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1. Introduction

The contingent reality faced by different economic agents participating in the
various financial markets impacts their decision making on consumption and
portfolio. In order to model this kind of decision making in risky environments,
sophisticated mathematical tools have been developed in recent years with a
boost up. Particular attention has been paid to the theoretical approach of
dynamic stochastic general equilibrium models (DSGEM). Under this frame-
work, there are diverse available models in the literature see, for example: [63],
[19], [55], [85], [84], [50],and [56], among many others. Under the DSGEM
framework, there are also other papers involving richer stochastic environments
in which economic and financial variables are driven by mixed jump-diffusion
processes; see, in this regard: [63], [61], [77], [78], [16] and [20].

One important issue in macroeconomic research consist in developing stochas-
tic models that explain stylized facts on consumption and portfolio decisions,
see, for instance: [31], [30], [45], [11], [78], [15], and [17], to name a few. Re-
garding pricing contingent claims of the American type a concept that provides
consistency with decisions that can be made at any point in time in uncertain
environments is that of stopping time process; see: [29], [69], [73], [85], [84], [61],
[55], [80], [70], and [83], among others. For example, Shreve ([73]) analyzes the
optimal exercise time of an American put option through the binomial model
and defines the stopping time to be the first time at which the put option is
equal to its intrinsic value. On the other hand, Bjrk ([85] and [84]) imposes a
stopping time to avoid degenerated solutions provided nor a control constraint
neither an inheritance function forbid the economic agent increase his utility at
any level.

In most of the previous investigations, an essential assignment is to obtain
prices of available financial assets and their derivatives. This literature is, ac-
tually, vast and varied; see, in this respect: [13], [65], [31], [30], [68], [81], [36],
[35], [34], [84], [20], [18], [15], [72], [23], [26], [27], and [70], among others. A
peculiarity in the research of Cruz-Ak and Venegas-Martnez ([72] and [21]) is
that the authors obtain prices of derivatives on several assets and commodities.
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A valuation approach frequently used, even when market risk cannot be
hedged, is provided by DSGEM. In this regard see, for instance, the pioneering
work from Lucas ([66]) and Cox, Ingersoll and Ross ([31]). More recent papers
on this issue are [11], [37], [16], [20], [21], [72], and [23]. A common feature of
these investigations is a finite and deterministic time horizon; this subject will
be generalized in the present research.

Generalizations of the Black and Scholes’ (1973) partial differential equa-
tion are the most widely used mathematical models to value derivatives. This
allows, depending on the nature of the imposed boundary conditions, obtain-
ing the theoretical price of different derivatives available in financial markets
(exchanges and over-the-counter). In this context, it is important to extend
the B&S model by introducing stochastic volatility of the underlying asset. For
example, Grajales and Perez ([4]) estimate the parameters for the stock indices
with the family of ARCH (discrete time) models and with the empirical model
of Wilmott and Oztukel ([58]). They assume that the distribution of volatility
of the returns is lognormal. Meanwhile, Sierra ([27]) extends the B&S equa-
tion towards stochastic volatility as in Hull and White ([36]) but considering
fractional Brownian motion where the price of the underlying and its volatility
are uncorrelated. Also, Venegas-Martnez ([19]) models the kurtosis and skew
of financial series by using the combination of Brownian motion with Poisson
jumps. Other investigations using stochastic volatility are: [36], [10], [75], [79],
[8], [3], [48], [1], and [40], to name a few. For example Herzel ([75]) extends
the B&S model assuming that the volatility of the share price can jump from
one value to another in a random instant of time, and finds analytical solutions
for pricing options. Leon and Serna ([1]) use the semiparametric models of
Corrado-Su ([5]) and Jondeau-Rockinger ([9]), as well as the model of mixture
of lognormal distributions of Bahra ([2]) comparing them with the seminal B&S
model. Their results indicate that Corrado-Su and Jondeau-Rockinger improve
the original B&S model. Meanwhile Britten-Jones and Neuberger ([40]) char-
acterize the processes of continuous prices that are consistent with actual prices
of options extending the work of Derman and Kani ([8]), Dupire ([3]) and Ru-
binstein ([48]) since they only consider processes with deterministic volatility.
Among the works that allow the underlying price to jump, it may be mentioned
the works of Merton ([64]), and Venegas-Mart́ınez ([16], [22] and [19]), among
others.

The research for pricing derivatives is very extensive; see, for example: [65],
[28], [12], [42], [43], [6], [32], [34], [38], [82], [74], [54], [7], [76], [67], [24], [57],
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[44], [34], and [70], among others. In the case of American claims, part of the
valuation problem is to identify the exercise border that maximizes the value of
the option for the owner of the contract; see, in this regard, [65], [28], and [49].
Although it is best to have a closed formula for American options, this is not
often available, and the research effort has been focused on developing approx-
imate methods; see, [82], [76], [46], and [32]. Meanwhile, Whaley ([67]), and
Barone-Adesi and Whaley ([24]) developed an approximate analytic formula
with a very fast performance compared to other methods. On the other hand,
Kou and Wang ([74]) show that using a jump-diffusion model they obtain an
analytical approximation for a finite horizon. Some other researchers adopt an
interpolation scheme to price an American option; for instance, [41], [34], and
[82]. Within the methods that follow approximated schemes based on exact
representations with free boundary are those of an integral representation as in
Broadie and Detemple ([41]) and Ju ([54]). Finally, a common feature among
several different methods is to use the stopping time process as a fundamental
tool for the valuation of American derivatives, see: [60], [70], [34], [82], [29],
[84], and [83], among others.

The distinguishing features of this research, with respect to the above inves-
tigations are: 1) the planning horizon is finite but with stochastic length, 2) the
stopping time process not only avoids degenerate solutions but also is helpful in
modeling an American derivative, and 3) the valuation of the American option
is carried out through the Monte-Carlo method.

This paper is organized as follows. The following section describes the theo-
retical framework needed to develop the model. Section 3 deals with the agent’s
intertemporal budget constraint. Section 4 introduces the stopping time process
that prevents the problem of producing degenerate solutions ([84]). Here, the
continuous time optimal control problem with a finite stochastic planning hori-
zon is stated. Section 5 provides the solution to the proposed optimal control
problem. Section 6 presents the first order conditions for an interior solution.
Section 7 employs, for consistency, the verification theorem of the stochastic
dynamic programming. Section 8 provides the price of an American put option
on an AMX stock by using the Monte Carlo method. Finally, Section 9 presents
the conclusions highlighting the limitations and indicating those extensions that
will be considered in future research.
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2. Assets and Returns

Suppose that the agent is allowed to invest his wealth in assets with and without
risk. Hence, a portion of his wealth may be invested as savings in a bank that
pays a risk-free interest rate r > 0 that is continuously compounded. Thus,
the balance of the investment at time t is Bt = B0e

rt, which can be expressed,
equivalently, by the basic firs-order differential equation

dRBt =
dBt

Bt
= rdt. (1)

2.1. The Underlying Asset with Stochastic Volatility

Other part of his wealth may be invested into two risky assets, a share whose
volatility is stochastic and an American put option on that share. It is assumed
that the stock price follows the following stochastic differential equation:

dRSt =
dSt

St
= µdt+ σtdWt, (2)

whereWt is a Wiener processes or Brownian motion, defined on a fixed probabil-
ity space with its augmented filtration (Ω,F , (F

W

t )t∈[0,T ], IP), µ ∈ R is the trend

parameter, and σ2
t = Vt is the variance (or squared volatility). The volatility

of the underlying asset is driven by a second geometric Brownian motion with
the following stochastic differential equation:

dRVt =
dVt

Vt
= αdt+ βdZt, (3)

where α is the trend of the variance and β > 0 stands for the variance volatility.
Both quantities are known. The process dZt is a Brownian motion defined
on a fixed probability space with augmented filtration (Ω,F , (F

Z

t )t∈[0,T ], IP)
. Particularly, it is assumed that the aforementioned Brownian motions are
uncorrelated, that is,

Cov (dWt, dZt) = 0. (4)

2.2. American Put Option

The agent has access to a third asset, an American put option on stock with
price At = At(St, Vt, t), and dynamics driven by:

dRAt =
dAt

At
= µAtdt+ σ1AtdWt + σ2AtdZt, (5)
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where,

µAt =
1

At

[

∂At

∂t
+

∂At

∂St
µSt +

∂At

∂Vt
αVt +

1
2

(

∂2At

∂S2
t

σ2
t S

2
t +

∂2At

∂V 2
t

β2V 2
t

)]

dt

σ1At =
1

At

∂At

∂St
σSt and σ2At =

1

At

∂At

∂Vt
βVt. (6)

The proportions of wealth allocated to the risky asset and the American put
option in the portfolio at time t will be denoted by ω1t y ω2t, respectively.
Thus, the proportion of wealth in the portfolio allocated to the riskless asset
is 1− ω1t − ω2t. Variable ct denotes the consumption rate, and is restricted to
self-financing strategies of consumption-investment. It is further suppose that
the agent lives in a world where continuous negotiations are possible, without
fall into any costs by commissions to brokers or tax payments to government.
Finally, short sales are allowed and unlimited.

3. Agents Intertemporal Budget Constraint

Let Xt be the consumer wealth at time t, thus the stochastic dynamics of
marginal wealth is given by:

dXt = Xtω1tdRSt +Xtω2tdRAt +Xt (1− ω1t − ω2t) dRBt − ctdt,

that is,

dXt = Xt

(

r + ω1t (µ− r) + ω2t (µAt − r)−
ct

Xt

)

dt+

+Xt (ω1tσt + ω2tσ1At) dWt +Xt (ω2tσ2At) dZt,

(7)

equivalently,
dXt

Xt
= µXdt+ σ1XdWt + σ2XdZt (8)

where

µX =

(

r + ω1t (µ− r) + ω2t (µAt − r)−
ct

Xt

)

σ1X = ω1tσt + ω2tσ1At and σ2X = ω2tσ2At .

(9)



CONSUMPTION AND PORTFOLIO DECISIONS OF... 717

4. Stopping Time and Stochastic Optimal Control

Consider an economic agent with a finite planning horizon given by the time
interval [0, T ] with a random final value for T . Assume that at time t = 0 the
agent has an initial wealth X0 and faces the decision to assign his/her wealth
between consumption and investment, so as to his/her wealth stays no negative
over planning horizon. The consumer maximizes his total expected discounted
utility from consumption. Suppose that the satisfaction index of the agent is
given by:

IE

[
∫ T

0
F (t, ct) dt+Φ(XT ) |F0

]

Where F is the discounted utility function for consumption and Φ stands for
the retirement function at time T . The quantity Φ measures the usefulness
of having a reserve at the end of the period, and F0 is the relevant available
information at time t = 0.

Suppose now that the agent can borrow unlimited resources and invest in
assets so his wealth could become zero at some point and even negative. Thus,
T becomes a stopping time. To deal with this difficulty, we define the restricted
domain D = [0, T ]× {x|x > 0}. Let us now define the function

τ = min [inf {t > 0|Xt = 0} , T ] .

The interpretation is that when the process of wealth attains the domain
boundary, i.e., if wealth is zero, then the activity is completed and there is no
retirement function, so it is natural for Φ to become zero.

4.1. Setting the Stochastic Optimal Control Problem

The utility maximization problem of the rational consumer as a stochastic op-
timal control problem can be stated as:

Maximize
ω1t,ω2t,ct

IE

[
∫ τ

0
F (t, ct)dt |F0

]

,

dXt = XtµXdt+Xtσ1XdWt +Xtσ2XdZt

X0 = x0,

ct ≥ 0,∀ t ≥ 0.

(10)
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5. Dynamic Programming, Hamilton Jacobi Bellman (HJB)
Equation

To solve the problem stated in (10) and find the optimal proportions of wealth
allocated in the investment portfolio as well as optimal consumption, we define
the value function associated with the optimization problem as follows:

J (Xt, Vt, t) = max
ω1t,ω2t∈R,0≤cs|[t,τ]

IE





τ
∫

t

F (cs, s) ds |Ft





= max
ω1t,ω2t∈R,0≤cs|[t,τ]

IE





t+dt
∫

t

F (cs, s) ds+

τ
∫

t+dt

F (cs, s) ds |Ft



 .

(11)

After applying the mean value theorem of integral calculus to the first term
and using a recursive relationship in the second term, we obtain

J (Xt, Vt, t) = max
ω1t,ω2t∈R,0≤cs|[t,t+dt]

IE
{

F (ct, t)dt+ o(dt)

+ J(Xt + dXt, Vt + dVt, t+ dt)
∣

∣

∣
Ft

}

.

After using the Taylor series expansion in the second term, we get

J (Xt, Vt, t) = max
ω1t,ω2t∈R,0≤cs|[t,t+dt]

IE
{

F (ct, t)dt+ o(dt) + J(Xt, Vt, t)

+ dJ(Xt, Vt, t) + o(dt)
∣

∣

∣
Ft

}

.

Consequently,

0 = max
ω1t,ω2t∈R,0≤cs|[t,t+dt]

IE
{

F (ct, t) dt+ o (dt) + dJ (Xt, Vt, t)
∣

∣

∣
Ft

}

.

If we use Its lemma to dJ(Xt, Vt, t), it follows

0 = max
ω1t,ω2t∈R,0≤cs|[t,t+dt]

IE

{

F (ct, t) dt+ o (dt) +

[

∂J (Xt, Vt, t)

∂t
+

+
∂J (Xt, Vt, t)

∂Xt
XtµX +

∂J (Xt, Vt, t)

∂Vt
Vtα+

+
1

2

∂2J (Xt, Vt, t)

∂X2
t

X2
t

(

σ2
1X + σ2

2X

)

+
1

2

∂2J (Xt, Vt, t)

∂V 2
t

V 2
t β

2+
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+
∂2J (Xt, Vt, t)

∂Xt∂Vt
XtVtβσ2X

]

dt+
∂J (Xt, Vt, t)

∂Xt
Xt(σ1XdWt + σ2XdZt)+

+
∂J (Xt, Vt, t)

∂Vt
VtβdZt

∣

∣

∣
Ft

}

.

Subsequently, taking into account that dWt ∼ N (0, dt) and dZt ∼ N (0, dt),
the expected value of the above equation is

0 = max
ω1t,ω2t∈R,0≤cs|[t,t+dt]

{

F (ct, t) dt+ o (dt) +

[

∂J (Xt, Vt, t)

∂t
+

+
∂J (Xt, Vt, t)

∂Xt
XtµX +

∂J (Xt, Vt, t)

∂Vt
Vtα+

+
1

2

∂2J (Xt, Vt, t)

∂X2
t

X2
t

(

σ2
1X + σ2

2X

)

+
1

2

∂2J (Xt, Vt, t)

∂V 2
t

V 2
t β

2+

+
∂2J (Xt, Vt, t)

∂Xt∂Vt
XtVtβσ2X

]

∣

∣

∣
Ft

}

.

The above expression is now divided by dt and after taking the limit when
dt → 0, it is obtained

0 = max
ω1t,ω2t∈R,0≤cs|[t,t+dt]

{

F (ct, t) +
∂J (Xt, Vt, t)

∂t
+

∂J (Xt, Vt, t)

∂Xt
XtµX+

+
∂J (Xt, Vt, t)

∂Vt
Vtα+

1

2

∂2J (Xt, Vt, t)

∂X2
t

X2
t

(

σ2
1X + σ2

2X

)

+

+
1

2

∂2J (Xt, Vt, t)

∂V 2
t

V 2
t β

2 +
∂2J (Xt, Vt, t)

∂Xt∂Vt
XtVtβσ2X

}

.
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In the above equation we impose the corresponding boundary conditions

0 = max
ω1t,ω2t∈R,0≤cs|[t,t+dt]

{

F (ct, t) +
∂J (Xt, Vt, t)

∂t
+

+
∂J (Xt, Vt, t)

∂Xt
XtµX +

∂J (Xt, Vt, t)

∂Vt
Vtα+

+
1

2

∂2J (Xt, Vt, t)

∂X2
t

X2
t

(

σ2
1X + σ2

1X

)

+
1

2

∂2J (Xt, Vt, t)

∂V 2
t

V 2
t β

2+

+
∂2J (Xt, Vt, t)

∂Xt∂Vt
XtVtβσ2X

}

,

J (X,V, T ) = 0,

J (0, V, t) = 0.

(12)

It is worth pointing out that the above boundary conditions have incorporated
the stopping time.

5.1. Utility Function

Suppose that utility has the functional form F (ct, t) = e−ρtU (ct), where U(ct)
is a member of the family utility functions HARA ([60] and [53]). In what
follows, we chose the following consumption function

F (ct, t) =
e−δt

δ
ln (ct) .

5.2. First-Order Conditions

By assuming an interior maximum and making the appropriate substitutions,
we obtain the HJB condition:

0 =
e−δt

δ
ln (ct) +

∂J (Xt, Vt, t)

∂t
+

+
∂J (Xt, Vt, t)

∂Vt
Vtα+

1

2

∂2J (Xt, Vt, t)

∂V 2
t

V 2
t β

2+

+
∂J (Xt, Vt, t)

∂Xt
Xt

(

r + ω1t (µ− r) + ω2t (µAt − r)−
ct

Xt

)

+ (13)

+
1

2

∂2J (Xt, t)

∂X2
t

X2
t

[

ω2
1tσ

2
t + ω2

2tσ
2
1At

+ 2ω1tσtω2tσ1At + ω2
2tσ

2
2At

]

+
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+
∂2J (Xt, Vt, t)

∂Xt∂Vt
βVtXtω2tσ2At .

Hence, the first order conditions are:

ct =

[

∂J (Xt, Vt, t)

∂Xt
δeδt

]−1

,

ω1t = −

[

∂J(Xt,Vt,t)
∂Xt

+ ∂2J(Xt,t)
∂X2

t

X2
t (σ1Atω2tσt)Xt (µ− r)

]

∂2J(Xt,t)
∂X2

t

X2
t σ

2
t

(14)

ω2t = −

[

∂J (Xt, Vt, t)

∂Xt
Xt (µAt − r) +

∂2J (Xt, Vt, t)

∂Xt∂Vt
XtVtβσ2At+

+
∂2J (Xt, t)

∂X2
t

X2
t (σ1Atω1tσt)

]

∂2J(Xt,t)
∂X2

t

(

σ2
1At

+ σ2
2At

)

6. Solution of the HJB Equation

To choose a candidate solution for J(Xt, Vt, t) that satisfies the HJB condition,
we set

J (Xt, Vt, t) =
e−δt

δ
[g (Vt, t) + ln (xt)] , (15)

along with g (Vt, T ) = 0. Then, we have Maxwell’s equations:

∂J(Xt, Vt, t)

∂t
= −e−δt [ln (Xt) + g(Vt, t)] (16a)

+
e−δt

δ

(

∂g (Vt, t)

∂t

)

,

∂J(Xt, Vt, t)

∂Xt
=

e−δt

δ
X−1

t ,
∂J(Xt, Vt, t)

∂Vt
=

e−δt

δ

∂g(Vt, t)

∂Vt
(16b)

∂2J(Xt, Vt, t)

∂X2
t

= −
e−δt

δ
X−2

t ,
∂2J(Xt, Vt, t)

∂V 2
t

=
e−δt

δ

∂2g(Vt, t)

∂V 2
t

(16c)
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∂2J(Xt, Vt, t)

∂Vt∂Xt
= 0 =

∂2J(Xt, Vt, t)

∂Xt∂Vt
. (16d)

6.1. Optimal Decisions

After substituting the obtained values in (16) into (14), we obtain:

ĉt = Xt, (17)

ω̂1t =
(µ− r)

(

σ2
1At

+ σ2
2At

)

+ (r − µAt)σtσ1At

σ2
2At

σ2
t

ω̂2t =
(µAt − r)σt + (−µ+ r) σ1At

σtσ
2
2At

.

(18)

Notice that ĉ is linear in wealth, and consumption becomes a random variable,
a situation that is according with reality. The quantities ω̂1t y ω̂2t are the
optimal portfolio proportions and they remain constant.

7. Pricing American Options by Using Monte Carlo Method

In this section by using the Monte Carlo method, and based on the assumptions
of section 2, we deal with the valuation of an American put option on a stock
that not pays dividends and whose price process is supposed to be driven by
the geometric Brownian motion:

d (lnSt) =
(

r − 1
2σ

2
t

)

dt+ σtdWt, (19)

or in discrete version

St+∆t = Ste

{(

r−1
2σ

2
)

∆t+σ
√
∆tε

}

, (20)

where ε is a standard normal random variable. Equation (20) allows the simu-
lation of prices taking as initial value the closing price of a share and generating
a random number, which will lead to the price at the next time, so it continues
until the end of the time horizon obtaining the full simulated series. The fol-
lowing figure show 25 simulated trajectories of prices on AMX stock; so they
can be seen.

In order to compute the value of the American put option, we use the
following algorithm:



CONSUMPTION AND PORTFOLIO DECISIONS OF... 723

Figure 1: Monte Carlo Simulation of 25 trajectories.
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Source: Authors own elaboration.

a) Simulate the process of daily share prices, starting with the closing price
of a certain day;

b) Realize n simulations;

c) Determine the maximum of each simulated series and the intrinsic value
of the American put option;

d) Compute the present value of the intrinsic value.

e) Calculate the average of the previous values, which determines the value
of the American put option price.

With the aim to generate the normal random numbers, the Box-Muller
Method is used, which states that to generate values ε ∼ N (0, 1) , it may be
used

ε =
√

−2 ln (U1) cos (2πU2), or ε =
√

−2 ln (U1) sin (2πU2) (21)

with U1, U2 ∼ U [0, 1] .

Table 1 shows the initial parameter values and the obtained prices of Amer-
ican put and call options on AMX stock, based on 2000 realizations (a few
realizations are computed for straightforwardness, at least 10,000 are recom-
mended). The expiration time is one month, and the variance is 20%.
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Table 1: Initial parameter values and prices of American put and call
options.

Monte Carlo simulation

Initial price of the asset 24.79

Expiration date T=30/360

Volatility 20%

Step time 1/360

Interes rate 3.40%

Exercise Price 25

American call option price 0.73556

American put option price 0.031428

Souce: Author’s own elaboration.

Notice that in the proposed stochastic optimal control approach, the plan-
ning horizon is stochastic, which requires for the derivative to be exercised at
any time within the planning horizon (this characterizes the American option).
In the valuation problem, we need not only to determine the value of the option
at each instant, but also to know whether the option is exercise for each value
of St. Usually, this is done by setting a critical value S∗ for each of these mo-
ments ([51]). Particularly, for the valuation through Monte Carlo method, we
have considered the border of exercise S∗ defined by the stopping time, namely,
when the maximum share price is attained in the planning horizon.

8. Conclusions

Under the assumption that the planning horizon is finite but with stochastic
length and using a stopping time process for an American claim, we provide an
alternative pricing procedure by using the Monte Carlo method. The proposed
scheme was applied for pricing American put and call options on AMX stock.

One of the possible generalizations of this research is to use new functional
forms for the stochastic dynamics of the price of the underlying asset including
unexpected jumps in its volatility and incorporating a stochastic interest rate,
which will be considered in the future. It is also important to think in the future
about that the price of the underlying asset can be driven by Markov-modulated
diffusion process.
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