frequency distribution.

Using Cramer’s V statistic, we assessed the relationship between drivers and LUC; this statistic
measures association, where 0 indicates no association, and 1 indicates a perfect relationship
(Subiyanto and Suprayogi, 2019). Figure 2 illustrates a methodological flowchart of the activities
involved in the study.
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Land-use analysis. Analysis of land-use change from non-urban to urban in each subregion used
SPOT 5 satellite images of the dry season (November — December) of 2005, 2010, and 2014 (SIAP,
2017). A supervised classification was performed using the maximum likelihood method in Terr Set
software; the total accuracy of the classifications surpassed 90%, which complies with specialized
literature standards (Islam et al., 2018; Pontius, 2019). The analysis showed an increment in urban
area in each subregion: in the urbanized subregion, the urban class increased from 37.5% of the
study area in 2005 to 43.3% in 2010 and 58.4% in 2014; in the rural subregion, the urban class
increased from 1.2% in 2005 to 2.4% in 2010 and almost 8% in 2014.

Land-use change modeling. To compare the performance of the LUC models in different subregions,
the change predictions from non-urban to urban during 2010-2014 were separately modeled and
validated for the entire region, the urbanized subregion, and the rural subregion. Land-use images
from 2005 and 2010 were set as the earlier and later dates, to predict urban areas in 2014. Three
widely used models were applied: Geomod, CA_Markov, and Land Change Modeler (LCM), all
available in the TerrSet software. The spatial resolution of the land use and the LUC driver layers
was 10 m, the original resolution of the SPOT images obtained from SIAP (2017). Detailed in-
formation on each LUC model’s characteristics and calibration is provided in Supplemental
Material.

For Geomod, the layer of land suitability for urbanization that this model requires was generated
by following the specialized literature that reported several urban growth drivers (Nahib et al., 2018;
Shade and Kremer, 2019). For this study, we used distance to roads, elevation, slope, population
density, protected areas, distance to urban areas, and the land use class (agriculture, forest, urban) of
2005 (analysis beginning date). We used the unconstrained neighborhood search mode to select
change locations, which allows the change to happen in any pixel. Linear models were generated
with data from 2005 and 2010 to estimate the urban area in 2014.

Regarding Cellular Automata Markov (CA_Markov), the transition probability matrix from non-
urban to urban was calculated using a proportional error of 10 for 2005-2010. Then, the land
suitability for each land-use class was determined considering that areas near an existing land-use
class are more likely to change into that class than areas far from that class. Therefore, the Euclidean
distance to each land-use class was calculated, and a monotonically decreasing J-shaped fuzzy
membership function was applied to define the relative suitability for the two land uses (Subedi
et al., 2013). Ten cellular automata iterations were used, and a 5 x 5-contiguity filter was used for
each run.

In the case of the Land Change Modeler (LCM) a logistic regression analysis was used to predict
change from non-urban to urban land use. The transition potential layer from non-urban to urban
was created by analyzing the transition potential layer (2005-2010) and the same land-use change
variables (drivers) used to generate the land suitability layer in Geomod. The Cramer’s V index was
used to measure the explanatory power of each variable in the land-use change (Eastman, 2016). We
considered a Cramer’s V threshold value of 0.15 (Ahmed and Ahmed, 2012; Shooshtari and
Gholamalifard, 2015). All variables exceeded this value. Thus, they were judged to be associated
with a particular type of land use and included in the logistic regression analysis to predict a change
from non-urban to urban use, where a 10% stratified random sampling was applied.

Comparison of model performance between subregions. We compared each model’s performance
between the two subregions, evaluating the concordance between each model’s prediction for the
urbanized, rural, and total area against the reference data (SPOT classification 2014). First, we
compared the area percentage of each land-use class and generated confusion matrixes to assess the
correspondence between modeled and observed data. This determined the agreement between the
model’s prediction and the reference data regarding the area and the geographical location.
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Second, to eliminate that part of the prediction’s accuracy that is attributable to land persistence, we
applied a cross-tabulation technique (Paegelow et al., 2022; Pontius et al., 2008) overlaying the land-
use map 2010, the reference map 2014, and the predicted map 2014. This analysis was implemented
for the total area and each subregion using the LCM verification module. A layer with four validation
categories was generated: (1) Correct rejection (LU persistence was predicted, and it persisted); (2) Hit
(LU change was predicted, and it changed; (3) False alarm (LU change was predicted, but it persisted);
and (4) Failure (LU persistence was predicted, but it changed) (Eastman, 2016).

A Chi-square test assessed the relationship between subregions and validation categories by
observing statistically significant differences in each model’s performance depending on the
subregion (Agresti, 2007). The Chi-square test is commonly used in Land Use Change analysis to
determine whether the observed changes are significantly related to a given condition (Malaki et al.,
2017). Also, standardized residuals were computed to locate the combination subregion-validation
category where significant differences in the model’s performance were present.

Third, a pattern accuracy metric evaluation was carried out (in other contexts also called
landscape accuracy metric evaluation). A series of spatial metrics were used, independently for each
model and subregion, to assess the correspondence between the modeled spatial patterns of urban
land use—including arrangement, fragmentation, and core areas—and their actual patterns in
reference maps (Teimouri et al., 2023). Following Sakieh and Salmanmahiny (2016), the metrics
were Class Area (CA), Percentage of Landscape (PLAND), Number of Patches (NP), Patch Density
(PD), Largest Patch Index (LPI), Total Edge (TE), Edge Density (ED), Largest Shape index (LSI)
and Mean Euclidean nearest neighbor distance (ENN_MN) (Table S1); these metrics were
computed with FRAGSTATS 4.2.1 software (McGarigal et al., 2012)

To evaluate the accuracy of Land Use Change modeling by comparing the metrics derived from
the modeled and reference layers (Dezhkam et al., 2017), we computed the Relative Error (RE) and
Mean Relative Error (MRE). The Relative Error (RE) measure allows comparison across different
regions or scenarios (Foody, 2010). It measures the difference between the modeled and reference
layers divided by the reference layer

Mp — Mr
RE = [ ———— ) *100
5)

where M, and M, are the values of the spatial metrics from the modeled and reference LUC layers,
respectively.

The Mean Relative Error (MRE) is the Relative Error average across all pixels or regions. It
summarizes the modeled layer’s overall accuracy in matching the reference layer (Burnicki et al., 2007)

1 n
MRE = - ;RE,-

where RE; is the absolute Relative Error of the model output for the i LUC for each spatial metric; n
is the number of estimated relative errors.

The absolute value of the Relative Error was classified by the level of agreement of the metrics
between the simulated and the reference maps: 0-15 High, 15-30 Good, 30-45 Average,
and >45 Low (Dezhkam et al., 2017).

Results

The histogram comparisons revealed distinct patterns in the distribution of LUC driver values
between rural and urbanized subregions (Figure 3). The urbanized subregion showed areas
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generally closer to roads, while the rural subregion had larger distances, indicative of less developed
areas. Protected areas were present in both subregions, but the rural subregion had a higher
concentration, while the urbanized subregion had fewer protected areas. As could be expected, the
urbanized subregion was located nearer to urban centers, in contrast to the rural subregion’s wider
spread of distances from urban centers. Population density was significantly higher in the urbanized
subregion, reflecting a more densely populated area compared to the rural subregion’s lower
densities. The elevation histograms revealed that the rural subregion covered diverse altitudes, while
the urbanized subregion was more concentrated at lower elevations. The rural subregion also
showed greater variability in slope, with steeper areas being more common. In contrast, the ur-
banized subregion had a narrower distribution, with less steep slopes. Land-use patterns differed,
with the urbanized subregion having a higher frequency of built-up areas. In contrast, the rural
subregion showed more agricultural and natural land uses, consistent with its lower population
density and greater distance from urban centers (Figure 3). These differences were statistically
significant, Chi-square; p < .001 for each LUC driver, confirming distinct patterns in the driver
distributions between the two subregions.

According to the Cramer V statistic, the most critical LUC driver for the total area was elevation
(0.54), followed by distance to urban areas (0.52) and population density (0.42). For the urban and
rural regions, the most critical driver was the distance to urban areas (0.54, 0.43), followed by
elevation (0.34, 0.26) and population density (0.29, 0.20).

Comparison of model performance between subregions

Comparison to the reference data showed that Geomod had a greater underestimation of the urban
class in the urbanized subregion than in the rural subregion. CA_ Markov underestimated the urban
area in the urbanized subregion but overestimated it in the rural subregion. LCM underestimated the
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Figure 3. Values of each LUC driver for the urbanized and rural subregions.
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urban class area in both subregions but more significantly in the urbanized subregion than in the
rural one (Table S2; Figure S1). Comparison to the reference data showed that there was more
underestimation of the urban area predicted by any of the three models in the urbanized subregion
than in the total area. In the case of the urban area modeled by Geomod and LCM in the rural
subregion, there was less underestimation than in the total area (Table S2; Figure S1); hence, for
these models, regionalization improves the performance, whereas this was not the case for
CA_Markov.

The confusion matrices generated to evaluate the correspondence between modeled and ref-
erence data revealed that in all models, the total accuracy was highest for the rural subregion,
followed by the total area and the urbanized subregion (Table 1).

Cross-tabulation showed that, in each model, the rural subregion showed the highest percentage
of persistence, followed by the total area and the urbanized subregion. In terms of Hits (the model
predicted change, and it changed), the urbanized subregion had the highest percentages, followed by
the total area and the rural subregion. For Misses (the model predicted persistence, but it changed)
and False alarms (the model predicted change, but it persisted), the rural subregion had the lowest
percentages, the urbanized region the highest, with intermediate percentages in the total area
(Table 2). This result does not show a clear improvement if the modeling were to be regionalized.

There was a strong dependency (Chi-square test; p <.0001) between the subregion (urbanized or
rural) and the validation category (persistence, hit, miss, false alarm). Hence, the performance of
each model differed significantly between subregions. The standardized residuals showed that the
differences in model performance between subregions were mainly due to more persistence than
expected in the rural subregion and less persistence than expected in the urbanized subregion for
Geomod and LCM, and to fewer misses than expected in the rural subregion, and more misses than
expected in the urbanized subregion for CA_Markov (Table S3).

The evaluation of the accuracy through spatial metrics in the urban class showed that when
Geomod was regionalized, the number of patches was closer to the reference data in each
subregion. When LCM and CA_Markov were regionalized, only in the rural subregion was the
difference from the reference data in the number of patches reduced. For ED and LSI in the
urban class, when Geomod and LCM were regionalized, the values of these indices were closer
to the reference data only for the rural region; when CA Markov was regionalized, the dif-
ference from the reference data occurred only for ED and only in the rural region. For ENN_MN
in the urban class, in none of the models was the difference from the reference data reduced by
regionalization (Table S4).

For the spatial metrics assessment, the performance of Geomod and LCM for the urban class was
better in the urbanized subregion than in the rural subregion in terms of agreement with reference
data. For CA_Markov, the levels of agreement did not differ between subregions (Tables 3 and S5).

When comparing the levels of agreement between the total area and each of the subregions,
the results are diverse for Geomod and LCM. For example, if we regionalize the modeling, in

Table 1. Total accuracy for the three models versus reference data (2014).

Total accuracy

Model Total area (%) Rural (%) Urbanized (%)
Geomod 90 94 84
CA_Markov 88 88 8l

LCM 90 94 85
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some cases the level of agreement increases, as in the urbanized subregion for ED. At the same
time, for NP, it does not improve in any case for the urban class (Tables 3 and S5). For
CA_Markov, regionalizing does not improve the urban class’s agreement level (Tables 3
and S5).

Table 2. Areas of the validation categories for the total area and the urbanized and rural subregions.

Validation category

Subregion Persistence (ha) % Hits (ha) %  Misses (ha) % False alarms (ha) %

Geomod
Rural 15,271 93.7 24 0.1 867 5.3 129 0.8
Urbanized 11,933 82.2 287 2.0 1896 13.1 394 2.7
Total area 27,272 88.5 378 1.2 2695 8.7 457 1.5
CA_Markov
Rural 14,008 86.0 311 1.9 579 3.6 1393 8.5
Urbanized 11,673 80.4 659 45 1524 10.5 655 4.5
Total area 26,210 85.1 1272 4.1 1801 5.8 1518 49
LCM
Rural 15,285 93.8 34 0.2 856 5.3 3 0.7
Urbanized 11,988 82.6 284 2.0 1899 13.1 340 2.3
Total area 27,337 88.8 410 1.3 2663 8.6 392 1.3

Table 3. Level of agreement between the simulated and reference data for each land use, subregion, and
model. Nu, non-urban; U, urban.

Subregion Land use NP ED LSI ENN_MN
Geomod
Rural Nu Low [—47.5] Average [—42.9] Low [—52.9] High [0]
U Low [-50.2] Low [-57.1] Average [—33.9] Good [19.4]
Urbanized Nu Average [—36.8] High [1.6] High [—13] High [-10.7]
U Average [44.9] High [—1.6] High [6] High [0]
Total area Nu Average [—33.5] Good [—19.3] Good [-24.2] High [-10.7]
U Good [—16.7] Good [—19.3] High [-9.7] High [0]
CA_Markov
Rural Nu High [—14.3] Low [-71.4] Low [—64.7] High [-4]
U Low [—95.9] Low [-71.4] Low [—75] Low [277.8]
Urbanized Nu Low [—94.2] Low [—70.5] Low [-71.2] |Low [103.6]
U Low [—82.7] Low [—70.5] Low [—67.2] Low [137]
Total area Nu Low [—93.4] Low [—74.7] Low [—73.7] Low [96.4]
] Low [—93.1] Low [-74.7] Low [—73.8] Low [103.1]
LCM
Rural Nu Low [—55.4] Low [—66.7] Low [—58.8] High [-4]
] Low [—61.2] Low [—66.7] Low [—46.2] Good [27.8]
Urbanized Nu Low [—48.3] High [—14.7] Good [-23] High [0]
U Average [31.9] High [—14.8] High [—6] High [3.7]
Total area Nu Low [—62.3] Average [—34.9] Average [-37.4] High [0]

U Good [—19.9] Average [—34.9] Good [-24.8] High [0]
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Discussion

The study showed significant differences in drivers of land use change between subregions, which
was also reported by Ustaoglu and Aydinoglu (2019) for metropolitan regions in Turkey. The drivers
that most influenced the land use change in our study area were the site factors (elevation), followed
by proximity (distance to urban areas), and socioeconomic factors (population density). These
results contrast with other studies of the Mexico City periphery. For example, in the city’s industrial
area on the northern periphery, socioeconomic factors were the most influential, followed by
proximity and site factors (Hernandez-Flores et al., 2017). In the most forested municipalities in the
southern part of the city, proximity to infrastructure was the most influential factor, followed by site
and socioeconomic factors (Morales et al., 2024). These differences in the drivers of change may be
partly attributable to the location of the present study on the southwestern periphery of Mexico City,
where Santa Fe, an urban business center, is located (Cruz-Bello et al., 2023). These findings
highlight the influence of different socioeconomic and physical conditions on land use change. This
influence varies depending on the specific context and scale of analysis (Msofe et al., 2019) af-
fecting the modeling.

Land Use Change is a dynamic process with complex spatiotemporal characteristics (Rimal et al.,
2017; Wang and Murayama, 2017). Hence, the results of incorporating regionalization in these
models were intricate. According to the overall accuracy obtained from the confusion matrices and
considering the area of the modeled classes, regionalization improved the agreement between what
was modeled and what was observed for the rural subregion but not for the urbanized subregion; this
suggests that urban areas may require different modeling approaches or the consideration of ad-
ditional factors if the accuracy of the predictions is to be improved.

For the three models considered here, the urbanized and rural subregions differed in under-
estimating or overestimating the predicted urban class areas. This agrees with the results of a study
of the LUC dynamics in the northern and southern subregions of the lower Mississippi River Basin
(USA), where accuracy was better in the southern rural subregion than in the northern urbanized
region (Qiang and Lam, 2015); this can be explained by the larger area of persistence in the rural
subregion, that is, less land use change than in the urbanized subregion.

However, when the persistence effect was removed in the cross-tabulation analysis, we found
fewer hits (reference maps show change, simulation shows change) in the rural subregion than in the
urbanized subregion and total area. This can be attributed to the slower rates of change in rural areas,
and it increases the complexity of change prediction, as has been reported for other rural landscapes
(de Souza et al., 2022; Viana and Rocha, 2020). This low percentage of change may be because the
main drivers of land use change, such as distance to urban areas and roads, are relatively higher,
while the population density is lower, in rural areas than in urbanized areas (Delgado-Vifias and
Goémez-Moreno, 2022).

Evaluation of the accuracy through spatial metrics allowed us to assess the extent to which
the spatial patterns are correctly reproduced in the modeled land use maps (Amiri et al., 2017,
Dezhkam etal., 2017). There was underestimation and overestimation in the two regions and the
total area in relation to the reference data. However, there is, in several cases, an improvement in
the performance of the models when regionalized for the rural region. Since the Number of
patches (NP) and Landscape shape index (LSI) are measures of aggregation (Mohamed and
Worku, 2020), we can say that Geomod and LCM predict a higher aggregation of the urban
category in the rural subregion, with an expansion around the previous urban areas. In the case
of the urbanized subregion, these models predict more dispersed urban growth. For CA_-
Markov, the same pattern can be seen, but with a much higher aggregation. This aggregation
also causes the models to predict a greater distance between built-up patches (ENN) (Mohamed
and Worku, 2020).
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The Relative Error (RE) values obtained in the comparison of the spatial metrics from the
simulation with those from the reference layer show that the performance for the urban class was
better in the urbanized subregion than in the rural subregion in all cases for Geomod and LCM, and
equal in CA_Markov in all cases; this demonstrates a certain degree of correlation between the
spatial metrics (Dezhkam et al., 2017).

Focusing on the urban class, no obvious pattern was found regarding the usefulness of re-
gionalizing. Nevertheless, the contribution of regionalizing to performance depended on the spatial
metric and the model. For the NP metric, better performance is obtained by not regionalizing the
Geomod and LCM models. For CA_Markov, there is no improvement in the level of agreement but
a slight reduction in the RE values for the urbanized subregion if regionalized because even though
this model underestimates the number of patches in a category, as reported by Amiri etal. (2017), the
proportion of this underestimation is almost the same between the total area and either subregion.

The study’s findings might have practical implications for urban planning and land management
policies. First, the insight that the dynamics of land use change differ between urban and rural
subregions suggests that urban planners should consider regional characteristics when applying land
use models; this would ensure more accurate predictions and effective planning. Second, identifying
biophysical factors (e.g., elevation) and infrastructure factors (e.g., proximity to roads and urban
areas) as critical drivers of land use change helps policymakers prioritize these elements in urban
development plans. Finally, since LUC models differ in assumptions, data, and algorithms, and
hence lead to different results, it is good practice to compare various models to assess structural
uncertainty (Garcia-Alvarez et al., 2022). Such comparison will identify the most accurate and
reliable model for specific subregions (Brown et al., 2013) leading to better-informed decisions and
more efficient land management.

Some of the article’s limitations are: first, we only tested three LUC models, even though other
models may have unique strengths that could benefit various regional contexts. Second, the study is
limited to including the most reported LUC driving factors. However, other variables, such as
environmental policies, economic incentives, demographic shifts, and technological advancements,
could influence land use changes. Including them could help capture the LUC complexities of urban
and rural regions. Finally, the research focuses on two regions, urbanized and rural; however, given
that peri-urban areas are often the most dynamic in terms of land use change, including these
transition zones can provide critical insights and improve the accuracy of models for regions
experiencing rapid urbanization.

Further research should be conducted to identify the drivers of change that account most for the
differences in model performance. We believe the present results can be applied to other parts of the
world where subregions differ in the triggering variables of land use change. However, the models
should be tested in several geographic regions with different land use characteristics to validate their
robustness and generalizability; this would be particularly apposite in regions with similar patterns
of urban growth, as is the case in other metropolises of the global south as reported by Randolph and
Storper (2023).

Conclusions

In this study on the southwestern periphery of Mexico City, significant differences between
subregions were found in the main drivers of land use change: socioeconomic, proximity, location,
and planning and policy factors. This led to substantial differences between subregions in the
performance of the three models used.

This study demonstrates that regionalization can improve the performance of Land Use Change
(LUC) models. However, changes in performance by regionalization depended on the statistics
compared. When comparing the area in each class and analyzing the underestimation or
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overestimation of the models, regionalization improves the performance of the models for the rural
subregion but not for the urbanized subregion; this can be attributed to the higher persistence in rural
areas. The cross-tabulation technique showed a strong dependence between subregions and val-
idation categories for all three models. In this case, when the effect of persistence was removed, the
worst performance, with fewer hits than expected, was found in the rural subregion. However, there
was no improvement in performance if the modeling was regionalized. When spatial metrics were
compared, the improvement in model performance depended on the model and the spatial metric
analyzed. However, it was evident that for various combinations of models and metrics, region-
alization improved the concordance of spatial patterns with the reference in the rural region.

Regionalization is recommended only when there are significant differences in drivers of change
between regions. Thus, it is imperative to assess these differences before modeling LUC. If re-
gionalized LUC modeling is performed, it is advisable to test different modeling approaches to
select those that increase the agreement between observed and predicted LUC.

The models used in this study do not represent the large number of LUCC models available, and
the regions used are only administrative. Therefore, further research could be conducted to evaluate
the performance of additional Land Use Change models and other types of regions (e.g., ecological
and economic).

Finally, the study highlights the critical role of regionalization in enhancing the performance of
some LUC models and provides valuable insights for urban planning and land management. By
addressing current limitations and pursuing the proposed future research directions, the accuracy
and utility of these models can be significantly improved, leading to better-informed and more
sustainable land use decisions.
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