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ABSTRACT

The rapid progress of molecular biology tools for
directed genetic modifications, accurate quantita-
tive experimental approaches, high-throughput
measurements, together with development of
genome sequencing has made the foundation for a
new area of metabolic engineering that is driven by
metabolic models. Systematic analysis of biological
processes by means of modelling and simulations
has made the identification of metabolic networks
and prediction of metabolic capabilities under dif-
ferent conditions possible. For facilitating such
systemic analysis, we have developed the BioMet
Toolbox, a web-based resource for stoichiometric
analysis and for integration of transcriptome and
interactome data, thereby exploiting the capabilities
of genome-scale metabolic models. The BioMet
Toolbox provides an effective user-friendly way to
perform linear programming simulations towards
maximized or minimized growth rates, substrate
uptake rates and metabolic production rates by de-
tecting relevant fluxes, simulate single and double
gene deletions or detect metabolites around which
major transcriptional changes are concentrated.
These tools can be used for high-throughput
in silico screening and allows fully standardized
simulations. Model files for various model organ-
isms (fungi and bacteria) are included. Overall, the
BioMet Toolbox serves as a valuable resource for
exploring the capabilities of these metabolic
networks. BioMet Toolbox is freely available at
www.sysbio.se/BioMet/.

INTRODUCTION

The rapid expansion of systems biology has led to the
development of a vast number of mathematical models
and integrative strategies. Use of computational modelling
has emerged as a powerful descriptive and predictive tool
that allows the study of complex systems to investigate
biological phenomena and represents the core of systems
biology. The role of mathematical modelling and data in-
tegration is to generate testable hypothesis, design experi-
ments and enrich the information content of experimental
data.

One of the major applications of systems biology is
within the field of metabolic engineering, which refers to
directed genetic modification of cell factories with the goal
to improve their phenotype for industrial application. The
use of metabolic engineering for exploiting microorgan-
isms in industrial biotechnology is not a novel concept.
Fermentation processes have been applied for production
of antibiotics, e.g. penicillin by Penicillium chrysogenum,
amino acids, e.g. lysine by Corynebacterium glutamicum,
organic acids, e.g. citric acid by Aspergillus niger, and
enzymes, e.g. o-amylase by Aspergillus oryzae.
Escherichia coli has been used for production of many
different recombinant proteins (like human growth
hormone) and the yeast Saccharomyces cerevisiae is used
for bioethanol production, production of a range of
pharmaceutical proteins, chemicals, bulk chemicals and
nutraceuticals. The development of computational tools
for omics data integration and genome-scale metabolic
models (GSMMs) of cell factories enables the analysis of
the effects of different media and specific mutations on
growth and the operation of the metabolic network,
moving biology from a phenomenological to a predictive
science. One of the most accepted methods for providing
general information on how the metabolic network is

*To whom correspondence should be addressed. Tel: +46 31 772 3804; Fax: +46 31 772 3801; Email: nielsenj@chalmers.se

The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors.

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

020z aunp 6o uo1senb Aq $£/801 L/¥YLAM/Z 1ddns/genoensge-ajonie/ieu/wod dnosolwapeoe//:sdny woll papeojumoq



operating at different growth conditions is metabolic flux
analysis. Metabolic fluxes can either be estimated through
the use of flux balance analysis (1) or through the use of
3C-labelled substrate feeding followed by analysis of the
labelling patterns in intracellular metabolites (2). Thus,
flux analysis today represents a standard technique not
only for rapid phenotypic characterization of metabolic-
ally engineered strains, but also as an important aid in
designing metabolic engineering strategies. Although flux
analysis contributes strongly to the understanding of
metabolic networks it is well known that transcriptional
regulatory programs strongly control the flux distribution.
Therefore, it is important to identify regulatory patterns in
the interactions within the metabolic network and this can
be achieved by combining the topology of the underlying
network with omics data (3,4).

Here, we introduce the BioMet Toolbox, a web-based
resource for analysis and integration of transcriptome and
interactome data, and thereby exploiting the capabilities
of metabolic networks described in genome-scale models.
The BioMet Toolbox also includes GSMMs of various cell
factories used both in industrial biotechnology and in fun-
damental research.

FEATURES

The BioMet Toolbox consists of: (i) a suite of applications
(‘Tools”) developed for studying metabolism and high-
throughput analysis, and (ii) a collection of GSMMs
(‘Models’) of different organisms (Figure 1).

Tools

The core of the Tools section consists of a client applet
that acts as a graphical interface to the server with the
following analyses methods: (i) calculation of all internal
mass balance fluxes, reduced costs and shadow prices for
the assessment of in silico metabolic model predictive
capabilities (BioOpt); (ii) identification of key biological
features (metabolites, transcription factors, protein—
protein interactions and GO association) around which
transcriptional changes are significant (Reporter
Features, 5); (iii) identification of significantly correlated
metabolic sub-networks after direct or indirect perturb-
ations of the metabolism (Reporter Subnetwork, 4).

Each analysis has a choice of sub-options that become
available on its selection together with extensive examples
and help menu.

The BioMetToolbox website is written in HTML and
JavaScript. The backend is based on PHPS5 and tools are
written in MATLAB and C++.

BioOpt: flux distribution calculations using flux balance
analysis

BioOpt focuses on flux balance analysis (FBA), using
linear programming as the mathematical support. Flux
distribution calculations using FBA is a widely used
method for analysis of the capabilities of a metabolic
network. Given a set of constraints, such as maximal
uptake rates of nutrients, BioOpt returns the set of meta-
bolic fluxes that maximizes a specified objective function
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(usually the growth rate of the organism). FBA of
genome-scale networks provide an excellent platform for
evaluation of gene essentiality as well as the more general
study of metabolic perturbations following gene knock-
outs. This has been used to identify drug targets (6) and
to suggest possible metabolic engineering strategies to
optimize by-product formation in microbial fermentations
(7). BioOpt implements several analyses to deal with this
type of problem, including an exhaustive combinatorial
search for combinations of gene deletions and a mixed
integer linear programming application to identify the
best set of gene deletions given a target objective value.
Other analyses include overexpression of fluxes and basic
sensitivity analysis.

Required input is a genome-scale model in BioOpt
format [a converter from SBML to BioOpt is provided
in the BioMet toolbox and hence it is possible to use
custom models available in SBML format in addition to
those provided in the library of models (see ‘Models’
section)]. The input is a text file that contains the reactions
in the model together with the constraints and the object-
ive function needed to perform a simulation. For a
detailed description of the syntax, consult BioOpt
format instruction at the website www.sysbio.se/BioMet.
The output is dependent on the type of analysis, but gen-
erally includes the optimal solution to the linear
programming problem generated with the model,
shadow prices for metabolites, and the internal fluxes
and reduced costs associated to each reaction. The
shadow prices give information on how the availability
of metabolites will affect the objective function and the
reduced costs give information about how beneficial/det-
rimental it is to have each reaction carry an additional unit
flux. Taken together, this information can give valuable
insight into the functionality of the metabolic system.

Reporter Features: identification of transcriptional
regulatory circuits in metabolic networks

Reporter Features is a hypothesis-driven algorithm that
integrates  transcriptome/proteome/metabolome  data
with the topology of bimolecular networks. Reporter
features algorithm exploits the connectivity structure of
bio-molecular interaction networks for data integration.
For example, the metabolic network can be treated as a
bipartite undirected graph, where the nodes are the me-
tabolites and the enzymes composing each reaction, while
the edges represent the association between the metabol-
ites and enzymes due to the corresponding reactions. All
enzyme nodes are scored based on the P-value for signifi-
cance of change in the expression level of the correspond-
ing gene (across different conditions/mutants). Each
metabolite in the graph is then statistically assessed for
collective transcriptional response in the neighbouring
enzyme nodes. Metabolites with significant scores repre-
sent metabolic hot spots with significant degree of tran-
scriptional regulation around them. The algorithm can
also be applied to different biological networks to
identify corresponding reporter features (such as tran-
scription factors, protein—protein interactions, GO associ-
ation, protein complexes and ad hoc interactions of
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Figure 1. System flow of the BioMet Toolbox. Central panel (gray color) represents required input files [GSMM from our repository, Metabolic
Network file with interaction, Association files: Node-ORF and file with P-values (more detailed descriptions of input files can be found in the text)].
Alternative input files (dashed gray color) are allowed (Annotation for know interaction can replace Metabolic Network file with interaction and
Node-ORF Association files; Transcriptome data analysis instead of file with P-values, and custom GSMM instead of models provided in the
repository). Three applications with available sub-options (color-coded as corresponding application) are represented in rectangular boxes (Analysis
methods) and example of the results (output files) in oval boxes: Reporter Features (orange), Reporter Subnetworks (blue) and BioOpt (green).

interest) around which transcriptional changes are collect-
ively significant. For example, if the algorithm is applied
to the regulatory network that represents interactions
between transcription factors and the regulated genes,
the result will mark the reporter transcription factors—
indicating significant change in the corresponding TF
activities (5).

The use of the Reporter Features tool requires three
input files: (i) a data file with P-values from a significance
of change test (e.g. Student’s t-test for a pair-wise com-
parison) for each ORF represented in the interaction
network. In case of a multidimensional data, the algo-
rithm can take the expression levels for each condition
(Pearson correlation coefficient is then used as a scoring
metric); (ii) an interaction network file containing feature
name, together with type of interaction and node name.
The format is the same as the SIF format, commonly used
in other platforms as Cytoscape (8). For reporter metab-
olite analysis, a genome-scale model in BioOpt format can
directly be used as an input, the computational algorithm
internally transforms the BioOpt annotation into required
interaction map; (iii) Node-ORF relation file containing
node names used in the interaction file and the corres-
ponding ORF names as in the P-values data file (i). The
output contains a list with the feature (e.g. metabolites or
transcription factors) and a z-score pertaining to the null
hypothesis that the observed collective transcriptional
response around the feature is by chance. For instance,
if the input file is the interaction network constructed

from the GSMM, the output will show a list of metabol-
ites with their z-scores, the metabolites with significant
scores are defined as reporter metabolites. For ranking
the transcription factors that execute the control on the
metabolic network the Reporter Transcription Factor
analysis option is available. As a supplementary
analysis, the user can perform GO enrichment analysis
using Reporter Gene Ontology that has been
demonstrated to be as powerful as other methods
created for gene set enrichment analysis (9).

Reporter Subnetwork: identification of significantly
responsive/correlated metabolic subnetworks

The aim of Reporter Subnetwork tool is to identify sig-
nificantly responsive/correlated metabolic subnetworks
after direct or indirect perturbations of the metabolism
(4,10). Interaction networks are constructed based on
the metabolic genes. Specifically, metabolic enzymes are
represented as an undirected graph by using the topologic-
al information from the GSMM. In such undirected
graph, two metabolic enzymes are connected if they
share any common metabolite in the corresponding
reactions.

Similar to Reporter Features, Reporter Subnetwork
requires three input files. The first input file required is
the file containing, either P-values (for a pair-wise com-
parison), or, multiple columns for expression under differ-
ent condition (for multidimensional data). The second
required input is Node-ORF association file and the last
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required file is a genome-scale model in BioOpt format.
The output consists of two text files, with the same format
to those files used in reporter features: the first file
contains the gene groups forming the highly responsive/
correlated Subnetworks and the corresponding signifi-
cance score. The second file consists of results from an

additional run of the algorithm and reports the
high-scoring Subnetwork identified within the first
Subnetwork.

The tools described above represent valuable resources
for exploring the capabilities of the metabolic networks.
The user can perform analysis on the models from our
database or upload their custom GSMM.

Comparison to other software

To the best of our knowledge, the only other web-based
application offering similar type of analysis as BioMet
Toolbox is CycSim (11). CycSim has more advantages in
terms of pathways visualization; while on the other hand,
BioMet offers the option to analyse custom GSMMs and
provides tools for transcriptome analysis and omics data
integration.

In terms of constrain-based modelling, similar type of
analysis as BioOpt can be performed using COBRA
TOOLBOX (12), albeit only using MATLAB® environ-
ment. BioOpt offers the advantage of being available as a
web-based platform, as well as in a standalone version
running on the Windows environment. Another strength
of BioMet relies on the fact that it also contains transcrip-
tome integrative algorithms using the same format of
GSMM. BioMet standalone version allows for formatting
of the output so as to be compatible with other software,
in particular METATOOL (13). METATOOL can be
used to calculate the null space matrix, elementary flux
modes and other structural properties of the metabolic
network. The standalone version also includes a direct
interface to METATOOL.

Another tool available in public domain, FluxAnalyzer
(14) is limited to small networks and it is focused on meta-
bolic network simulation and topology analysis; the algo-
rithms used in this tool are not suitable for GSMM.

The major advantage of BioMet Toolbox is that it
combines flux balance analysis, transcriptome analysis
and omics data integration in a single package with
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user-friendly interface which makes it available for
broader audience.

In Table 1, we compare some of the features among the
aforementioned tools.

The site also serves as a repository of tools for other
types of analysis including C13 and ClusterLustre, with
the potential to cover many more tools in the future.
Details on these methods are provided on the site.

Models

In the bottom-up systems biology approach, mathematical
models have proven to be useful for analysis of
high-throughput data (15), as the complexity and integra-
tive nature of biological systems makes it difficult to
extract information on molecular processes from such
data.

In particular, genome-scale models are used as scaffolds
for analysis of omics data or for hypothesis-driven analysis
of the data with the objective to understand global re-
sponses to nutrients and diseases.

Hereby, these GSMMs may be used to predict a theor-
etical landscape of genetic perturbations that can
maximize product and biomass formation under preferred
conditions, e.g. during growth on different carbon sources.

We have previously manually reconstructed GSMMs
for several important cell factories: S. cerevisiae (16—18),
S. coelicolor (19), L. lactis (20), A. niger (21), A. nidulans
(22), A. oryzae (23) and C. glutamicum (24) (Table 2).

All models included in the BioMet Toolbox are avail-
able in three formats: SBML, BioOpt and Excel. For the
custom models in SBML format, uploaded by the user, we
provide a converter to BioOpt format (SBML2BioOpt).

Following efforts of the systems biology community for
model standardization, we compiled all models into
SBML format (25). We encourage the community to
submit their own GSMMs to be included in the reposi-
tory; such that the BioMet Toolbox can expand to cover
many more models in the future.

CASE STUDY

Aerobic chemostat fermentations on either glucose or
ethanol (26) were selected for demonstration of the

Table 1. Comparison of key features among BioMet, COBRA, FluxAnalyzer and CycSim

BioMet COBRA FluxAnalyzer CycSim
Web-based Yes No No Yes
Stand Alone version (Platform) Yes (MS-DOS prompt) No (MATLAB) No (MATLAB) No
Flux Analysis Yes Yes Yes Yes
Metabolic Flux Analysis No No Yes No
Elementary Flux Mode Yes* No Yes No
Extreme Pathways No No Yes No
Pathways Visualization No No Yes Yes
SBML Yes Yes No Yes
Transcriptome Analysis and Integration Reporter Analysis® Reporter Metabolites No No

Clustering

“Elementary Flux Mode Analysis is available in Stand Alone version.

"The Reporter Analysis in BioMet toolbox is more comprehensive (covers Reporter Features, Metabolites and Subnetworks Analysis) then the one

available in COBRA.
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Table 2. Overview of available GSMMs in the BioMet Toolbox

Table 3. Comparison of measured and simulated fluxes for growth
on two different carbon sources (all values are in mmol/gDW/h)

Organism Genome Model
sequence statistics Glucose  Glucose sim  EtOH  EtOH sim
Size (kb) ORFs Reactions Metabolites ORFs Glucose consumption  1.15 1.15 _ —

O, consumption 2.74 2.88 6.87 7.20

Lactococcus lactis 2365 2310 621 509 358 CO, production 2.85 2.90 3.26 3.41

Coryne glutamicum 3282 3002 446 411 446 EtOH production - - 3.78 3.78

Streptomyces coelicolor 8667 7825 769 500 769 Biomass production 0.10 0.11 0.10 0.12

Saccharomyces cerevisiae 12069 6294 1149 646 750

Aspergillus niger 35900 14165 1190 1045 871

Aspergillus nidulans 30100 9451 1213 732 666

Aspergilus oryzae 37200 13120 1053 1073 1314

applications of the BioMet toolbox. The fermentation
characteristics were predicted using the BioOpt applica-
tion via the web interface. This was performed by first
downloading the provided example file for the yeast
GSMM (iIN800). The upper bound of the uptake rate
(GLCxtI for glucose and ETHxtlI for ethanol) was
specified to be within the experimentally measured
values. Each model file was then submitted to BioOpt
for maximization of biomass production. A comparison
between measured production/consumption rates and
those obtained from simulations is shown in Table 3.
The model captures several important differences
between the two conditions, such as the lower biomass
yield and higher respiratory activity typically seen with
growth on ethanol.

The same model file was then submitted to the Reporter
Features algorithm together with the P-values for differ-
ential expression under the two conditions. The top 10
ranking metabolites out of 54 significant hits (P < 0.05)
are shown in Table 4.

Drastic metabolic changes are associated with the
change from growth on sugars to growth on
C2-compounds. During growth on glucose, all building
blocks for biomass can be derived from glycolysis, TCA
cycle and the pentose phosphate pathway. For growth on
ethanol, gluconeogenesis and the glyoxylate shunt are
needed for the production of some of these precursors.
Energy metabolism is shifted towards increased respir-
ation since energy cannot be harvested from glycolysis.
The output from Reporter Features analysis accurately
captures several of these differences: a-p-glucose[c] and
B-p-fructofuranose 6-phosphate[c] are involved in glycoly-
sis and a-D-glucose[e] corresponds to the uptake of
glucose. Carnitine[c] and O-acetylcarnitine[c] participates
in the carnitine shuttle of acetyl to produce mitochondrial
acetyl-CoA, which is utilized to a much larger degree in
the ethanol case. 6-Phospho-p-gluconate[c] is an import-
ant intermediate in the pentose phosphate pathway. o-D-
mannose[c] and D-fructose[e] are reported because several
proteins, such as hexokinases and sugar transporters,
acting on glucose can also act on these metabolites.

This small example shows how FBA can be used to get
quantitative estimations of growth characteristics that are
in good agreement with what is seen experimentally, and
how Reporter Features can be used to identify metabolic
hot spots around which transcriptional changes occur.

Table 4. The 10 most significant reporter metabolites from Reporter
Features

Reporter Metabolite

Beta-p-fructofuranose 6-phosphate[c]
Carnitine[c]

Alpha-p-glucose[e]
Alpha-p-glucose[c]
O-acetylcarnitine[c]
6-Phospho-p-gluconate[c]
Fumarate[m]

Alpha-p-mannose|c]
2-Oxoglutarate([c]

p-fructose[e]

The characters in brackets correspond to the sub cellular localization
([c], cytosol; [m], mitochondria; [e], extracellular).

SUMMARY

The BioMet Toolbox combines a variety of algorithms for
genome-wide exploration of metabolism. It allows users to
make important predictions using GSMMs and elucidate
unexplored properties of biological networks with the
means of computational tools. There are a number of ad-
vantages for using BioMet Toolbox: (i) it is web-based,
platform-independent toolbox for analysis of transcrip-
tome data and GSMMs; (ii) it is not organism-specific;
(1i1) it is suitable for both, inexperienced and advanced
users. The Toolbox accepts genome-scale models in easy
to read and write text format (knowledge about compiling
models in SBML format is not prerequisite for using
BioMet Toolbox), and the more advanced users can
analyse their own models written in SBML format.

The BioMet Toolbox is built in a flexible and easily
extendible platform to allow incorporation of more tools
and genome-scale models in the future.

AVAILABILITY

The BioMet Toolbox will be continuously maintained and
updated. The web server is freely available at www.sysbio
.se/BioMet/.
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