
The Gradient Subspace Approximation as Local Search Engine
within Evolutionary Multi-objective Optimization Algorithms

Sergio Alvarado1, Carlos Segura2, Oliver Schütze1, Saúl Zapotecas3

1 CINVESTAV-IPN, Computer Science Department,
Mexico

2 Center for Research in Mathematics (CIMAT), Guanajuato,
Mexico

3 Universidad Autónoma Metropolitana, Cuajimalpa Unit,
Department of Applied Mathematics and Systems,

Division of Natural Sciences and Engineering,
Mexico

salvarado@computacion.cs.cinvestav.mx, carlos.segura@cimat.mx, schuetze@cs.cinvestav.mx,
saul.zapotecas@gmail.com,

Abstract. In this paper, we argue that the gradient
subspace approximation (GSA) is a powerful local
search tool within memetic algorithms for the treatment
of multi-objective optimization problems. The GSA
utilizes the neighborhood information within the current
population in order to compute the best approximation
of the gradient at a given candidate solution. The
computation of the search direction comes hence for
free in terms of additional function evaluations within
population based search algorithms such as evolutionary
algorithms. Its benefits have recently been discussed
in the context of scalar optimization. Here, we
discuss and adapt the GSA for the case that multiple
objectives have to be considered concurrently. We
will further on hybridize line searchers that utilize
GSA to obtain the search direction with two different
multi-objective evolutionary algorithms. Numerical
results on selected benchmark problems indicate the
strength of the GSA-based local search within the
evolutionary strategies.

Keywords. Multi-objective optimization, evolutionary
computation, gradient subspace approximation (GSA),
memetic algorithms, gradient-free local search, line
search method.

1 Introduction

In many real-world applications it is necessary to
solve optimization problems where several different
objectives have to be considered at the same
time. As an example, consider the design of
a given product where two important objectives
are certainly to maximize its performance while
minimizing its cost. Such problems are known in
literature as multi-objective optimization problems
(MOPs). Solving MOPs is in general not an easy
task. One important characteristic of MOPs is that
their solution sets, the so-called Pareto sets, form
objects of dimension k − 1, where k is the number
of objectives involved in the problem.

This is in contrast to ”classical” scalar optimiza-
tion problems (SOPs), where one typically obtains
one single optimal solution (i.e., a zero dimensional
set). Since the Pareto sets can apart from simple
academic problems not be expressed analytically,
one important task in multi-objective optimization
is thus to find a suitable finite size representation
of the solution set in order to provide the decision
maker an overview of his/her possibilities.

Over the last two decades, specialized evolutio-
nary algorithms, called multi-objective evolutionary

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

ISSN 2007-9737

algorithms (MOEAs), have caught the interest of
many researchers for the treatment of MOPs.
Reasons for this include that MOEAs are
applicable to a wide range of problems, are
of global nature and hence in principle not too
sensitive to the initial candidate set, and allow to
compute a finite size representation of the Pareto
set in one single run of the algorithm (see, e.g.,
[7, 1, 42, 5] and references therein).

However, one common drawback of all MOEAs
is that they need quite a few function evaluations
in order to obtain acceptable Pareto set approx-
imations due to their relatively slow convergence
rates. As a possible remedy, researchers have
considered memetic algorithms, i.e., MOEAs
hybridized with local search strategies that are
mainly coming from mathematical programming
techniques (e.g. [37, 21, 40, 15, 25, 3, 2, 13, 38]).

However, though memetic strategies increase
in general the obtained approximation qualities
which is caused by the local convergence
of mathematical programming techniques, their
overall cost is quite high due to the requirement of
the gradient (and maybe even the Hessian), of the
objectives. Note that not in all applications gradient
information is at hand.

In that case, one can approximate this
information e.g. via finite difference methods (e.g.,
[28]). However, the cost for the approximation
of the gradient is linearly proportional to the
dimension n of the decision space and even
quadratic in case Hessian information is computed.

Even for other gradient free methods so-called
exploration movements are required to gather
the required information from the neighborhood
to find a suitable search direction [18]. Such
movements, that ideally generate the steepest
descent direction, also come with in principle n
additional function calls making the local search a
quite costly procedure.

The Gradient Subspace Approximation (GSA), is
a numerical technique that aims to compute the
most greedy search direction at a given point x for
an objective f out of a given subspace S ([33]).
For unconstrained optimization problems this leads
ideally to the normalized negative of the gradient
∇f(x).

One advantage of the GSA is that both
inequality and equality constraints can be directly
incorporated in the computation of the search
direction. Another important aspect is that
gradient information is not needed as the given
neighborhood information can be exploited. Thus,
the computation of the search direction comes in
principle for free (in terms of additional function
evaluations), within population based search
techniques such as evolutionary algorithms. GSA
has been investigated within memetic algorithms
for the treatment of SOPs in [33].

In this paper, we apply GSA to the context of
multi-objective optimization, i.e., we make a first
effort to use and adapt the gradient estimator
within the local search engines of memetic
MOEAs. As it can be seen, GSA can in principle
be coupled with any gradient based local search
technique making it a universal and inexpensive
tool for multi-objective memetic algorithms.

The remainder of this paper is organized as
follows. Section 2, presents some basic concepts
required for the understanding of this work. Section
3 presents some motivations and adaptations of
GSA to the context of multi-objective optimization.
In Section 4, we present two different memetic
algorithms that use GSA for the local search
engine. Section 5 presents numerical results on
some selected benchmark functions on the two
memetic algorithms including a comparison to their
base algorithms. Finally, we will conclude and give
possible paths for future work in Section 6.

2 Basic Concepts

2.1 Multi-Objective Optimization

A continuous MOP can be stated in mathematical
terms as:

min
x∈Rn

F (x),

s.t. gi(x) ≤ 0 i = 1, . . . , p,

hj(x) = 0 j = 1, . . . ,m,

(1)

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas364

ISSN 2007-9737

where F is defined as the vector of the objective
functions:

F :Rn → Rk,

F (x) = (f1(x), . . . , fk(x))T ,
(2)

and where each objective fi : Rn → R, i = 1, . . . , k,
is for convenience considered to be continuously
differentiable. We stress, however, that this
smoothness assumption is only needed for the
theoretical considerations but not for the realization
of the algorithms. The inequality constraints gi,
i = 1, . . . , p, and the equality constraints hj , j =
1, . . . ,m, form the feasible set Q, i.e.:

Q = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . , p,

and hj(x) = 0, j = 1, . . . ,m}.
(3)

When defining the optimal solution we cannot
proceed as for the classical scalar optimization
case since F is vector-valued. For MOPs,
optimality is defined based on the concept of
dominance [29]:

Definition 1 (a) Let x, y ∈ Q and fx = f(x), fy =
f(y) ∈ Rk be its respective images. We say
that the vector x dominates y (denoted as x ≺
y) iff fxi ≤ fyi , i = 1, . . . , k, and there exist an
index j such that fxj < fyj .

(b) A vector x∗ ∈ Q is called Pareto optimal if there
does not exist another point y ∈ Q such that
y ≺ x∗.

(c) The set of Pareto optimal solutions is called the
Pareto set (PS), i.e.,

PS = {x ∈ Q|@y ∈ Q, y ≺ x} . (4)

(d) Finally, the image of the Pareto set, F (PS), is
called the Pareto front (PF).

Typically, i.e., under certain mild assumptions on
the MOP, both the Pareto set and the Pareto front
form (k − 1)-dimensional sets [14].

2.2 Solving a MOP

So far, many different classes of methods for
the numerical solution of MOPs exist such as
mathematical programming techniques [37, 6, 26],
continuation methods [31, 14, 34, 32, 30, 23, 24,
22], or cell-mapping and subdivision techniques
[9, 16, 12, 27, 11].

In this study we are particularly interested in
multi-objective evolutionary algorithms [5, 7] and
memetic algorithms [37, 21, 40, 15], as they have
demonstrated to be efficient in many cases.

In the following we shortly present two different
MOEAs that we use within this work as the base
algorithms for our GSA-based local search: the
decomposition based algorithm MOEA/D [42] and
a memetic variant of the well-known algorithm
NGSA-II that utilizes gradient information [19].

2.2.1 MOEA/D

The Multi-objective Evolutionary Algorithm based
on Decomposition (MOEA/D, [42]), is a state-of-
the-art evolutionary algorithm that decomposes the
given MOP into several auxiliary SOPs. The main
idea behind MOEA/D is to solve each of these
SOPs simultaneously. At the end of the run of
MOEA/D, it constructs an entire approximation of
the Pareto front by combining the results obtained
from each of the auxiliary SOPs.

There exist several scalarization methods cou-
pled along with the MOEA/D. In this paper we
are concerned in particular with the Tchebycheff
decomposition [26]. This decomposition is
based on the infinity norm. The Tchebycheff
decomposition requires a reference point z ∈ Rk
and a weight w ∈ Rk for each subproblem. The
Tchebycheff decomposition can be defined as:

T (fx,w, z) = max
i=1,...,k

wi|fxi − zi|, (5)

where fx represents the image of x. MOEA/D
establishes a way of udpating the reference
point, meaning that no additional parameters are
required.

Decomposition based methods have many
advantages over ”classical” elitist MOEAs that are
entirely based on the dominance relation such as
the potential for a faster convergence toward the

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 365

ISSN 2007-9737

Pareto set [4, 36, 38]. In our context, GSA can be
applied to all the auxiliary SOPs as done in [33].

In addition, there is another (yet unexplored),
aspect of MOEA/D that makes it an interesting
candidate for GSA: it already has implemented
a certain neighborhood structure to decide which
SOP is ”near” to another one. Thus, one may use
this structure to select the neighboring samples
xi for a given candidate solution x0 which we,
however, have to leave for future work.

The Algorithm 1, presents the pseudocode
of MOEA/D using Tchebycheff decomposition.
In the algorithm, N represents the number of
subproblems and sN represents the size of the
neighborhood.

2.2.2 IG-NSGA-II

The improved gradient based NSGA-II (IG-NSGA-
II) [19] is a modification of the work proposed in
[41]. The IG-NSGA-II algorithm uses a local search
strategy based on the gradient information of the
objective functions to compute a descend direction
for unconstrained MOPs. In particular, the descend
direction for k = 2 is constructed according to the
work proposed by Lara et al. in [20]:

νL(x) = −
(

g1(x)

‖g1(x)‖2
+

g2(x)

‖g2(x)‖2

)
, (6)

where g1 = ∇f1(x) and g2 = ∇f2(x).

The IG-NSGA-II implements two different me-
chanisms to preserve the diversity of the final
solution set. Both mechanisms are based on
a chaotic map that are used to generate new
candidate solutions. The first mechanism is a new
method to initialize the population of the algorithm.
The second mechanism computes the spreading
λs of the entire population at each generation. If
this spreading value is below a certain threshold a
new individual is created using a chaotic map. The
new individual created by the chaotic approach is
included in the current population as a mechanism
to explore different regions.

Algorithm 2, presents the pseudocode for the
IG-NSGA-II. Here, N again denotes the population
size.

Algorithm 1 Pseudocode of the MOEA/D
Require: vector function F , scalar function T ,

N weight vectors w1, · · · ,wN , the number of
weight neighbors sN

Ensure: Final population P
1: for i = 1, . . . ,N do
2: Create structure σi for the i-th subproblem
3: Compute the indexes of the sN ‘closest’

weights vectors from wi and stores them in IN
4: Set σi → I := IN
5: Generate a random vectors and store it in
xaRn.

6: Set σi → xβ := xa
7: Compute fa = F (xa)
8: Set σi → fβ := fa
9: end for

10: Find the ideal point z ∈ Rk
11: for i = 1, . . . ,N do
12: Compute sa = T (σ → x,wi, z)
13: Set σi → sβ := sa
14: end for
15: while Stopping criteria is not met do
16: for i = 1, · · · ,N do
17: Set Ia = σi → I ∪ i
18: Randomly select two indexes j, k ∈ Ia
19: Set xm := σj → xβ
20: Set xn := σk → xβ
21: Set sbest := σi → sβ
22: Generate xnew using genetic operators

on xm and xn.
23: Compute fnew = F (xxnew)
24: Compute snew = T (fnew,wi, z)
25: if snew < sbest then
26: Set σi → xβ := xnew
27: Set σi → fβ := fnew
28: Set σi → sβ := snew
29: end if
30: Update z
31: end for
32: end while
33: Set P := ∅
34: for i = 1, . . . ,N do
35: Set P := P ∪ σi
36: end for
37: return P

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas366

ISSN 2007-9737

Algorithm 2 Pseudocode of the IG-NSGA-II
Require: frequency of local search kl, threshold

for chaotic operator εd
Ensure: final population PG

1: Randomly generate the population P0 using the
chaotic initialization

2: Calculates F (P0)
3: Apply genetic operators in P0 to generate Q0

4: i = 0
5: while Stopping criteria is not met do
6: Set Ri = Pi ∪Qi
7: Calculate the rank value of Ri
8: Calculate the crowding distance of Ri
9: Select the N individuals with the lowest

rank and highest crowding distance from Ri
and store them in Pi.

10: Apply genetic operators in Pi to generateQi
11: if mod(i, kl) == 0 then
12: Apply local search on Qi
13: end if
14: Calculate sd
15: if sd < εd then
16: Apply chaotic operator on Qi
17: end if
18: Set i = i+ 1
19: end while
20: return PG := Pi−1

2.3 Gradient Subspace Approximation

The Gradient Subspace Approximation (GSA) [33],
is a method proposed to approximate the gradient
of a function at a given candidate solution. GSA
utilizes the information that is present for each
generation of an evolutionary algorithm to compute
such an approximation. Here, we present a brief
description for the unconstrained case. For the
treatment of constrained problems (inequality and
equality constraints), the reader is referred to [33].

Consider the following single objective optimiza-
tion problem:

min
x∈Rn

f(x), (7)

where f : Rn → R is assumed to be differentiable.
We say that ν ∈ Rn is a descend direction of f at x
if:

〈ν,∇f(x)〉 < 0, (8)

where ∇f(x) represents the gradient of f at x. It is
known (e.g., [28]) that the vector with the maximal
decay at x is given by the negative of the gradient.
This (normalized) vector can be expressed also as
the solution of the following auxiliary SOP:

min
ν∈Rn

〈ν,∇f(x0)〉 ,

s.t. ‖ν‖ = 1.
(9)

To exploit the neighboring information of the candi-
date solution x0, consider that r search directions
νr are given along with the r directional derivatives
of such search directions 〈νi,∇f(x0)〉 , i = 1, . . . , r.
If we incorporate the neighborhood information
such that the most greedy direction exist in ν ∈
span(ν1, . . . , νr), Problem (9) can be rewritten as
follows:

min
λ∈Rr

(
〈∇f(x0),

r∑
i=1

λiνi〉 =

r∑
i=1

λi〈∇f(x0), νi〉

)
,

s.t.

∥∥∥∥∥
r∑
i=1

λiνi

∥∥∥∥∥
2

2

− 1 = λTV TV λ− 1 = 0,

(10)

where
V = (ν1, . . . , νr) ∈ Rn×r. (11)

The following result shows that the solution of (10)
is unique under certain assumptions and that it can
be expressed analytically.

Proposition 1 Let the search directions
ν1, . . . , νr ∈ Rn, r ≤ n, be linearly independent
and:

λ̃∗ := −(V TV)−1V T∇f(x0). (12)

Then, there exist a single solution of Equation
(10) given by:

λ∗ :=
λ̃∗

‖V λ∗‖22
, (13)

and thus,

ν∗ =
−1

‖V λ∗‖22
V (V TV)−1V T∇f(x0), (14)

is the most greedy search direction in
span{νi, . . . , νr}.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 367

ISSN 2007-9737

Equation (14), requires that gradient information
is given. To avoid such restriction we can
approximate such information using the neighbors
of the candidate solution. Given the candidate
solution x0, a set of neighbors xi, i = 1, . . . , r, and
their respective function values f(xi), i = 1 . . . , r,
the gradient information can be approximated such
that:

〈ν,∇f(x0)〉i =
f(xi)− f(x0)

‖xi − x0‖2
+O(‖xi − x0‖).

(15)

In the above equation, the search direction has
apparently been chosen as:

νi :=
xi − x0
‖xi − x0‖2

, i = 1, . . . , r. (16)

For more details and for the extension to
equality and inequality constrained problems we
refer to [33].

3 Proposed Approach

In this section, we will adapt the local search tool
GSA from [33] to the context of multi-objective
optimization problems, in particular for the use
within specialized evolutionary algorithms.

To this end, we will (a) investigate the
applicability of GSA within MOEAs which includes
a way to compute the neighborhood for the chosen
samples, (b) discuss how to approximate the
Jacobian matrix via GSA, (c) extend Laras descent
direction for inequality constrained problems in
order to increase its applicability, (d) discuss a
particular choice of the step size control, and (e)
discuss how to efficiently balance the resources for
the GSA based local search.

Finally, we will (f) propose two different memetic
algorithms, MOEA/D/GSA and IG-NSGA-II/GSA,
that utilize GSA for their local search engines.

3.0.1 Applicability of GSA within MOEAs

In population based scalar optimization one
typically observes that many individuals are
located around the best found individual (denoted
here by x0), apart from very early stages of
the search. Thus, for the usage of GSA
one can expect that sufficient samples are at
hand near x0 to approximate ∇f(x0). The
situation, however, changes when considering
multi-objective optimization problems as for such
problems there does typically not exist one single
solution, but an entire manifold of solutions.
Hence, there is no single ”best” solution any more
where other solutions group around. Instead, the
solutions are spread along the solution set.

Thus, the natural question arises if there exist
enough samples within multi-objective evolutionary
algorithms (or any other set or population based
algorithms for the treatment of MOPs) such that
GSA can be applied successfully. To answer this
question empirically, we consider in the following
the neighborhood sizes from populations obtained
via MOEA/D for four different MOPs with different
characteristics. In all cases, we use the 2-norm
in decision to define the neighborhood. More
precisely, we define the neighborhood for an
individual p0 of a given population P as:

Nδ(p0) := {p ∈ P\{x0} : ‖p− p0‖2 ≤ δ}, (17)

however, we stress that in principle any other norm
can be chosen.
In our computations, we have used the values δ =
0.25, 0.5, and 1. As MOPs we have chosen (see
Table 8 for the formulations of all problems used in
this work):

(a) CONV: unimodal, n = 2 decision variables,
k = 2 objectives, linear and connected Pareto
set, convex Pareto front,

(b) ZDT1: unimodal, n = 30, k = 2, linear and
connected Pareto set, convex Pareto front,

(c) Kursawe: multi-modal, n = 3, k = 2,
disconnected Pareto set and front, non-convex
Pareto front, and

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas368

ISSN 2007-9737

(d) DTLZ3 (3): multi-modal, n = 12, k = 3,
connected and linear Pareto set, concave
Pareto front.

Figures 1-4 present the results of our expe-
riments for population size N = 100 averaged
over 30 independent runs. Shown are the
number of neighbors (i.e., the magnitudes of
Nδ(p0)), averaged over all runs and all elements
of each population generated by MOEA/D. As it
can be seen, the magnitudes of the neighborhoods
quickly go over 5 which has been detected as
an effective value for r in order to obtain a
descent direction (and which has also been used
for the computations we present in the sequel).
These observations are in consensus with other
experiments we have done.

Generations

N
o.

 N
ei

gh
bo

rs

δ = 0.25
δ = 0.5
δ = 1

70

60

50

40

30

20

10

00 50 100 150 200 250 300

Fig. 1. Averaged number of neighbors for CONV

Generations

90

100

N
o.

 N
ei

gh
bo

rs

δ = 0.25
δ = 0.5
δ = 1

80

70

60

50

40

30

20

10

00 50 100 150 200 250 300

Fig. 2. Averaged number of neighbors for ZDT1

Based on this insight we choose our neighbor-
hood N(p0) for a given candidate solution simply
via selecting the r nearest elements (using the
2-norm) out of the population P . See Algorithm 3
for a pseudocode.

Generations

45

50

N
o.

 N
ei

gh
bo

rs

δ = 0.25
δ = 0.5
δ = 1

40

35

30

25

20

15

10

5

00 50 100 150 200 250 300

Fig. 3. Averaged number of neighbors for Kursawe

Generations

90

100

N
o.

 N
ei

gh
bo

rs

80

70

60

50

40

30

20

10

00 50 100 150 200 250 300

δ = 0.25
δ = 0.5
δ = 1

Fig. 4. Averaged number of neighbors for the
three-objective DTLZ3

Hereby we assume that the population is given
by µ elements, i.e.:

P = {p1, . . . , pµ}. (18)

We stress that one potential problem when
using MOEA/D is that populations can have
duplicate individuals (as a point can be the best
found solution for several scalarization problems
at the same time). Hence, we have to avoid
such solutions as else the distance between
the candidate solution and the sample is zero,
and GSA is not applicable. More sophisticated
neighborhood selection strategies that e.g. take
into account the condition number of V or the one
MOEA/D is using are subject of ongoing research.

3.1 Approximating the Jacobian

Assume we are given a MOP of the form (1), and
that we are given a candidate solution x0 together
with the r search directions ν1, . . . , νr ∈ Rn that
form the subspace.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 369

ISSN 2007-9737

Algorithm 3 Selection of neighborhood N(p0) with
r nearest elements from population P
Require: population P , candidate solution p0,

neighboring size r
Ensure: neighborhood N(p0) consisting of the r

nearest elements to p0
1: Set N(p0) := ∅
2: for i = 1, . . . ,µ do
3: φi =∞
4: end for
5: for i = 1, . . . ,µ do
6: if ‖pi − p0‖2 > 0 then
7: Set φi := ‖pi − p0‖2
8: end if
9: end for

10: Sort φ in ascending order, denote by ω the set
of resulting indexes

11: for i = 1, . . . , r do
12: N(p0) := N(p0) ∪ Pωi
13: end for
14: return N(p0)

S := span{ν1, . . . , νr}. (19)

For every objective fi, the best approximation
g̃i(x0) of the gradient ∇fi(x0) at a given point x0
within S can according to the above discussion be
computed via:

g̃i := V (V TV)−1V T∇fi(x0) ∈ Rn. (20)

The Jacobian matrix J(x0) of F at x0 is defined
by:

J(x0) =

 ∇f1(x0)T

...
∇fk(x0)T

 ∈ Rk×n. (21)

Thus, using (20), a best approximation J̃(x0) of
J(x0)—in the sense that each row vector of the
matrix is the best approximation of the transposed
gradient of fi at x0—can be obtained via:

J̃(x0) :=

 g̃1
T

...
g̃k
T

 = J(x0)TV (V TV)−1V T . (22)

For the gradient free realization, consider the
product of the first two matrices on the right hand
side of (22) it is:

F := J(x0)TV

=

 〈∇f1(x0), ν1〉 . . . 〈∇f1(x0), νr〉
...

...
〈∇fk(x0), ν1〉 . . . 〈∇fk(x0), νr〉

 .

(23)

That is, every entry:

mij = 〈∇fi(x0), νj〉 , (24)

of the matrix F is a directional derivative and can
be approximated via the finite difference method
described above, and this approximation comes
for free in terms of additional function evaluations
as the values fi(xj) are already known. Thus,
using (22), where F is computed as described,
yields a Jacobian approximation without explicitly
computing the objectives’ gradients. The algorithm
can hence be seen as gradient free.

3.1.1 Laras Descent Direction for Inequality
Constrained MOPs

Once the values of J̃(x0) are computed, we can
compute the approximation of the descent direction
(6) via:

ν̃L =

(
g̃1
‖g̃1‖2

+
g̃2
‖g̃2‖2

)
, (25)

where g̃i, i = 1, 2, represent the row vectors of
the matrix J̃(x0). One interesting aspect would
be to know under which conditions (25) actually is
a descent direction for both objectives which we
have to leave for future work.

One main restriction of descent direction (6) is
that it is only applicable for unconstrained MOPs.
Here, we make a first attempt to extend the descent
direction also for inequality contrained problems
where we can make use of the gradient projection
method of the GSA. In particular, we propose to
first compute the direction ν̃ and then to project the
vector back to the feasible region if needed (refer to

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas370

ISSN 2007-9737

Q

νP
~

x0

νL
~

g1~

g1~|| ||2

g1~

g1~|| ||2

Fig. 5. Correction of the obtained descent direction νL
to the feasible region Q

Figure 5 for a graphical illustration of the correction
where ν̃L points outside the feasible region).

Consider that at the candidate solution x0 we
have p active inequality constraints and that ν̃L
points into an infeasible region (i.e., formally we
have ∇gi(x0)T ν̃L < 0 for at least one of the active
constraints gi). To guarantee that for the projection
ν̃L it holds ∇gi(x0)T ν̃L ≥ 0 for all active inequality
constraints, define M̃ ∈ Rp×r as follows:

M̃ = G(x0)TV = 〈∇(gi(x)), νj〉,i = 1, . . . , p,

j = 1, . . . , r,
(26)

where G(x0) is defined as the Jacobian of the
active constraints:

G(x0) =

 ∇g1(x0)T

...
∇gp(x0)T

 ∈ Rp×n. (27)

Then, compute the matrix K ∈ Rr×(r−1) those
column matrix build an orthonormal basis of M̃
(which can be done e.g. via a QR-factorization of
M̃). The desired projection is thus given by:

ν̃P := V K(V K)T νL. (28)

The gradient free realization is similar as above:
note that every entry of M̃ is again a directional
derivative (now for the constrained functions).
Thus, we can compute the entries m̂ij of M̃ via:

m̂ij = 〈∇gi(x0), νj〉

=
gi(xj)− gi(x0)

‖xj − x0‖2
+O(‖xj − x0‖),

i = 1, . . . , p, j = 1, . . . , r.

(29)

The use of the projected direction has led to
satisfying results in our computations. However,
also here it is interesting to know under which
condition ν̃P actually is a descent direction for all
objectives which we have to leave as well for future
work.

3.1.2 Computing the Step Size

The GSA is a tool to obtain search directions that
are used within line search methods. That is, given
a current iterate xi and a search direction νi, the
new iterate is computed via:

xi+1 = xi + tiνi, (30)

where ti > 0 is the chosen step size. The proper
choice of ti is a delicate problem: too small step
sizes lead on the one hand to a high probability
of getting a better (i.e., dominating) solution, but
on the other hand the gain may be too small. In
particular, this gain is likely smaller than obtained
via the evolutionary strategy (and hence, the local
search has no effect on the quality but comes
with an additional cost and is thus decreasing the
overall performance of the algorithm). In turn, if
iterates xi are already near to optimal solutions,
large step sizes lead to waste of resources as xi+1

will be dominated by xi.
In our computations we choose an initial step

size t0 together with Armijo-like backtracking
methods (e.g., [10, 28]). For the selection of the
initial step size t0 we have observed that it makes
sense to use the ”size” of the neighborhood N(xi)
as described above.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 371

ISSN 2007-9737

In early stages of the search, it is likely that
this size is much larger compared to the sizes
in later stages. More precisely, given x0, and a
neighborhood N(x0) with r elements we compute
t0 via:

t0 :=
1

n · r
∑

xi∈N(x0)

n∑
j=1

|xij − x0j |, i = 1, . . . , r.

(31)

3.1.3 Balancing the Local Search Resources

One of the challenges that the memetic strategies
have is to decide how and when to apply the local
search technique. In particular, for some MOPs
this task can become very difficult to solve. One
such problem, next to the cost caused by the
local sarch, is that if the local searcher is applied
too often it is possible that the solution set loses
diversity [17]. In MOEA/D one can relatively easy
measure the percentage of improvement achived
by the local search strategy using the scalar
functions of each subproblem.

This section describes a mechanism that takes
into consideration the improvement obtained by
the GSA and how to measure it. Next, it
compares the techniques and redistributes the
resources between the base evolutionary algorithm
and the GSA-based local search technique in each
generation. The mechanism discussed in this
section is based on the the scheme proposed in
[17] for the treatment of SOPs.

At this point we consider the evolutionary opera-
tors and the GSA as two standalone techniques.
On each generation the balancing mechanism
measures the quality of each technique. To do
so, the improvement must be computed for each
individual in the population. Lets consider a
given individual xji in the population at the j-th
generation.

After its offspring xj+1
i is calculated, it is possible

to compute the quality of the technique that
generates the individual. Lets assume that the
points xji , x

j+1
i and its respective images f ji =

F (xji) and f j+1
i = F (xj+1

i) are given. Using the

Tchebycheff decomposition described in Equation
(5), the quality term can be described as:

q(f ji , f j+1
i ,w, z) = T (f ji ,w, z)− T (f j+1

i ,w, z),
(32)

where w represent the weight of the i-th
subproblem where xji is the best solution found so
far and z represents the ideal point.

Once the qualities of all subproblems in
MOEA/D are computed, the method uses such
values to compute an average quality for each
technique. To compare the quality at generation
j, we assume two different populations created
according to the creating method. P jT1 represents
the subpopulation generated by evolutionary
techniques and P jT2 represents the subpopulation
generated with the GSA method. For each one of
the techniques the average quality Q(P jT i), i = 1, 2,
is given by:

Q(P jT i) =
1

|P jT i|

∑
xji∈P

j
Ti

qi(x
j
i). (33)

Now, the balance mechanism uses the quality of
each technique to compute the number of function
calls that each technique is going to use on the next
generation. The participation ratios are computed
as shown in Algorithm 4. Participation ratios are
used to distribute the number of function calls
to each technique. In order to ensure that both
techniques are applied at least on a percentage of
the population, the parameters rmin and rmax are
introduced. Such parameters establish a lower and
an upper bound for the techniques.

3.1.4 Memetic Algorithms

Based on the above discussions, we will propose
in the sequel two different memetic algorithms
whose local searchers utilize GSA. The first
one, MOEA/D/GSA, is based on MOEA/D and is
designed for the treatment of unconstrained MOPs.
Algorithm 5 presents the pseudo code of this
algorithm. Here, it is important to mention that the
initial participation ratio of the GSA is set on a lower
value compared with the one of the evolutionary
algorithm.

The reason for this is that in principle, when
the algorithm starts the neighborhood size of

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas372

ISSN 2007-9737

Algorithm 4 Computation of participation ratios

Require: Original participation ratios R(P jT i),
Average techniques qualityQ(P jT i), Decrement
ratio r−

Ensure: New participation ratios R(P j+1
Ti)

1: Find the best quality and stored as qbest
2: a+ := 0
3: n+ := 0
4: for i = 1, 2 do
5: Set d− := 0
6: if Q(P jT i) is different to qbest then

7: d− := r−
(
qbest −

Q(P jTi)

qbest

)
8: if R(P jT i)− d− < rmin then
9: d− := R(P jT i)− rmin

10: end if
11: Set a+ := a+ + d−

12: else
13: n+ := n+ + 1
14: end if
15: R(P j+1

Ti) := R(P j+1
Ti)− d−

16: end for
17: Set a+ := a+

n+

18: for i = 1, 2 do
19: if Q(P jT i) is equal to qbest then
20: if R(P jT i) + a+ > rmax then
21: Set R(P j+1

Ti) := rmax
22: else
23: Set R(P j+1

Ti) := R(P j+1
Ti) + a+

24: end if
25: end if
26: end for

any candidate solution of the population may be
very large. Because of this size it is not quite
recommendable to apply GSA since it is quite
possible that the offspring do not present an
improvement (note that GSA is based on forward
difference methods which only work properly if the
samples xi are near to the candidate solution x0).

The next memetic strategy we propose here
is IG-NSGA-II/GSA whose base algorithm is
IG-NSGA-II (Algorithm 2) and whose offspring are
created as shown in Algorithm 6. The main
difference resides in the creation of the offspring
individuals. As we will use the projected search

direction ν̃P from (28), IG-NSGA-II/GSA is capable
of handling inequality constrained MOPs.

Algorithm 5 Pseudocode of the MOEA/D/GSA
1: Randomly create initial population P0.
2: Set R(PT1)0 := 0.8,R(PT2)0 := 0.2.
3: Set k := 1.
4: while Stopping criteria is not met do
5: Select P kT2 using random individuals from
Pk−1.

6: Create offspring O(P kT2) by using GSA.
7: Calculate quality Q(P kT2).
8: Select P kT1 using random individuals from
Pk−1.

9: Create offspring O(P kT1) by using MOEA/D.
10: Calculate quality Q(P kT1).
11: Update the participation ratios R(PT1)k,

R(PT2)k using the qualities of each technique.
12: Select the best individuals from Pk ∪

O(P kT2) ∪O(P kT1) and save it into Pk+1

13: Set k := k + 1
14: end while

Algorithm 6 Creation of an offspring using
IG-NSGA-II/GSA
Require: Candidate solution xi, neighborhood

N(x0)
Ensure: New offspring xi+1

1: Calculate νL using Equation (25)
2: Construct direction νP from Equation (28)
3: Calculate initial step size t using N(x0)
4: if xi+1 improves xi then
5: Set xi+1 = xi + tνP
6: return xi+1

7: else
8: return xi
9: end if

4 Experimental Results

In this section, we present different experiments
dedicated to show the strength of GSA as
an effective tool within multi-objective memetic
algorithms. For this, we will first consider shortly
the GSA as standalone algorithm.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 373

ISSN 2007-9737

Further on, we will consider and compare
the two newly proposed memetic algorithms
MOEA/D/GSA and IG-NSGA-II/GSA on several
bechmark functions, where we will consider (a)
unconstained MOPs, (b) MOPs with relatively
easy constraints, and (c) MOPs with complex
constraints.

4.1 GSA within Laras Method

First we investigate one line search method,
namely the iteration:

xi+1 = xi + tiνL,i, (34)

where νL,i is the GSA-approximation of the
descent direction (25) at the current iterate xi and
where ti is the step size control as described
above. As example we consider the unconstrained
convex bi-objective problem:

fj(x) =

n∑
i=1

‖xi − aji‖22, j = 1, 2, (35)

where a1 = (1, . . . , 1)T ∈ Rn and a2 =
(−1, . . . ,−1)T ∈ Rn. For the value of n we have
chosen 10.

First we investigate the influence of the number
r of sampling points. Figure 6 presents the result
of the following experiment: we have taken x0 ∈
R10 at random and have generated a set of r
neighorhood samples from Nδ(x0) for δ = 0.15 for
r = 3, 5, and 7.

The figure shows the points y0 := F (x0), the
iterate y1 := F (x0 + νL) (i.e., the image of the
iterate x1 := x0 + νL for the step size t = 1) and
further the approximations of y1 when using GSA
and r samples. As it can be seen, already for r = 5
a significant move toward the Pareto front can be
obtained, and for r = 7 the performance comes
quite close to the usage of the exact gradient.

Since the consideration of one step has no
significance, we consider an entire trajectory of
solutions starting with x0 using r = 5. In Figure
7 a sequence of 15 iterations is shown. As it can
be seen, the iterations come close to the Pareto
front.

As already mentioned above, more theoretical
investigations are required to fully understand

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

f1
f 2

Pareto Front
y0

r=3
r=5
r=7
y1

Fig. 6. Results of the approximation using several values
of r

GSA based local search which we, however have
to leave to future research. In the following
we focus on the effect of the GSA based local
search engines within memetic multi-objective
evolutionary algorithms.

4.2 MOEA/D/GSA

For this experiment we use the original version of
the MOEA/D algorithm as it was presented in [42].
A comparison using two different state-of-the-art
indicators is performed. The ∆2 indicator [35]
and the hypervolume indicator [44] are selected
for the performance assessment. Both indicators
measure spread and convergence along the
Pareto front to a certain extent. We propose
to compare the algorithms (the standalone and
the memetic version), after they have spent a
certain number of function calls. We perform our
comparison when the algorithms reached 30, 000
function evaluations for the functions with two
objectives and 50, 000 for k = 3. We stress
that MOEA/D is not explicitly aiming at one of
any existing performance indicators. Instead, it

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas374

ISSN 2007-9737

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

f
1

f 2

PF
GSA

F(x0)

Fig. 7. Standalone GSA applied on quadratic function

measures the success via improvements in the
scalarization functions.

Hence, along with the two state-of-the-art
indicators, we propose a specialized indicator
that measuares the averaged scalar value of the
whole population (and thus, in a sense the overall
success of the MOEA/D variants). In particular, we
propose to use the indicator W that is defined as
follows:

W (P) =

N∑
i

T (F (xi),wi, z), (36)

where xi ∈ P is the best found individual for the
i-th subproblem. We introduce this new indicator,
as we have observed that if W decreases (and
thus, in average also the best found solutions
for all sub-problems of MOEA/D), this does
not necessarily yield better hypervolume nor ∆p

values. In other words, the sub-problems are
not matched to these (or any other), performance
indicators.

To confirm that the GSA method can really im-
prove a memetic algorithm it becomes necessary
to make a comparison on different test functions.
In particular, for this memetic strategy we selected
two of the state-of-the-art benchmark suites. The

first selected set of functions is the modified version
of the ZDT functions proposed in [39]. For the
second part of the experiments we use the DTLZ
benchmark for k = 3 [8].

Table 1 presents the parameters used for each
one of these benchmarks.

We performed an experiment in order to
compare the performance of the memetic algorithm
based on the GSA as a local searcher. For
each comparison we observed the results over
30 independent runs. The experiments were
performed over the ZDT test functions and the
DTLZ test functions. The effectiveness of
the MOEA/D/GSA was measured comparing the
memetic algorithm along with two other methods:
the base variant of MOEA/D and a memetic
strategy based on the Nelder-Mead method. In
these experiments we use a modified version of the
Nelder-Mead method as follows: we modified the
algorithm to incorporate neighboring information
on it (as the GSA does). In particular, we
incorporate r individuals from the population into
the construction of the simplex. In case that r <
(n + 1), we computed the remaining n − r + 1
using the mechanisms proposed in the original
Nelder-Mead algorithm. The resulting algorithm is
termed here MOEA/D/NM.

Tables 2 to 6 present the results obtained
by the three algorithms on the three different
performance indicators. The nadir points for the
hypervolume indicator are set as follows: (5, 5)T

for the ZDT test functions, (11, 11)T for DTLZ
1-4 and (5, 5, 5)T for DTLZ 5-7. The tables
present the results at a certain stage of the
algorithm. That is, we measured the indicators
after a certain number of function calls. For
the ZDT test function we measure the results
after 15, 000 function evaluations. Meanwhile, for
the DTLZ functions we obtained the results after
30, 000 function evaluations. Bold numbers indicate
that the algorithm is outperforming the other ones
significantly. As it can be seen, MOEA/D/GSA
wins in most cases. For instance, for the W
indicator, MOEA/D/GSA significantly wins in 8 out
of 12 cases, and is only outperformed on ZDT3 by
MOEA/D/NM.

Figure 8 presents the computed Pareto fronts for
the best individual on each of the ZDT problems.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 375

ISSN 2007-9737

Table 1. Parameters for the MOEA/D/GSA algorithm

Parameter Description Value
ZDT DTLZ

ηc Distribution index for crossover 20
ηm Distribution index for mutation 20
pc Crossover probability 0.95
pm Mutation probability 1/n
N Number of subproblems 100 300
k Number of objective 2 3
r Number of neighbors for GSA 5

Gmax Maximum participation GSA 0.2

Table 2. ∆2 indicator results on the ZDT and DTLZ test
function

MOEA/D MOEA/D/GSA MOEA/D/NM
ZDT1 0.28312 0.20459 0.54943

(st. dev.) (0.19010) (0.02726) (0.14881)
ZDT2 1.93103 0.21283 5.25555

(st. dev.) (2.55223) (0.02728) (2.54624)
ZDT3 0.19964 0.16347 0.27417

(st. dev.) (0.12773) (0.04867) (0.18484)
ZDT4 0.77793 0.30239 1.08488

(st. dev.) (0.50872) (0.28498) (0.60226)
ZDT6 0.27876 0.61617 0.32326

(st. dev.) (0.04682) (0.27990) (0.06259)
DTLZ1 0.30190 0.28239 0.36506

(st. dev.) (0.71422) (0.77269) (0.80286)
DTLZ2 0.06878 0.06859 0.06884

(st. dev.) (0.00065) (0.00087) (0.00085)
DTLZ3 3.50345 1.43777 4.07758

(st. dev.) (4.28843) (3.22033) (4.36678)
DTLZ4 0.44036 0.43869 0.44319

(st. dev.) (0.00871) (0.01101) (0.01194)
DTLZ5 73.02189 60.40117 53.95727

(st. dev.) (7.48926) (7.51920) (10.55201)
DTLZ6 73.02189 60.40117 53.95727

(st. dev.) (7.48926) (7.51920) (10.55201)
DTLZ7 11.86712 19.64119 11.97166

(st. dev.) (0.47831) (0.61246) (0.61289)

Here, it is possible to observe that in most of the
cases the GSA helps the algorithm to achieve a
”better” approximation along the entire Pareto front.

4.3 IG-NSGA-II/GSA

The next set of experiments is prepared in order to
demonstrate that the GSA can be used to handle

Table 3. Hypervolume indicator results on the ZDT and
DTLZ test functions

MOEA/D MOEA/D/GSA MOEA/D/NM
ZDT1 24.50301 24.61340 24.31119

(st. dev.) (0.15101) (0.01050) (0.12874)
ZDT2 23.02988 24.24493 21.23483

(st. dev.) (1.45125) (0.01949) (0.96625)
ZDT3 27.94969 28.01895 27.61912

(st. dev.) (0.34197) (0.04197) (0.63348)
ZDT4 24.02487 24.48137 23.82835

(st. dev.) (0.32408) (0.17950) (0.38275)
ZDT6 22.92276 23.07460 22.89177

(st. dev.) (0.05367) (0.05973) (0.07056)
DTLZ1 120.84596 120.85190 120.84041

(st. dev.) (0.07311) (0.07338) (0.08505)
DTLZ2 120.20962 120.20952 120.20952

(st. dev.) (0.00030) (0.00064) (0.00064)
DTLZ3 116.12579 118.57561 115.44508

(st. dev.) (5.08719) (3.81988) (5.18048)
DTLZ4 119.74700 119.74231 119.74801

(st. dev.) (0.00817) (0.02676) (0.00491)
DTLZ5 114.48096 115.48724 115.89698

(st. dev.) (0.58667) (0.57578) (0.82226)
DTLZ6 114.48096 115.48724 115.89698

(st. dev.) (0.58667) (0.57578) (0.82226)
DTLZ7 49.86711 49.68336 49.84884

(st. dev.) (0.05572) (0.04674) (0.03746)

constrained problems. Since we are replacing the
local search method of the IG-NSGA-II we adopt
all the parameters from such algorithm. First, we
consider some of the function presented in [5].
The definitions of such functions can be found in
Table 9. The maximization problems presented on
the definitions were transformed into minimization
problems. The constraints of the problems were

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas376

ISSN 2007-9737

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

PF
MOEA/D
MOEA/D/GSA

(a) ZDT1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

PF
MOEA/D
MOEA/D/GSA

(b) ZDT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1

1.5

f1

f 2

PF
MOEA/D
MOEA/D/GSA

(c) ZDT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

PF
MOEA/D
MOEA/D/GSA

(d) ZDT4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

PF
MOEA/D
MOEA/D/GSA

(e) ZDT6

Fig. 8. Pareto fronts of ZDT problems

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 377

ISSN 2007-9737

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f2

f 1

PF
IG-NSGA-II
IG-NSGA-II/GSA

(a) CF1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

(b) CF2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.4

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

1.2

(c) CF3

0 0.2 0.4 0.6 0.8 1 1.2 1.40.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

(d) CF4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

(e) CF5

0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

(f) CF6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

1

(g) CF7

Fig. 9. Pareto fronts of CF problems

also transformed into the form a(x) ≤ 0. We
stress that all constraints are relatively easy in
the sense that the feasible set is not of a highly
complex structure. Table 4 presents the values for
the parameters for the memetic algorithm.

The results obtained in Table 5 show that the
GSA can improve the results in most of the
functions according to the ∆2 indicator. Table
5 also presents the function evaluation used as
stopping criteria. Moreover, the table also presents
the nadir point used to compute the hypervolume
indicator. It is important to mention that some
indicator values obtained by the GSA outperformed

significantly the standalone algorithm. Taking
these results into consideration, now we are in
position to confirm the efficiency of the GSA when
it is used within a memetic strategy.

As a last experiment we use the constrained
CF functions proposed in [43] those constraints
can considered to be complex. We perform a
similar comparison as in the previous method. We
measure the ∆2 and the hypervolume indicators at
certain stage of the evolution (i.e. at 30, 000 and
50, 000 function evaluations). For the experiments
we set the nadir point for hypervolume as (5, 5)T ∈
R2 and (5, 5, 5)T ∈ R3. Table 7 presents

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas378

ISSN 2007-9737

Table 4. Parameters for the IG-NSGA-II/GSA algorithm

Parameter Description Value
ηc Distribution index for

crossover
20

ηm Distribution index for mu-
tation

20

γ1 Crossover probability 0.9
γ2 Mutation probability 1/n
N Number of individuals 100
r Number of neighbors for

GSA
5

γ3 Frequency of the local
search

3

the averaged results measured by the proposed
indicators. The results are obtained taking in
consideration only the feasible solutions obtained
by the algorithms. By such reason the function
CF10 is not in the statistical results since neither
of the algorithms obtained feasible solutions.

Figure 9 presents some of the Pareto fronts
obtained by the algorithms on the CF functions.

5 Conclusions and Future Work

In this paper, we have argued that the gradient
subspace approximation (GSA) is a powerful tool
for local search within memetic algorithms for the
numerical treatment of multi-objective optimization
problems (MOPs). The GSA utilizes existing
neighborhood information I from a given candidate
solution and is able to approximate the best
approximation of the gradient within the subspace
of the decision variable space that is defined by I.
Thus, the computation of the search direction via
GSA comes ideally for free for population based
search algorithms such as evolutionary algorithms.
The strengths of GSA within memetic algorithms
for the treatment of scalar optimization problems
have recently been reported in [33]. Here, we
have discussed the GSA for the case that multiple
objectives have to be considered concurrently. To
this end, we have

— empirically shown that the existing neighbor-
hood information within populations of multi-
objective evolutionary algorithms is sufficient
for the application of GSA,

— discussed how to approximate the Jacobian
matrix at a given candidate solution x0 via
GSA,

— discussed how to adapt Laras search direction
in case inequality constraints are at hand and
how to choose the step size control,

— proposed two particular GSA-based memetic
algorithms, and have presented numerical
results on some selected benchmark pro-
blems. In both cases the application of the
local search–that comes basically for free in
terms of additional function calls–significantly
improved the performance of the base
algorithm. More precisely, the increase of the
performance was significant for unconstrained
problems and for the MOPs with relatively
easy constraints. For complex constraints, no
such significant performance improvements
could be obtained so far.

In conclusion, this first study is very promising
and will encourage us for future research in this
direction. This will include the development of more
sophisticated constraint handling techniques which
are mandatory to extend the applicability of the
algorithms to more complex problems. Further,
a fine tuning and a more advanced interplay of
local and global search elements will be helpful to
increase the overall performance.

Finally, one interesting next step would be to
use GSA-based local search within indicator based
evolutionary algorithms as such methods naturally
define a (population based) scalar optimization
problem that is induced by the indicator.

Acknowledgements
The authors acknowledge funding from Conacyt
project no. 285599 ”Toma de decisiones
multiobjetivo para sistemas altamente complejos”.

References

1. Beume, N., Naujoks, B., & Emmerich, M.
(2007). SMS-EMOA: Multiobjective selection based
on dominated hypervolume. European Journal of
Operational Research, Vol. 181, No. 3, pp. 1653 –
1669.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 379

ISSN 2007-9737

Table 5. Averaged indicator results for constrained problems

Function Hypervolume ∆2 Max Eval.
IG-NSGA-II IG-NSGA-II/GSA IG-NSGA-II IG-NSGA-II/GSA (Nadir point)

Belegundu 212.8721 213.1354 1.6844 1.5900 3,000
(std. dev.) (0.3205) (0.2261) (0.1587) (0.1030) (12,12)

Binh(2) 10,294.0037 10,300.6309 0.7047 0.6172 3,000
(std. dev.) (17.2207) (9.8055) (0.2812) (0.1667) (250,50)

Binh(4) 705.4772 728.7873 0.8863 0.5061 30,000
(std. dev.) (12.2397) (8.0167) (0.1915) (0.1239) (5,7,5)
Obayashi 22.0321 21.9269 0.8084 0.7792 20,000
(std. dev.) (0.7574) (0.7103) (0.2869) (0.2772) (5,5)
Osyczka 59.8672 59.5651 3.2946 2.3881 20,000

(std. dev.) (1.4790) (1.7873) (1.9568) (1.4040) (30,30)
Osyczka(2) 12,780.7978 13,701.1984 47.8491 30.8044 30,000
(std. dev.) (42.6364) (11.0854) (4.3380) (1.0707) (0,85)
Srinivas 212.8191 213.1927 1.4871 1.3925 3000

(std. dev.) (0.3723) (0.0714) (0.2364) (0.1769) (250,50)
Tamaki 124.3239 124.3054 0.1353 0.1515 10,000

(std. dev.) (0.0363) (0.0252) (0.0252) (0.0366) (5,5,5)
Tanaka 22.9022 24.9672 0.0672 0.0468 10,000

(std. dev.) (0.7516) (0.0249) (0.0472) (0.0100) (5,5)
Viennet(4) 190.2843 191.6098 0.1015 0.0978 10,000
(std. dev.) (0.6212) (0.4552) (0.0048) (0.0060) (8,-10,30)

2. Bhuvana, J. & Aravindan, C. (2016). Memetic
algorithm with preferential local search using
adaptive weights for multi-objective optimization
problems. Soft Computing, Vol. 20, No. 4,
pp. 1365–1388.

3. Bosman, P. A. N. (2012). On gradients and
hybrid evolutionary algorithms for real-valued
multiobjective optimization. IEEE Transactions on
Evolutionary Computation, Vol. 16, No. 1, pp. 51–
69.

4. Brown, M. & Smith, R. E. (2005). Directed
multi-objective optimization. International Journal of
Computers, Systems, and Signals, Vol. 6, No. 1,
pp. 3–17.

5. Coello, C. A. C., Lamont, G. B., & Veldhuizen,
D. A. V. (2007). Evolutionary Algorithms for Solving
Multi-objective Problems, volume 5. Springer.

6. Das, I. & Dennis, J. E. (1998). Normal-Boundary
Intersection: A New Method for Generating the Pa-
reto Surface in Nonlinear Multicriteria Optimization
Problems. SIAM Journal on Optimization, Vol. 8,
No. 3, pp. 631–657.

7. Deb, K. (2001). Multi-Objective Optimization Using
Evolutionary Algorithms. Wiley Interscience Series
in S. Wiley.

8. Deb, K., Thiele, L., Laumanns, M., & Zitzler,
E. (2002). Scalable multi-objective optimization
test problems. Evolutionary Computation, 2002.
CEC’02. Proceedings of the 2002 Congress on,
volume 1, IEEE, pp. 825–830.

9. Dellnitz, M., Schütze, O., & Hestermeyer,
T. (2005). Covering Pareto sets by multilevel
subdivision techniques. Journal of Optimization
Theory and Applications, Vol. 124, No. 1,
pp. 113–155.

10. Drummond, L. M. G. & Svaiter, B. F. (2005). A
steepest descent method for vector optimization.
Journal of Computational and Applied Mathematics,
Vol. 175, pp. 395–414.

11. Fernández, J., Schütze, O., Hernández, C., Sun,
J.-Q., & Xiong, F.-R. (2016). Parallel simple cell
mapping for multi-objective optimization. Engineer-
ing Optimization, Vol. 48, No. 11, pp. 1845–1868.

12. Hernández, C., Naranjani, Y., Sardahi, Y., Liang,
W., Schütze, O., & Sun, J.-Q. (2013). Simple
cell mapping method for multi-objective optimal

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas380

ISSN 2007-9737

Table 6. W (x) indicator results on the ZDT and DTLZ
test functions

MOEA/D MOEA/D/GSA MOEA/D/NM
ZDT1 20.0472 19.5837 22.0835

(st. dev.) (1.3782) (0.0074) (4.1524)
ZDT2 20.0472 19.5837 22.0835

(st. dev.) (1.3782) (0.0074) (4.1524)
ZDT3 31.4010 31.3602 31.0517

(st. dev.) (0.0518) (0.0558) (1.3529)
ZDT4 13.8381 13.1125 13.7468

(st. dev.) (1.0074) (0.0282) (0.7020)
ZDT6 28.8086 22.9416 28.8137

(st. dev.) (0.0168) (0.0608) (0.0143)
DTLZ1 7.9511 7.9359 8.28029

(st. dev.) (0.0105) (0.0259) (0.0200)
DTLZ2 23.7744 23.7826 21.5239

(st. dev.) (0.0040) (0.0055) (0.0002)
DTLZ3 24.6343 24.2808 24.6249

(st. dev.) (0.5718) (0.2980) (6.4775)
DTLZ4 23.7954 23.8013 21.5240

(st. dev.) (0.0054) (0.0049) (0.0006)
DTLZ5 47.3060 47.3059 47.3190

(st. dev.) (0.0003) (0.0002) (0.0068)
DTLZ6 51.6431 50.9752 62.51037

(st. dev.) (0.9658) (1.0471) (2.6750)
DTLZ7 268.9945 268.9987 325.7539

(st. dev.) (0.0001) (0.0001) (0.1023)

feedback control design. International Journal of
Dynamics and Control, Vol. 1, No. 3, pp. 231–238.

13. Hernández, V. A. S., Schütze, O., Rudolph, G.,
& Trautmann, H. (2016). The hypervolume based
directed search method for multi-objective optimiza-
tion problems. Journal of Heuristics, Vol. 22, No. 3,
pp. 273–300.

14. Hillermeier, C. (2001). Nonlinear Multiobjective
Pptimization: a Generalized Homotopy Approach,
volume 135. Springer Science & Business Media.

15. Ishibuchi, H., Yoshida, T., & Murata, T. (2003).
Balance between genetic search and local search in
memetic algorithms for multiobjective permutation
flowshop scheduling. IEEE Transactions on Evolu-
tionary Computation, Vol. 7, No. 2, pp. 204–223.

16. Jahn, J. (2006). Multiobjective search algorithm
with subdivision technique. Computational Optimi-
zation and Applications, Vol. 35, No. 2, pp. 161–175.

17. LaTorre, A., Muelas, S., & Peña, J.-M. (2011). A
MOS-based dynamic memetic differential evolution

algorithm for continuous optimization: A scalability
test. Soft Computing, Vol. 15, No. 11, pp. 2187–
2199.

18. Lewis, R. M., Torczon, V., & Trosset, M. W. (2000).
Direct search methods: Then and now. Journal of
Computational and Applied Mathematics, Vol. 124,
No. 1, pp. 191–207.

19. Liu, T., Gao, X., & Yuan, Q. (2016). An improved
gradient-based NSGA-II algorithm by a new chaotic
map model. Soft Computing.

20. López, A. L., Coello, C. A. C., & Schütze, O.
(2010). A painless gradient-assisted multi-objective
memetic mechanism for solving continuous bi-
objective optimization problems. IEEE Congress on
Evolutionary Computation, IEEE, pp. 1–8.

21. Lopez, E. M. & Coello, C. A. C. (2016). A
Parallel Multi-objective Memetic Algorithm Based
on the IGD+ Indicator. International Conference on
Parallel Problem Solving from Nature, Springer,
pp. 473–482.

22. Martı́n, A. & Schütze, O. (2017). Pareto tracer:
a predictor-corrector method for multi-objective
optimization problems. Engineering Optimization (to
appear).

23. Martin, B., Goldsztejn, A., Granvilliers, L., &
Jermann, C. (2014). On continuation methods
for non-linear bi-objective optimization: towards a
certified interval-based approach. Journal of Global
Optimization, Vol. 64, No. 1, pp. 1–14.

24. Martin, B., Goldsztejn, A., Granvilliers, L., &
Jermann, C. (2016). On continuation methods
for non-linear bi-objective optimization: towards a
certified interval-based approach. Journal of Global
Optimization, Vol. 64, No. 1, pp. 3–16.

25. Martı́nez, S. Z. & Coello, C. A. C. (2012). A direct
local search mechanism for decomposition-based
multi-objective evolutionary algorithms. 2012 IEEE
Congress on Evolutionary Computation, pp. 1–8.

26. Miettinen, K. (2012). Nonlinear Multiobjective
Optimization, volume 12. Springer Science &
Business Media.

27. Naranjani, Y., Hernández, C., Xiong, F.-R.,
Schütze, O., & Sun, J.-Q. (2016). A hybrid
method of evolutionary algorithm and simple cell
mapping for multi-objective optimization problems.
International Journal of Dynamics and Control,
pp. 1–13.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 381

ISSN 2007-9737

Table 7. Averaged indicator results for CF problems

Function Hypervolume ∆2

IG-NSGA-II IG-NSGA-II/GSA IG-NSGA-II IG-NSGA-II/GSA
CF1 22.6991 22.7063 0.3488 0.2809

(St. Dev.) (0.0108) (0.0160) (0.1134) (0.0457)
CF2 23.9966 24.1846 3.7094 2.6267

(St. Dev.) (0.2304) (0.1409) (0.8217) (1.1457)
CF3 21.7779 21.9743 8.8626 8.6404

(St. Dev.) (0.7876) (0.8831) (1.3550) (1.7076)
CF4 22.5691 22.9710 4.0301 3.4467

(St. Dev.) (0.6465) (0.5158) (0.8088) (0.7596)
CF5 20.8112 20.6415 10.0656 11.6749

(St. Dev.) (1.0878) (1.1346) (2.1827) (3.3711)
CF6 23.6467 24.0427 3.6043 1.7815

(St. Dev.) (0.4994) (0.2493) (1.8984) (0.5572)
CF7 20.9140 21.3019 16.1164 13.6514

(St. Dev.) (0.6613) (0.9006) (5.2138) (6.0834)
CF8 153.2641 154.5096 55.8651 47.8166

(St. Dev.) (3.3233) (3.2633) (7.8279) (10.3452)
CF9 123.3425 123.6872 15.1201 14.6615

(St. Dev.) (0.7494) (0.3098) (2.8301) (1.9893)

28. Nocedal, J. & Wright, S. (2006). Numerical Optimi-
zation. Springer Series in Operations Research and
Financial Engineering. Springer.

29. Pareto, V. (1896). Cours D’Economie Politique. F.
Rouge, Switzerland.

30. Pereyra, V., Saunders, M., & Castillo, J.
(2013). Equispaced Pareto front construction for
constrained bi-objective optimization. Math Comput
Model, Vol. 57, No. 9-10, pp. 2122–2131.

31. Rakowska, J., Haftka, R. T., & Watson, L. T.
(1993). Multi-objective control-structure optimiza-
tion via homotopy methods. SIAM Journal on
Optimization, Vol. 3, No. 3, pp. 654–667.

32. Ringkamp, M., Ober-Blöbaum, S., Dellnitz, M.,
& Schütze, O. (2012). Handling high dimensional
problems with multi-objective continuation methods
via successive approximation of the tangent
space. Engineering Optimization, Vol. 44, No. 6,
pp. 1117–1146.

33. Schütze, O., Alvarado, S., Segura, C., & Landa,
R. (2016). Gradient subspace approximation: A
direct search method for memetic computing. Soft
Computing, pp. 1–20.

34. Schütze, O., Dell’Aere, A., & Dellnitz, M.
(2005). On continuation methods for the numerical

treatment of multi-objective optimization problems.
Dagstuhl Seminar Proceedings, Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

35. Schütze, O., Esquivel, X., Lara, A., & Coello,
C. A. C. (2012). Using the averaged Hausdorff
distance as a performance measure in evolutionary
multiobjective optimization. IEEE Transactions on
Evolutionary Computation, Vol. 16, No. 4, pp. 504–
522.

36. Schütze, O., Lara, A., & Coello, C. A. (2011). On
the influence of the number of objectives on the
hardness of a multiobjective optimization problem.
IEEE Transactions on Evolutionary Computation,
Vol. 15, No. 4, pp. 444–455.

37. Schütze, O., Lara, A., Sanchez, G., & Coello,
C. A. (2010). HCS: A new local search strategy
for memetic multiobjective evolutionary algorithms.
IEEE Transactions on Evolutionary Computation,
Vol. 14, No. 1, pp. 112–132.

38. Schütze, O., Martı́n, A., Lara, A., Alvaradoa,
S., Salinas, E., & Coello, C. A. C. (2016). The
directed search method for multiobjective memetic
algorithms. Journal of Computational Optimization
and Applications, Vol. 63, pp. 305–332.

39. Shukla, P. K. (2007). On Gradient Based Local
Search Methods in Unconstrained Evolutionary

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas382

ISSN 2007-9737

Table 8. Unconstrained Problems Definition

Function Name Definition

ZDT1

f1(x) = x1

f2(x) = g(x)

(
1−

√
f1(x)

g(x)

)
g(x) = 1 + 9

n−1

∑n
i=2 xi

0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 30

k = 2

ZDT2

f1(x) = x1

f2(x) = g(x)

(
1−

(
f1(x)

g(x)

)2
)

g(x) = 1 + 9
n−1

∑n
i=2 xi

0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 30

k = 2

ZDT3

f1(x) = x1

f2(x) = 1−
√
f1(x)

g(x)
−
(
f1(x)

g(x)

)
sin(10πf1(x))

g(x) = 1 + 9
n−1

∑n
i=2 xi

0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 30

k = 2

ZDT4

f1(x) = x1

f2(x) = 1− g(x)
(
f1(x)

g(x)

)2

g(x) = 1 + 10(n− 1) +
∑n
i=2(x

2
i − 10cos(4πxi))

−5 ≤ xi ≤ 5, i = 1, . . . ,n

n = 10

k = 2

ZDT6

f1(x) = 1−
(
e−4x1

)
sin(6πx1)

f2(x) = 1− g(x)
(
f1(x)

g(x)

)2

g(x) = 1 + 9
(∑n

i=2 xi
n−1

)0.25

0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 10

k = 2

DTLZ1
f1(x) = 1

2x1(1 + g(x))

f2(x) = 1
2 (1− x1)(1 + g(x))

g(x) = 100
(
5 +

∑n
i=2

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 7

k = 2

DTLZ2
f1(x) = (1 + g(x))cos

(x1π
2

)
f2(x) = (1 + g(x))sin

(x1π
2

)
g(x) =

∑n
i=2(xi − 0.5)

0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 11

k = 2

DTLZ3
f1(x) = (1 + g(x))cos

(x1π
2

)
f2(x) = (1 + g(x))sin

(x1π
2

)
g(x) = 100

(
10 +

∑n
i=2

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 11

k = 2

DTLZ4

f1(x) = (1 + g(x))cos

(
x1001 π

2

)
f2(x) = (1 + g(x))sin

(
x1001 π

2

)
g(x) =

∑n
i=2(xi − 0.5)

0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 11

k = 2

DTLZ5

f1(x) = (1 + g(x))cos
(x1π

2

)
cos
((

π
4(1+g(x))

)
(1 + 2x2g(x))

)
f2(x) = (1 + g(x))cos

(x1π
2

)
sin

((
π

4(1+g(x))

)
(1 + 2x2g(x))

)
f3(x) = (1 + g(x))sin

(x1π
2

)
g(x) =

∑n
i=3(xi − 0.5)2

0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 10

k = 3

DTLZ6

f1(x) = (1 + g(x))cos
(x1π

2

)
cos
((

π
4(1+g(x))

)
(1 + 2x2g(x))

)
f2(x) = (1 + g(x))cos

(x1π
2

)
sin

((
π

4(1+g(x))

)
(1 + 2x2g(x))

)
f3(x) = (1 + g(x))sin

(x1π
2

)
g(x) =

∑n
i=3(xi − 0.5)0.1

0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 12

k = 3

DTLZ7

f1(x) = x1

f2(x) = x2

f3(x) = (1 + g(x))h(x)

g(x) = 1 + 9
8

∑n
i=3 xi h(x) = k −

∑k−1
i=1

(xisin(1+3πxi))
1+g(x)

0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 10

k = 3

CONV
f1(x) = (x1 − 1)4 + (x2 − 1)2

f2(x) = (x1 − 1)2 + (x2 − 1)2
−5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5

n = 2, k = 2

KURSAWE
f1(x) =

∑2
i=1

(
−10e−0.2

√
x2
i
+x2
i+1

)
f2(x) =

∑3
i=1

(
|xi|0.8 + 5sin

(
x3
i

)) −5 ≤ xi ≤ 5, i = 1, . . . ,n

n = 3, k = 2

DTLZ3 (3)

f1(x) = (1 + g(x))cos
(x1π

2

)
cos
(x2π

2

)
f2(x) = (1 + g(x))cos

(x1π
2

)
sin

(x2π
2

)
f3(x) = (1 + g(x))sin

(x1π
2

)
g(x) = 100

(
10 +

∑n
i=2

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
0 ≤ xi ≤ 1, i = 1, . . . ,n

n = 12

k = 3

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 383

ISSN 2007-9737

Table 9. Constrained Problems Definition

Function
Definition Constraints

n

Belegundu
n = 2

f1(x) = −2x1 + x2

f2(x) = 2x1 + x2

−x1 + x2 − 1 ≤ 0

x1 + x2 − 7 ≤ 0

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

Binh(2)
n = 2

f1(x) = 4x21 + 4x22
f2(x) = (x1 − 5)2 + (x2 − 5)2

(x1 − 5)2 + x22 − 25 ≤ 0

−(x1 − 8)2 − (x2 + 3)3 + 7.7 ≤ 0

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

Binh(4)
n = 2

f1(x) = 1.5− x1(1− x2)

f2(x) = 2.25− x1(1− x22)

f3(x) = 2.625− x1(1− x32)

−x21 − (x2 − 0.5)2 + 9 ≤ 0

(x1 − 1)2 + (x2 − 0.5)2 − 6.25 ≤ 0

−10 ≤ x1 ≤ 10

−10 ≤ x2 ≤ 10

Obayashi
n = 2

Maximize
f1(x) = x1

f2(x) = x2

x21 + x22 ≤ 1

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

Osyczka
n = 2

f1(x) = x1 + x22
f2(x) = x21 + x2

12− x1 − x2 ≥ 0

x21 + 10x1 − x22 + 16x2 − 80 ≥ 0

2 ≤ x1 ≤ 7

5 ≤ x2 ≤ 10

Osyczka 2
n = 6

f1(x) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+(x4 − 4)2 + (x5 − 1)2)

f2(x) = x21 + x22 + x23 + x24 + x25 + x26

x1 + x2 − 2 ≥ 0

6− x1 − x2 ≥ 0

2− x2 + x1 ≥ 0

2− x1 + 3x2 ≥ 0

4− (x3 − 3)2 − x4 ≥ 0

(x5 − 3)3 + x6 − 4 ≥ 0

0 ≤ x1,x2,x6 ≤ 10

1 ≤ x3,x5 ≤ 5

0 ≤ x4 ≤ 6

Srinivas
n = 2

f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2

f2(x) = 9x1 − (x2 − 1)2

x21 + x22 − 225 ≤ 0

x1 − 3x2 + 10 ≤ 0

−20 ≤ x1,x2 ≤ 20

Tamaki
n = 3

Maximize
f1(x) = x1

f2(x) = x2

f3(x) = x3

x21 + x22 + x3 ≤ 1

x1,x2,x3 ≥ 0

Tanaka
n = 2

f1(x) = x1

f2(x) = x2

−x21 − x22 + 1 + 0.1cos
(
16 arctan(x1

x2
)
)
≤ 0

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

0 < x1,x2 ≤ π

Viennet (4)
n = 2

f1(x) =
(x1−2)2

2
+

(x2+1)2

13
+ 3

f2(x) =
(x1+x2−3)2

175
+

(2x2−x1)
2

17
− 13

f3(x) =
(3x1−2x2+4)2

8
+

(x1−x2+1)2

27
+ 15

−4x1 − x2 + 4 ≥ 0

x1 + 1 ≥ 0

x2 − x1 + 2 ≥ 0

−4 ≤ x1,x2 ≤ 4

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

Sergio Alvarado, Carlos Segura, Oliver Schütze, Saúl Zapotecas384

ISSN 2007-9737

Multi-objective Optimization. Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 96–110.

40. Sindhya, K., Miettinen, K., & Deb, K. (2013).
A hybrid framework for evolutionary multi-objective
optimization. IEEE Transactions on Evolutionary
Computation, Vol. 17, No. 4, pp. 495–511.

41. Yu, G., Chai, T., & Luo, X. (2011). Multiobjective
production planning optimization using hybrid
evolutionary algorithms for mineral processing.
IEEE Transactions on Evolutionary Computation,
Vol. 15, No. 4, pp. 487–514.

42. Zhang, Q. & Li, H. (2007). MOEA/D: A mul-
tiobjective evolutionary algorithm based on de-
composition. IEEE Transactions on Evolutionary
Computation, Vol. 11, No. 6, pp. 712–731.

43. Zhang, Q., Zhou, A., Zhao, S., Suganthan,
P. N., Liu, W., & Tiwari, S. (2008). Multiobjective
optimization test instances for the CEC 2009
special session and competition. University of
Essex, Colchester, UK and Nanyang technological
University, Singapore, special session on perfor-
mance assessment of multi-objective optimization
algorithms, technical report, Vol. 264.

44. Zitzler, E. & Thiele, L. (1999). Multiobjective
evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE
Transactions on Evolutionary Computation, Vol. 3,
No. 4, pp. 257–271.

Article received on 01/02/2017; accepted on 06/09/2017.
Corresponding author is Sergio Alvarado.

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 363–385
doi: 10.13053/CyS-22-2-2948

The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective ... 385

ISSN 2007-9737

