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Abstract
The acyclic disconnection −→ω (D) of a digraph D is the maximum possible number of
(weakly) connected components of a digraph obtained from D by deleting an acyclic
set of arcs. In this paper, we provide new lower and upper bounds in terms of properties
such as the degree, the directed girth, and the existence of certain subdigraphs and
bounds for bipartite digraphs, p-cycles, and some circulant digraphs. Finally, as a
consequence of our bounds, we prove the Conjecture of Caccetta and Häggkvist for a
particular class of digraphs.
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1 Introduction

In 1999, Neumann-Lara [1] defined the acyclic disconnection of a digraph as a mea-
sure of the complexity of the cyclic structure. The acyclic disconnection −→ω (D) of a
digraph D is the maximum possible number of (weakly) connected components of a
digraph obtained from D by deleting an acyclic set of arcs. Equivalently, the acyclic
disconnection can be defined in terms of vertex colorings, cycle transversals, or certain
subdigraphs [1, 2], in particular, as the maximum number of colors in a vertex coloring
of D not producing proper directed cycles that is a cycle where every pair of adjacent
vertices have different colors.
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In [3], it was proved that the problem of determining −→ω (D) of an arbitrary digraph
D is NP-complete. The acyclic disconnection of a digraph has been studied in different
classes of tournaments [1, 2, 4–7], and it has been related to other invariants such as
the maximum order of an acyclic subset of vertices,

−→
β (D), or the number of vertices

of the digraph D [1], the dichromatic number (introduced by Neumann-Lara in 1982)
[1, 7], the Feedback Arc Set [3], and the girth [8].

Let i1, i2, . . . , id ∈ Zn \ {0}. A circulant digraph
−→
C n(i1, i2, . . . , id) has vertex

set the elements of Zn , and (a, b) is an arc if and only if b = a + i j for some
i j ∈ {i1, i2, . . . , id}, where the sum is taken inZn .We use the book [9] for terminology
and definitions not given here.

Lower bounds on the acyclic disconnection in terms of
−→
β (D) were established in

[8]. In particular, the following theorem was stated.

Theorem 1 [8] Every digraph D with girth g ≥ 4 that contains a subdigraph
isomorphic to an acyclic tournament of order k has −→ω (D) ≥ k + g − 3.

In this paper, we give new bounds on the acyclic disconnection of digraphs. We
present lower bounds in terms of the existence of certain subdigraphs and lower bounds
for the p-cycles and certain kinds of circulant digraphs. We present upper bounds in
terms of the order, the degree, and the directed girth and upper bounds for r -regular
bipartite digraphs, p-cycles. Finally, as a consequence of our bounds, we prove the
Conjecture of Caccetta and Häggkvist for a particular class of digraphs.

2 Bounds on acyclic disconnection

Let�s denote the set of colors {c1, c2, . . . , cs}. Let D be a digraph andϕ : V (D) → �s

a vertex coloring of D. For every c ∈ �s , the chromatic class corresponding to color
c is the set of vertices Vc ⊆ V (D), such that ϕ(v) = c for all v ∈ Vc. Throughout
this work, we also use the term chromatic class to refer to the subdigraph induced by
the set of vertices in the chromatic class. The color cα is a singular class of ϕ if there
is u ∈ V (D), such that ϕ(u) = cα and ϕ(v) �= cα for every v ∈ V (D) \ {u}. We
say that a subdigraph H of D is proper colored if ϕ(u) �= ϕ(v) for any two vertices
u, v ∈ V (H), such that uv ∈ A(D). Therefore, a proper (colored) cycle is a cycle,
such that any two adjacent vertices u, v on the cycle have different color. The set of
external arcs of a coloring ϕ : V (D) → �s is the arc set {uv ∈ A(D) : ϕ(u) �= ϕ(v)}.
The heterochromatic digraph Hϕ(D) is the spanning subdigraph of D with arc set
{uv ∈ A(D) : ϕ(u) �= ϕ(v)} [2]. Observe that a vertex coloring ϕ is externally acyclic
if Hϕ(D) is an acyclic digraph.

As we mention in the Introduction, Neumann-Lara [1] defined the acyclic dis-
connection −→ω (D) of a digraph D, as the maximum possible number of connected
components of adigraph obtained from D by deleting an acyclic set of arcs. Equiv-
alently, the acyclic disconnection −→ω (D) can be defined as the maximum number of
colors in a vertex coloring of D not producing proper (directed) cycles. Our objective
in this section is to establish upper bounds on this parameter.
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Let D be a digraph and F be a subdigraph of D. A vertex v ∈ V (F) is interior in
F if N+(v) ⊆ V (F) or N−(v) ⊆ V (F). The set of interior vertices I (F) of F is the
union of I+(F) or I−(F), where I ε(F) = {v ∈ V (F) : N ε(v) ⊆ V (F)}, ε ∈ {−,+}.
Lemma 1 Let D be a digraph and R a subset of vertices, such that D[R] is an acyclic
subdigraph. If every vertex b ∈ V (D) \ R is an interior vertex of D − R, then−→ω (D) ≥ |R| + 1.

Proof Let R = {x1, x2, . . . , x|R|}. Let ϕ be a coloring, such that ϕ(v) = i if v = xi ,
i = 1, 2, . . . , |R|, and ϕ(v) = |R| + 1 if v /∈ R. Let γ be a cycle of D. Clearly, there
exists v ∈ V (γ )\ R and by the hypothesis v ∈ I−(D− R)∪ I+(D− R). Suppose that
v ∈ I−(D− R), then γ has the arc v′v with v′ ∈ V (D− R); thus, γ has two adjacent
vertices of the same color. We reason analogously if v ∈ I+(D − R). Therefore, ϕ is
an external acyclic coloring and −→ω (D) ≥ |R| + 1. 	

Theorem 2 (i) Let D ∼= �Cn(1, 2, . . . , k) be a circulant digraph. Then, −→ω (D) = 1 if

n ≤ 2k; and −→ω (D) ≥ n − 2k + 1 if n ≥ 2k + 1.
(ii) Let D ∼= �C2n(1, 3, . . . , 2k−1) be a circulant digraph. Then,−→ω (D) ≥ 2n−2k−1

if 2n ≥ 4k.

Proof Let ϕ be an external acyclic coloring.

(i) When n ≤ 2k and n odd, this circulant digraph contains a symmetric Hamiltonian
cycle; thus, every vertex must have the same color. And if n is even, then all
the diagonals {i, i + k} of this circulant digraph are symmetric. Since ϕ is an
external acyclic coloring, both vertices of {0, k} must have the same color, say
r1, and both vertices of {i, i + k}, i < k, have color r2. If r1 �= r2, then the
cycle (0, i, k, i + k, 0) has not two adjacent vertices with the same color which
is a contradiction. Therefore, −→ω (D) = 1 if n ≤ 2k. Next, suppose that n ≥
2k + 1. Let R = {0, 1, . . . , n − 2k − 1}. Clearly, D[R] is acyclic. Let i with
n − 2k ≤ i ≤ n − k − 1. Then, every j ∈ N+(i) satisfies that j ≤ n − 1,
and hence, N+(i) ⊂ D − R or equivalently i ∈ I+(D − R). Analogously, if
n − k ≤ i ≤ n − 1, then every j ∈ N−(i) satisfies that j ≥ n − 2k, and therefore,
i ∈ I−(D − R). By Lemma 1, it follows that −→ω (D) ≥ |R| = n − 2k + 1, and
item (i) is proved.

(ii) Let R = {0, 1, . . . , 2n − 2k − 1}. Clearly, D[R] is acyclic and reasoning as in
item (i) we obtain the desired result.

	

Lemma 2 Let D be a digraph of order n with −→ω (D) ≥ 2. Every external acyclic
coloring of V (D) has at least two chromatic classes C and C ′, such that |I ε(C)| ≥ 1
and |I ε(C ′)| ≥ δε(D) + 1 − |I ε(C)| for ε ∈ {+,−}.
Proof Let ϕ be an external acyclic coloring of D which has at least two colors, because−→ω (D) ≥ 2. Let Hϕ be the corresponding acyclic subdigraph. Then, there exists a
vertex v in Hϕ , such that d+

Hϕ
(v) = 0. Let C be the chromatic class of ϕ, such that

v ∈ V (C), then |I+(C)| ≥ 1. If there is a chromatic class C ′ different from C



7 Page 4 of 9 C. Balbuena et al.

such that I+(C ′) �= ∅, then the lemma holds. Therefore, we suppose I+(C ′) = ∅
for all C ′ different from C . Let D′ = Hϕ − I+(C) and consider u ∈ V (D′) with
d+
D′(u) = 0. Then, u ∈ V (C ′), for someC ′ �= C and N+(u) ⊆ I+(C)∪V (C ′). Then,

|V (C ′)| ≥ δ+(D) + 1− |I+(C)|. Analogously, for |V (C ′)| ≥ δ−(D) + 1− |I−(C)|,
we use that there exists a vertex v in Hϕ , such that d−

Hϕ
(v) = 0. 	


Shen proved the following result.

Theorem 3 [10] Every digraph D of order n and δ+(D) ≥ (3 − √
7)n (or δ−(D) ≥

(3 − √
7)n) contains a directed triangle.

Lemma 3 Let D beadigraphwith d = max{δ+, δ−}and let F, F ′ be two subdigraphs,
such that F ⊂ F ′ and for every u ∈ V (F), it follows that u ∈ I+(F ′) if d = δ+ or
u ∈ I−(F ′) if d = δ−. Then

(i) |V (F ′)| ≥ |V (F)| + d − |A(F)|/|V (F)| where A(F) is the set of arcs of F.
(ii) |V (F ′)| ≥ d + (

√
7 − 2)|V (F)|, if g ≥ 4, (where g is the girth of D.)

(iii) |V (F ′)| ≥ min{2d, |V (F)| + d}, if D is bipartite.

Proof Assume that d = δ+.

(i) Notice that there exists v0 ∈ V (F), such that d+
F (v0) ≤ |A(F)|/|V (F)|, yielding

that |N+(v0) ∩ V (F ′ − F)| ≥ δ+ − |A(F)|/|V (F)| because u ∈ I+(F ′) for all
u ∈ V (F). Thus, |V (F ′)| ≥ |V (F)| + δ+ − |A(F)|/|V (F)| and item (i) holds.

(ii) As a consequence of Theorem 3, it follows that if g ≥ 4, there exists v0 ∈ V (F),
such that d+

F (v0) < (3 − √
7)|V (F)|. Thus, |N+(v0) ∩ V (F ′ − F)| ≥ δ+ −

(3 − √
7)|V (F)|, yielding that |V (F ′)| ≥ |V (F)| + δ+ − (3 − √

7)|V (F)| =
δ+ + (

√
7 − 2)|V (F)| and item (i i) holds.

(iii) Let U ,W be a bipartition of the vertices of D. If V (F) ⊆ U (or V (F) ⊆ W ),
then |V (F ′)| ≥ |V (F)| + δ+, and the result clearly holds. Otherwise, there are
u ∈ V (F) ∩U and w ∈ V (F) ∩ W , |V (F ′)| ≥ 2δ+. Thus, item (i i i) also holds.

	

Theorem 4 Let D be a digraph of order n, girth g and with d = max{δ+, δ−}. Then,
the acyclic disconnection

(i) −→ω (D) ≤ n − d.
(ii) −→ω (D) ≤ n − (3d − 1)/2 if g ≥ 3.
(iii) −→ω (D) ≤ n + 1 − (

√
7 − 1)d if g ≥ 4.

(iv) −→ω (D) ≤ n − 2d + 1 if D is bipartite.

Proof Assume that d = δ+.

(i) Let ϕ be an external acyclic coloring of D using−→ω (D) colors. If−→ω (D) = 1, then,
since d = max{δ+, δ−} ≤ n−1, it follows that−→ω (D) = 1 ≤ n−d. If−→ω (D) ≥ 2,
then by Lemma 2, there exists a chromatic class C , such that |I+(C)| ≥ 1, or
equivalently |V (C)| ≥ δ+ + 1. Since there are at most n − |V (C)| + 1 chromatic
classes, we obtain −→ω (D) ≤ 1 + n − |V (C)| ≤ n − δ+.
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(ii) Since the girth g ≥ 3, it follows that −→ω (D) ≥ 2. Therefore, we can apply Lemma
2 yielding that there exists a chromatic classC , such that |I+(C)| ≥ 1. By Lemma
3, with F ′ = C and F the induced subdigraph by I+(C), and taking into account
that |A(F)| ≤ |V (F)|(|V (F)| − 1)/2, because the girth g ≥ 3, it follows that:

|V (C)| ≥ |I+(C)| + δ+ − |I+(C)| − 1

2
= δ+ + |I+(C)| + 1

2
. (1)

If |I+(C)| ≥ δ+, then

−→ω (D) ≤ 1 + n − |V (C)| ≤ 1 + n − 3δ+ + 1

2
= n − 3δ+ − 1

2
,

and the result holds. Then, we assume |I+(C)| ≤ δ+−1. FromLemma 2 and from
(1), it follows that there exists C ′ �= C , such that |V (C ′)| ≥ δ+ − |I+(C)| + 1.
Then, we have

|V (C)| + |V (C ′)| ≥ δ+ + |I+(C)| + 1

2
+ δ+ − |I+(C)| + 1

= 2δ+ − |I+(C)| − 1

2
+ 1

≥ 3δ+

2
+ 2.

Since there are at most n − (|V (C)| + |V (C ′)|) + 2 chromatic classes, therefore

−→ω (D) ≤ 2 + n − (|V (C)| + |V (C ′)|) ≤ n − 3δ+

2
< n − 3δ+ − 1

2
.

Hence, item (i i) holds.
(iii) Suppose that the girth g ≥ 4. Therefore, −→ω (D) ≥ 2. By Lemma 3 (i i), with

F ′ = C and F the induced subdigraph by I+(C), it follows that:

|V (C)| ≥ δ+ + (
√
7 − 2)|I+(C)|. (2)

If |I+(C)| ≥ δ+, we have |V (C)| ≥ (
√
7−1)δ+. Then,−→ω (D) ≤ 1+n−|V (C)| ≤

1+ n − (
√
7− 1)δ+ and the result holds. Hence, we continue the proof assuming

that |I+(C)| < δ+.
By Lemma 2, and by (2), we have

|V (C)| + |V (C ′)| ≥ (δ+ + (
√
7 − 2)|I+(C)|) + (δ+ − |I+(C)| + 1)

= 2δ+ − (3 − √
7)|I+(C)| + 1

≥ (
√
7 − 1)δ+ + 1.

Therefore

−→ω (D) ≤ 2 + n − (|V (C)| + |V (C ′)|) ≤ n − (
√
7 − 1)δ+ + 1.
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Fig. 1 C7(1, 2) 1

1

1

12

3

4

Hence, item (i i i) holds.
(iv) Suppose that D is bipartite. By Lemma 3 (i i i), it follows that:

|V (C)| ≥ min{2δ+, δ+ + |I+(C)|}. (3)

Hence, if |I+(C)| ≥ δ+, then |V (C)| ≥ 2δ+ yielding that −→ω (D) ≤ 1 + n −
|V (C)| ≤ 1+ n − 2δ+ and the result holds. Hence, by (3), we continue the proof
assuming that

|I+(C)| ≤ δ+ − 1 and |V (C)| ≥ δ+ + |I+(C)|.

By Lemma 2, we have

|V (C)| + |V (C ′)| ≥ (δ+ + |I+(C)|) + (δ+ − |I+(C)| + 1) = 2δ+ + 1.

It follows that:

−→ω (D) ≤ n + 2 − (|V (C)| + |V (C ′)|) ≤ n − 2δ+ + 1.

Hence, the theorem holds.

	

Asan immediate consequence ofTheorem2andTheorem4,we canwrite the following
corollary.

Corollary 1 For all n ≥ 5, −→ω (
−→
C n(1, 2)) = n − 3. See Fig. 1 for n = 7.

Remark 1 The upper bound on −→ω (D) given in Theorem 4 item (i i) is tight at least
for δ+ = 1, 2, because for a directed cycle −→ω (

−→
C n) = n − 1 and by corollary.

A bipartite tournament is an oriented complete bipartite graph. Theorem 4 allows us
to establish the following result for bipartite tournaments.

Corollary 2 If T is an r-regular bipartite tournament of order 4r , then−→ω (D) ≤ 2r+1.
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The above result is also obtained in [2]. Moreover, this upper bound was shown to be
tight for

−→
C 4[Kr ] also known as a complete p-cycle for p = 4.

A generalized p-cycle is a digraph D, such that its set of vertices can be partitioned
in p parts,

V (D) = ∪α∈Z�
Vα,

in such away that the vertices in the partite set Vα , are only adjacent to vertices in Vα+1,
where the sum is in Zp. If D is strongly connected, N+(Vα) = Vα+1. Observe that
bipartite digraphs are generalized p-cycles with p = 2. Gómez, Padró, and Perennes
showed in [11] that a digraph is a generalized p-cycle if and only if for any pair of
vertices u, v, the lengths of all paths from u to v are congruent modulo p. Hence,
the girth of a p-cycle is at least p. Clearly, when p ≥ 3 the transitive tournament
contained in a p-cycle is an arc. As a consequence of Theorem 1 and Theorem 4 we
obtain the following result.

Corollary 3 Let D be a p-generalized cycle with p ≥ 3 of order n and d =
max{δ+, δ−}. Therefore

p − 1 ≤ −→ω (D) ≤
{
n − 2d + 1 if p even
n − (3d − 1)/2 if p odd.

In the next result, we improve the lower bound of the above corollary.
The number of weak components of a digraph D (i.e., the number of connected

components of its underlying graph) is denoted by ω(D).

Proposition 5 Let D be a p-generalized cycle of order n, p ≥ 3 and partite sets
V1, V2, . . . , Vp. Then,

−→ω (D) ≥ n − min{|Vi | + |Vi+1| − ω(D[Vi ∪ Vi+1])}.

Moreover, if D[Vi ∪Vi+1] is weakly connected, then−→ω (D) ≥ n−min{|Vi |+|Vi+1|}+
1, and the equality is obtained when the p-cycle is complete.

Proof Consider two consecutive partite sets Vi and Vi+1. Clearly, D − (Vi ∪ Vi+1)

is acyclic and every vertex b ∈ Vi ∪ Vi+1 is an interior vertex of D[Vi ∪ Vi+1]. If
ω(D[Vi ∪ Vi+1]) = k, then we can color each vertex of D − (Vi ∪ Vi+1) with a
different color and the vertices each component of D[Vi ∪ Vi+1] with the same color.
Thus, −→ω (D) ≥ n − (|Vi | + |Vi+1|) + k. Hence, −→ω (D) ≥ n − min{|Vi | + |Vi+1| −
ω(D[Vi ∪Vi+1])}. If D is a complete p-cycle, then D[Vi ∪Vi+1] is weakly connected
and −→ω (D) ≥ n − min{|Vi | + |Vi+1|} + 1. Moreover, every external acyclic coloring
must have two consecutive partite sets colored with the same color, because the p-
cycle is complete. Hence, −→ω (D) ≤ n−min{|Vi |+ |Vi+1|}+1 and the result follows.

	

As a consequence of Theorem 1, and using Theorem 4, the following corollary is
direct.
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Corollary 4 Let D be a digraph on n vertices, girth g ≥ 4, minimumout-degree δ+ ≥ 1
that contains a subdigraph isomorphic to an acyclic tournament of order k. Then

(i) g ≤ −→ω (D) − k + 3.
(ii) g ≤ n − k + 4 − (

√
7 − 1)δ+.

(iii) g ≤ n − 2δ+ + 4 − k if D is bipartite.

A (d, g)-digraph is a d-regular digraph with girth g. Behzand, Chartrand, and Wall
[12] asked for the minimum order n(d, g) of any (d, g)-digraph. A (d, g)-digraph of
order n(d, g) is called (d, g)-dicage. Clearly, a circulant digraph

−→
C n(1, 2, . . . , d),

where n = (g−1)d +1, is a (d, g)-digraph. Using this digraph, in [12], it was proved
that n(d, g) ≤ (g−1)d+1, and they proposed the conjecture n(d, g) = d(g−1)+1,
that is, the order of a (d, g)-cage is at least d(g− 1)+ 1. Caccetta and Häggkvist [13]
proposed a generalization of this conjecture requiring merely a lower bound on the
out-degrees of the digraph G.

Conjecture 1 [13] Let D be a digraph on n vertices in which each vertex is of out-
degree at least d ≥ 1. Then, the girth of D is at most n/d.

Both conjectures have been proved to be true for d = 2 by Behzad [14], for d = 3
first by Bermond and later by Hamidoune [15, 16], for d = 4 and for vertex-transitive
digraphs by Hamidoune [17, 18]. Now, we prove Conjecture 1 in certain families of
digraphs.

Corollary 5 Let D be a digraph on n vertices, girth g ≥ 4, minimum out-degree
δ+ ≥ 1 that contains a subdigraph isomorphic to an acyclic tournament of order k.
Then, g ≤ n/δ+, if k ≥ (δ+ − 1)n/δ+ − (

√
7 − 1)δ+ + 4.

Proof It is a direct consequence of Corollary 4. 	
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