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Abstract: Multi-objective evolutionary algorithms are widely used by researchers and practitioners
to solve multi-objective optimization problems (MOPs), since they require minimal assumptions
and are capable of computing a finite size approximation of the entire solution set in one run of
the algorithm. So far, however, the adequate treatment of equality constraints has played a minor
role. Equality constraints are particular since they typically reduce the dimension of the search
space, which causes problems for stochastic search algorithms such as evolutionary strategies. In this
paper, we show that multi-objective evolutionary algorithms hybridized with continuation-like
techniques lead to fast and reliable numerical solvers. For this, we first propose three new problems
with different characteristics that are indeed hard to solve by evolutionary algorithms. Next, we
develop a variant of NSGA-II with a continuation method. We present numerical results on several
equality-constrained MOPs to show that the resulting method is highly competitive to state-of-the-art
evolutionary algorithms.

Keywords: multi-objective optimization; equality constraints; evolutionary algorithm; continuation method

1. Introduction

In many applications, one is faced with the problem that several objectives have to be optimized
concurrently. One main characteristic of such multi-objective optimization problems (MOPs) is that
their solutions sets typically form objects of dimension k− 1, k being the number of objectives in the
problem. Multi-objective evolutionary algorithms (MOEAs, e.g., [1,2]) have caught the interest of many
researchers for the treatment of such problems as they have shown their efficiency both on academic
and real-world problems. The population-based approach of MOEAs allows computing finite-size
approximations of the entire solution set in one single run of the algorithm. Further, these methods are
of global nature and require just minimal assumptions on the model (e.g., they can be work without
gradient information).

Equality constraints represent an important class of constraints that naturally arise in many
applications (e.g., [3–9]), and their importance will rise since decision making processes are getting
more and more complex. Such constraints, however, still represent a challenge for state-of-the-art
MOEAs ([10]).
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In this work, we argue that a hybridization of a recently proposed Pareto Tracer (PT, [11]) with
MOEAs leads to a new solver for continuous constrained MOPs that is fast and reliable. To this
end, we propose and discuss here three equality constrained MOPs to complement the comparisons.
Next, we propose ε-NSGA-II/PT that is a hybrid of a variant of the well-known and widely used
NGSA-II and PT. PT is currently one of the fastest multi-objective continuation methods that allow
us to trace solutions along the Pareto set/front, can be applied to higher dimensions, and reliably
handles constraints. However, as all continuation methods, it is of local nature. We demonstrate the
strength of the novel approach by showing results on selected benchmark problems and comparisons
against some state-of-the-art MOEAs. A preliminary study of this work can be found in [12] which is
restricted to the treatment of bi-objective problems, and where the discussion and comparison of the
novel method is reduced.

This paper is structured as follows: in Section 2, we shortly recall some required background.
In Section 3, we propose three new equality constrained MOPs that we will use for our comparisons.
In Section 4, we propose the hybrid evolutionary algorithm ε-NSGA-II/PT. In Section 5, we present
results on some benchmark problems including a comparison to the performance of related algorithms.
In Section 6, we finally conclude our work and discuss possible further steps that can be made in this
line of research.

2. Background and Related Work

2.1. Multi-Objective Optimization Problem (MOP)

In the sequel, we will consider continuous MOPs

min
x∈Rn

F(x)

s.t. hi(x) = 0 i = 1, . . . , p

gj(x) ≤ 0 j = 1, . . . , m,

(1)

where F(x) = ( f1(x), . . . , fk(x))T defines the objective functions. Q denotes the domain of (1), Q :=
{x ∈ Rn : hi(x) = 0 ∧ gj(x) ≤ 0}. We say that y ∈ Rn is dominated by x ∈ Rn (in short x ≺ y)
if fi(x) ≤ fi(y), i = 1, . . . , k, and it holds f j(x) < f j(y) for a j ∈ {1, . . . , k}. Else we say that y is
non-dominated by x. x ∈ Q is said to be (Pareto) optimal or simply optimal if there exists no y ∈ Q
with y ≺ x. The Pareto set PQ is the set of all optimal points, and its image F(PQ) is called the Pareto
front. We have to assume that the gradients of all functions (objective and constraints) can at least be
approximated in order to apply PT.

2.2. Related Work

The development of solution tools for the constrained MOP described in the previous
subsection has generated a recent interest, mainly within the evolutionary computation community.
This subsection provides a review of previous works related to this field, focusing on pure evolutionary
techniques and on hybrid strategies as well.

Regarding MOEAs, two constraint handling mechanisms, classically used in the single-objective
optimization framework, are adapted in [13] to MOEA/D [14]. The first one is stochastic ranking
(SR, [15]), which accounts for the need of directing the search according to both feasibility and objective
value. Therefore, when comparing two solutions and at least one of them is infeasible, the comparison
criterion is the objective function value with probability p f , while, with probability 1− p f , individuals
are distinguished through the overall constraint violation φ (where for any solution x, φ(x) =

∑
p
i=1 |hi(x)| + ∑

p
j=1 max{0, gj(x)}). On the other hand, the constraint-domination principle (CDP)

is a multi-objective extension [16] of Deb’s feasibility rules, where feasible solutions are compared
according to dominance. The computational experiments, performed on the CTP-series [17] and
CF-series [18], demonstrate that MOEA/D-CDP consistently outperforms MOEA/D-SR concerning
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hypervolume, inverted generational distance (IGD) and set coverage. It also performs reasonably well
when compared with IDEA [19] and DMOEA-DD [20].

Besides, the Infeasibility Driven Evolutionary Algorithm (IDEA) [19] is a modification of the
classical CDP-based NSGA-II [16] that enforces the participation of infeasible solutions through a
parameter α, which represents the fraction of the current population allocated for those solutions.
During the selection step, the pool combining parent and offspring populations is first divided into two
(feasible and infeasible) sets. Then, non-dominated ranking is applied to both these sets, considering a
function of the constraint violations as an additional objective for the infeasible set. Then, if N is the
population size, the α · N infeasible solutions with the best-ranking values, as well as the (1− α) · N
feasible solutions with the best ranks, are included into the next population. Note that the constraint
violation function used as an additional objective for infeasible solutions is computed as the sum of
the ranking of the solutions, sorted in increasing order of the magnitude of constraint violation for
each constraint (instead of the number of violated constraints formerly used [21]). The experimental
results conducted over some test functions of the CTP-series [17] demonstrate that IDEA consistently
outperforms CDP-NSGA-II.

Another adaptation of MOEA/D for handling constrained MOPs is introduced in [22] where,
for each solution, a modified function for the overall constraint violation accounts for the number of
active constraints, in addition to the simple constraint violation. The mean value of this modified
function over the population is weighted by the ratio of feasible individuals in the population,
in order to produce a threshold on the allowed amount of constraint violation. Solutions that are
within this threshold are considered as feasible and compared in terms of their objective values.
Furthermore, a gradient-based local search is periodically invoked in order to repair infeasible solutions.
The resulting algorithm, tested on some of the CTP-series test functions [17], performs similarly or
better than NSGA-II with CDP.

In [23], the ε-constraint technique originally developed for single-objective optimization is
extended for the solutions of MOPs. This strategy, proposed in [24], consists in relaxing the tolerance
level on constraints up to a value ε. Thus, when two solutions have an overall constraint violation lower
than ε, they are both considered as feasible and compared in terms of their objective value. In [24],
the value of ε is monotonically decreased according to a polynomial function, until some generation Tc.
From then on, ε is set to 0 in order to narrow the search on the feasible space. In [23], the authors allow
increasing the ε level when the ratio of feasible solutions is greater than a threshold value, to promote
exploration. This strategy, embedded in MOEA/D, is compared with MOEA/D-CDP [13] and with the
original ε-constraint mechanism (decreasing ε pattern), over a set of nine constrained MOPs introduced
earlier by the same authors [25]. Furthermore, this strategy is also compared with classical MOEAs
(either dominance or decomposition-based) in a later work [26], over the CTP [17] and CF series [18],
using IGD as a performance indicator. In any case, the MOEA/D-IEpsilon algorithm outperforms all
its contenders, except IDEA [19], which obtains similar performance levels.

More recently, the same authors developed a two-stage (Push and Pull Search, PPS) procedure,
which first solves the unconstrained MOP (solutions are pushed towards the unconstrained Pareto
front) and, in a second stage, include constraints to modify the first (unconstrained) approximation
and identify the constrained Pareto front (solutions are pulled from infeasible regions towards the
feasible space). The switching criterion between both phases is based on no-evolution of the identified
ideal and Nadir points. During the “push stage”, the canonical MOEA/D (with the Tchebycheff
scalarizing function) is employed, while a modified ε-constraint technique is applied in the second
one (still with MOEA/D) to find feasible solutions. A specific decreasing scheme for the ε level
is adopted, where exponential or polynomial (as in [24]) decrease can be used, depending on the
feasibility ratio. Tested over a 14 functions benchmark earlier proposed by the same authors [25],
the resulting PPS-MOEA/D outperforms some classical MOEAs quoted in this section but requires
tuning many parameters.
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As the last example of MOEA-based solution procedures, an innovative idea is introduced in [27],
where MOEA/D is modified in such a way that two solutions are assigned to each weight vector.
The aim is having one individual on each side of the feasibility boundary (one feasible and one
infeasible), in order to focus the search on this region where the Pareto-optimal solutions might lie.
The consequences of this working mode are: (i) the doubled size of the neighborhood of each weight
vector for offspring generation (since each neighboring weight vector has two associated solutions);
(ii) for solution replacement, the created offspring is now compared to two individuals, in terms of both
the scalarizing function used within MOEA/D and the overall constraint violation. In this bi-objective
space, dominance is used to select two surviving individuals among the three contenders. If the
three are non-dominated, that with the larger constraint violation is discarded, while if one solution
dominates the two others, the former is the only one to survive. The algorithm is successfully compared
with MOEA/D-CDP over several functions of the C-DTLZ test suite [28]. However, for CTP and CF
series [17,18], this Dual-grid MOEA/D is outperformed by IDEA [19] or MOEA/D-IEpsilon [26].

Besides, as for single-objective optimization, hybrid strategies have been adapted for solving
MOPs in recent years. In general, these so-called memetic algorithms combine a global search engine
(a MOEA) with some local search technique based on exact algorithms. In this framework, proposals
differ one from another according to:

• The kind of local search technique used, which may be gradient-based (quasi-Newton in [29,30],
or sequential quadratic programming in [31]) or direct search for nonlinear problems (Nelder and
Mead’s algorithm in [32]).

• The problem reformulation on which local search is applied, which may be based on
ε-constraint [33] or a scalarization of the MOP [31].

• The hybridization scheme, which can consists on seeding the initial population of the MOEA [34],
interleaving global and local search steps by applying local search to some selected individuals
of the population [33] or periodically (every t generations) [35], or using the non-dominated
solutions obtained by the exact algorithm to reconstruct the whole Pareto front [36].

However, to the best of our knowledge, most of these hybrid strategies were applied to
unconstrained MOPs through classical test suites (ZDT, DTLZ, WFG) and there is almost no proposal
for dealing with constraints, particularly equality constraints.

There already exist some strategies for deal with equality constraints: for instance, if all equalities
are linear, one can use orthogonal projections in order to obtain feasible points near to a given candidate
solution ([8]). For vehicle routing problems, several repair mechanisms can be found in [37–39]),
and in [4,40] such mechanisms can be found for portfolio selection problems. Finally, [41] proposes a
repair mechanism that makes use of first-order Taylor approximations of the constraints.

2.3. Test Suites for Constrained MOPs

Benchmark problems are important to assess the performance of solution techniques. In literature,
some of such test suites can be found for the case of constrained MOPs. Most of these problems,
however, contain only box-constraints. Established test suites whose domains are more complex are
the CTP problems ([17]) and the CF problems (see [18]). More recently, the C-DTLZ ([28]) and the
LIRCMOP problems ([25]) have been proposed. Remarkably, not one of these test problems contains
an equality constraint. Thus, the common operating mode proposed by most authors to handle
equalities (i.e., dividing the constraint into two inequalities) has never been seriously tested. Indeed,
this methodology does not work in practice since it is very unlikely that a solution can respect both
inequalities. As a consequence, the first feasible solution identified attracts the rest of the population,
causing drastic diversity losses. This is why the specific treatment of equality constraints represents a
relevant issue on its own, as shown by the present study.

In [42], the CZDT functions are proposed that contain equality constraints and that are derived from
the well-known ZDT functions ([43]). We will use this test suite for our comparisons. The particularity



Mathematics 2020, 8, 7 5 of 25

of this suite, however, is that the Pareto sets of the constrained problems are identical to the Pareto sets
of the respective unconstrained problems. To further test the ability of MOEAs to handle constraints,
we will in this paper propose three new equality constrained MOPs where the inclusion of the equality
constraint(s) has an influence on the location of the Pareto sets.

2.4. Pareto Tracer (PT)

PT is a continuation method that is capable of performing a movement along the set of
Karush–Kuhn–Tucker (KKT) points of a given MOP starting from an initial KKT point [11].
The algorithm can handle both equality and inequality constraints and is applicable in principle
to any number of objectives. The main steps of PT for equality constrained MOPs are for convenience
of the reader briefly described in Appendix A.

3. Proposed Test Problems

Here we propose two bi-objective test problems, Eq1-ZDT1 and Eq2-ZDT1, and one three-objective
problem, Eq-Quad. All problems are scalable in the number of decision variables, and for all problems
the inclusion of the equality constraint(s) has an influence on the location of the Pareto set.

3.1. Eq1-ZDT1

The original ZDT1 is a bi-objective problem with box constraints that can be defined for an
arbitrary number n of decision variables. Meanwhile, the proposed Eq1-ZDT1 problem is stated
as follows

f1(x) = x1

f2(x) = g(x)
(

2−
√

f1(x)
g(x)

)
(2)

s.t. h(x) = (x1 − 0.5)2 + (x2 − 0.4)2 − 0.25 = 0 (3)

where

g(x) = 1 +
9

n− 1

n

∑
i=2

x2
i (4)

As we can see, the Eq1-ZDT1 (2) is also a scalable bi-objective problem in the number of variables,
which changes the box constraints by an equality constraint (with the implicit inequality constraint
that x1 ≥ 0 so that f2 is defined). The constraint of this problem (3) defines a kind of “hyper-cylinder”,
where the variables x1 and x2 are placed on a circle, while the remaining variables xi, i = 3, . . . , n can
take any value (see Figure 1).

In the following, we will provide the Pareto set for Eq1-ZDT1. For this, we need the set Ph ⊂ Q
defined as

Ph :=
{

x ∈ Rn : (x1 − 0.5)2 + (x2 − 0.4)2 = 0.25,

xi = 0, i = 3, . . . , n.}
(5)

Theorem 1. Let Ph be defined as in (5) and n = 30. Then the subset PEq1 ⊂ Ph given by

PEq1 = {x ∈ Rn : x1 ∈ [0, γ],

x2 = 0.4−
√

0.25− (x1 − 0.5)2, xi = 0, i = 3, . . . , n}.
(6)

where γ ≈ 0.977336 is the Pareto set of Eq1-ZDT1.
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Proof.

(a) First, we prove that @ y ∈ Q \ Ph such that y ≺ x, where x ∈ Ph.

Suppose that ∃ y ∈ Rn \ Ph such that h(x) = 0 and y ≺ x, ∀x ∈ Ph. First, let

x := (y1, y2, 0, . . . , 0)T , (7)

with (y1 − 0.5)2 + (y2 − 0.4)2 = 0.25. Then, let ∆ := (∆1, . . . , ∆n)T ∈ Rn \∅ with ∆1 = ∆2 = 0;
as y ∈ Rn \ Ph we can choose y as follows:

y := x + ∆ = (y1, y2, ∆3, . . . , ∆n)
T , (8)

Now, from (2) note that

1. For the first objective we have that f1(y) = f1(x) = y1.
2. For the second objective we have that

g(x) = 1 +
9

n− 1

n

∑
i=2

x2
i

= 1 +
9

n− 1

(
y2

2 +
n

∑
i=3

0

)

= 1 +
9

n− 1
y2

2,

g(y) = 1 +
9

n− 1

n

∑
i=2

y2
i

= 1 +
9

n− 1

(
y2

2 +
n

∑
i=3

∆2
i

)
,

⇒ g(x) < g(y).

Then,

y1

g(x)
>

y1

g(y)
⇒

√
y1

g(x)
>

√
y1

g(y)

⇒ −
√

y1

g(x)
< −

√
y1

g(y)

⇒ 2−

√
f1(x)
g(x)

< 2−

√
f1(y)
g(y)

.

Finally,

g(x) < g(y)⇒

g(x)

(
2−

√
f1(x)
g(x)

)
< g(y)

(
2−

√
f1(y)
g(y)

)
⇒ f2(x) < f2(y),

which contradicts the hypothesis. Thus @ y ∈ PD \ Ph | x ≺ y with x ∈ Ph.
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(b) Now we show that the points PEq1 are not dominated by each other and they dominate all the
points in the set Ph \ PEq1.

Let x, x′ ∈ Ph such that x1 = x′1 and |x2| < |x′2|. Notice that we can express x2 in terms of x1 as

x2 = 0.4±
√

0.25− (x1 − 0.5)2, (9)

and it is clear that the points of the form (x1, 0.4 +
√

0.25− (x1 − 0.5)2) are dominated by the
points (x1, 0.4−

√
0.25− (x1 − 0.5)2) (that is, the inferior half of the circle), then g(x) < g(x′)⇒

f2(x) < f2(x′).

Now, we can write f2(x) with x ∈ Phd
in terms of x1 as

f2(x1) =

(
(n− 1) + 9C2(x1)

n− 1

)(
2− x1

(n− 1) + 9C2(x1)

)
. (10)

where, C(x1) = 0.4−
√

0.25− (x1 − 0.5)2.

Computing the derivative of Equation (10) we have

f ′2(x1) = −
(5(n− 1) + 180x1 − 90)

√
0.25− (x1 − 0.5)2 − 72x1 + 36

5(n− 1)
√

0.25− (x− 0.5)2
. (11)

The derivative of f2 has only one root at γ = x∗1 ≈ 0.977336. Also, note that for a point a we have
that if a ∈ [0, γ], then f ′2(a) < 0. On the other hand, if a ∈ [γ, 1], then f ′2(a) > 0. Hence, f2(x) is
monotonically decreasing, and consequently, points in PEq1 are not dominated by each other.

Finally, by (a) and (b) we have that PEq1 is the Pareto set of Eq1-ZDT1.

To obtain γ for the formulation of the Pareto set we needed to consider f ′2 which depends on n.
The proof is analog for other values of n with changing value of γ. Some of these values can be found
in Table A1 of Appendix D.
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Figure 1. Pareto set and front of the Eq1-ZDT1 with n = 30. (a) Projection of the Pareto set onto the
x1x2-plane; (b) Pareto front.
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3.2. Eq2-ZDT1

Via adding box constraints to Eq1-ZDT1, we can define the Eq2-ZDT1 problem as follows

f1(x) = x1

f2(x) = g(x)
(

2−
√

f1(x)
g(x)

)
(12)

s.t. h(x) = 0 (13)

0 ≤ xi ≤ 1, i = 1, . . . , n, (14)

where h(x) and g(x) are defined as in (3) and (4), respectively.
Next, we will provide the analytical Pareto set for Eq2-ZDT1.

Theorem 2. For n = 30, x ∈ Rn, the Pareto set for the Eq2-ZDT1 problem (see Figure 2) is given by

PEq2 := {x ∈ Rn : x1 ∈ I1 ∪ I2 ∪ I3, x2 = I(x1),

xi = 0, i = 3, . . . , n.}
(15)

where I1 := [0, 0.2], I2 := [η, 0.8), I3 := [0.8, γ], η ≈ 6.700214, and

I(x1) :=

{
0.4−

√
0.25− (x1 − 0.5)2, x1 ∈ I1 ∪ I3

0.4 +
√

0.25− (x1 − 0.5)2, x1 ∈ I2
(16)

Proof.

(a) Let Ph be defined as in (5), and PEq1 as in (6) and then first part of this proof is analogs the
previous analysis for Eq1-ZDT1.

(b) As second step, we need to remove all the points in PEq1 that do not satisfy the box constraints.
In particular, as xi = 0, i = 3, . . . , n, we focus on x1 and x2. For x1, x2 ∈ Ph, we have that
x1 ∈ [0, 1] and x2 ∈ [−0.1, 0.4], i.e., some values of x2 do not satisfy the lower bound.

We can express x1 as follows:

x1 = 0.5 +
√

0.25− (x2 − 0.4)2, (17)

thus, for x2 = 0 we can find the values of x1 that define I1 and I3 via:

x1 = 0.5± 0.3 ⇒ I1 = [0, 0.2] I3 = [0.8, γ]

After removing the non-feasible points from PEq1 we have a gap in Pareto set/front. Now, notice
that, some points x ∈ Ph : x2 = 0.4 +

√
0.25− (x1 − 0.5)2 (that is, x 6∈ PEq1), could be within the

gap. That is, we have to find the values of x ∈ Ph \ PEq1 such that f2(x1) ∈ [ f (0.8), f (0.2)].

For this we consider:

f̄2(x1) =

(
(n− 1) + 9C2

2(x1)

n− 1

)(
2− x1

(n− 1) + 9C2
2(x1)

)
. (18)

where, C2(x1) = 0.4 +
√

0.25− (x1 − 0.5)2.

Notice that [ f2(0.8), f2(0.2)] ⊂ [ f̄2(0.8), f̄2(0.2)] and f̄2 is a continuous function, then for the
intermediate value theorem ∃ x1,0.8, x1,0.2 such that f̄2(x1,0.2) = f2(0.2) and f̄2(x1,0.8) = f2(0.8),
respectively.
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For n = 30, such values are x1,0.8 ≈ 0.9773356 and x1,0.2 ≈ 0.670021. Then I2 = [η, 0.8), with
η = x1,0.2, as x1,0.8 > 0.8 and f2(0.8) < f̄2(0.8).

Finally, by (a) and (b) we have that PEq2 is the Pareto set of Eq2-ZDT2.

As we can observe, the values of γ and η depend on n (see Theorems 1 and 2). We refer to the
Appendix D for these values for other dimensions of the decision variable space. See Figure 2 for
Pareto set and front of Eq2-ZDT2.
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Figure 2. Pareto set and front of the Eq2-ZDT1 with n = 30. (a) Projection of the Pareto set onto the
x1x2-plane; (b) Pareto front.

3.3. Eq-Quad

Finally, we propose a modification of the problem taken from [11] which has three quadratic
objectives and two equality constraints:

f j(x) = ‖x− a(j)‖2
2, j = 1, . . . , k,

where x ∈ Rn, k = 3, and a(1) = (1,−1.4,−0.4)T , a(2) = (−1.4, 1,−0.4)T , and a(3) = (0.4, 0.4, 0.8)T .
subject to

h1(x) = r2 − x2
3 −

(
R−

√
x2

1 + x2
2

)2
= 0

h2(x) = x1 + x2 − x3 = 0
−1.5 ≤ x1 ≤ 1
−1.5 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1.

Figure 3 shows the constraints and the Pareto set for n = 3. As it can be seen, the Pareto set
consists of two connected components that can be both expressed by curves (and which are hence
1-dimensional).
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Figure 3. Constrains and feasible region for the torus problem.

4. Proposed Algorithm (ε-NSGA-II/PT)

This section is devoted to the description of the hybrid algorithm proposed in this work. As above-
mentioned, the Pareto Tracer is a continuation strategy that is able to efficiently perform moves along
the Pareto front of a MOP. However, this reconstruction process is carried out locally, which involves
that PT must be provided with a reduced set of relevant approximated solutions, i.e., with a reasonably
good convergence and dispersion over the front. Therefore, a multi-objective evolutionary algorithm,
based on a modified implementation of NSGA-II [16], is developed here as the first stage of the hybrid
algorithm, in the aim of producing this first set of promising solutions. This latter subsequently serves
as an input of PT, which refines it to produce the final approximation of the Pareto front/set. The two
stages of the resulting ε-NSGA-II/PT are presented in detail in what follows.

4.1. First Stage: Rough Approximation via ε-NSGA-II

The first stage of the hybrid algorithm presented in this work consists in determining a rough
approximation of the Pareto front via a MOEA. Each approximated solution will subsequently feed
the Pareto Tracer, which generates local reconstructions of the real Pareto front and combines them
to finally obtain the whole Pareto set. Therefore, the MOEA used in the first step should meet the
following characteristics:

– the number of solutions in the roughly approximated set is small, in order to reduce the
computational burden of the local search (PT). Indeed, in case of a completely connected front,
one single approximated solution might allow us to build the entire Pareto front.

– the MOEA should promote diversity, since the rough approximation produced should cover all the
extent of the Pareto front and identify all the different components, in case of a disconnected front.

– the MOEA must be able to handle equality constraints. As mentioned before, a severely constrained
problem might cause diversity issues that should be overcome by the MOEA.

Note that the two first features are conflicting, since the number of elements of the approximated
front should be small enough to avoid unnecessary computations. Nonetheless, there must be enough
approximated solutions to ensure the identification of all the components, in case of disconnected
Pareto front. To deal with 2 or 3 objective problems such as those treated in this work, we observed
that 20 points in the rough approximation represents a good trade-off between these two requirements.
This means that the MOEA should work either with small populations or maintaining a small
external archive.

Regarding the search engine and diversity preservation issue, two classical dominance and
decomposition-based algorithms (NSGA-II and MOEA/D, respectively) were initially investigated.
However, preliminary computations led to the observations that, first, the use of small populations
deteriorated the performance of MOEA/D and, even with larger populations (and a small archive to be
returned), diversity remained an issue. Therefore, NSGA-II was used in this study as baseline algorithm.
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In the proposed implementation, NSGA-II does not necessarily use small populations, but the
final population is reduced to 20 at the end of the search (according to crowding distance). Regarding
constraint handling, the constraint-domination principle CDP generally used within NSGA-II does
not obtain good results on the equality constrained problems tackled here. Indeed, any technique
establishing the superiority of feasible solutions over infeasible ones will face severe diversity issues,
due to a premature convergence towards the first feasible solution found.

As a simple way to modify this operating mode, the ε-constraint strategy proposed in [24] is
adopted here. Note that, despite this method was previously integrated within MOEA/D in [23],
to the best of our knowledge, there is no reference to NSGA-II working with ε-constraint for solving
constrained MOPs. As explained earlier, the ε-constraint strategy relaxes the tolerance level on
constraint violation up to a value ε, i.e., a solution x with an overall constraint violation φ(x) ≤ ε

is viewed as feasible and, thus, evaluated and compared in terms of its objective value. Then, ε is
smoothly reduced according to a specific decreasing scheme. This technique allows solutions with
a small (but positive) overall constraint violation to be compared with feasible individuals in terms
of convergence (through dominance-based sorting) and spread uniformity (thanks to the crowding
distance). Accordingly, the following operator is used to compare two solutions x and y:

x ≺ε y ⇐⇒


x ≺ y if φ(x), φ(y) ≤ ε

x ≺ y if φ(x) = φ(y)

φ(x) < φ(y) otherwise,

(19)

where

φ(x) =
m

∑
j=1

max
{

gj(x), 0
}
+

p

∑
i=1
|hk(x)| (20)

denotes the constraint violation. At the beginning of the run, the first value of ε, denoted as ε(0), is set
in such a way that at least some solutions are “ε-feasible”. More precisely, ε(0) is the overall constraint
volation of individual xθ , which is the θ-th solution in the first population sorted in descreasing order
of φ: ε(0) = φ(xθ). For subsequent generations, the ε decreasing schedule originally proposed in [24]
is adopted here: ε is an exponentially decreasing function of the generation number, until a critical
generation Tc is reached. From then on, ε is set to εmin:

ε =

{
max(εmin, ε(0) (1− t/Tc)

cp) if 0 < t < Tc

εmin if t ≥ Tc,
(21)

where t is the generation number, cp is a parameter controlling the decreasing speed and ε(0) is the
constraint relaxation level at the first generation. Note that other ε decreasing schedules, such as that
embedded within MOEAD/D-IEpsilon [23], have been tested, but better results were obtained using
Equation (21).

Finally, in order to promote diversity, another parameter is introduced to bias the parent selection
operator, which is based on a tournament implementing the ε-constraint strategy described in
Equation (19). However, as suggested in [44], the result of the tournament is respected only with
probability p f ; else (i.e., with probability 1− p f ), the winner is randomly chosen. Empirical results
proved that this small modification sometimes allows significant improvements in the algorithm
performance. The whole process is shortly described in Algorithm 1.

4.2. Second Stage: Refinement via PT

The main task on this stage is to process the resulting archive P provided by ε-NSGA-II. The main
challenge here is to avoid unnecessary effort, e.g., via computing non-optimal KKT points along local
Pareto fronts that are already dominated by previously computed solutions. While this is relatively easy



Mathematics 2020, 8, 7 12 of 25

for k = 2 objectives (see [12]), this task becomes more complicated with increasing k. The following
procedure works for general k.

Before PT can be executed, the following post-processing has to be done on P:

1. Let τ be the desired minimal distance between two solutions in objective space. In this first step,
go over P and eliminate elements that are too close to each other (if needed). This leads to the
new archive P̃.

2. Apply the Newton method (A11) to all elements of P̃. Remove all dominated solutions,
and elements that are too close to each other as in the first step. This leads to the archive P̄.

3. To obtain a “global picture” of the part of the Pareto front that will be computed by PT, construct
a partition of a potentially interesting subset S of the image space into a set of hyper-cubes
(or k-dimensional boxes) with radius ≈ τ. This partition can easily be constructed via using a
binary tree whose root represents S (see [45] for details, where, however, the partition is used
in decision variable space). S is a box that is constructed out of P̄ as follows: denote by mi and
Mi the minimal and maximal value of the i-th objective value of all elements in P̄, respectively.
Then the i-th element of the center of S is set to (mi + Mi)/2 and its i-th element of the radius to
(Mi −mi)/2. In the computations, we will only allow a storing one candidate solution within
each of these boxes in the archive A to guarantee a spread of the solutions.

Algorithm 1 ε-NGSA-II
P← pop_init()
Evaluate each individual xi ∈ P to obtain F(xi) and φ(xi)
Compute ε(0) and set ε = ε(0)
for t← 1 to MaxGen do

P′ ← crossover(P) . Parent selection through tournament and ε-constraint
P′′ ← mutation(P′)
Q← P ∪ P′′

QF ← Feasible(Q, ε), QI = In f easible(Q, ε)
QF ← FastNonDominatedSorting(QF)
QI = SortConstraintViolation(QI)
Fill P with QF, using crowding distance if necessary
if |QF| < PopSize then

Complete P with QI

end if
Update ε through Equation (21)

end for
P← reduce(P) . return 20 solutions
Return P and F(P)

Then, in the first step the element p(1) ∈ P̄ is chosen as the starting point for PT, where f1(p(1)) =
m1. An external archive A will be created that will be the reference for PT and that will be the
set of solutions that will be returned after the application of ε-NSGA-II/PT. At the beginning, it is
A := {p(1)}. In parallel, a box collection C will be created that contains all the (unique) boxes out
of the above partition that contain all the elements of A. In the first step, C will set to the box that
contains p(1). The application of PT leads to a sequence of candidate solutions xi, i = 1, . . . , s. For each
xi the following steps are performed:

1. if xi is dominated by any element of A, then PT the current application of PT is stopped.
2. else, it is checked if the unique box that contains xi is already contained in C. If this is not the

case, add this box to C and add xi to A. Else, decline xi and proceed with xi+1.
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After this, take the element from P̄\{p(1)}with the smallest value of f2 as the starting point for PT
and proceed as above. Proceed in this way, sorting cyclic according to each objective, until all elements
p ∈ P̄ have been chosen as starting points for PT.

5. Numerical Results

Here we present some numerical results that compare the behavior of a well-known mathematical
programming technique and some state-of-the-art MOEAs in the selected test problems. As test
functions we have chosen to take the three test problems proposed above, Eq1-Quad from [11],
the CZDT test suite as well as a modification of a problem from Das and Dennis problem (D&D)
stated in [11]. First, we test the normal boundary intersection (NBI) method in the selected suite.
With this experiment we want to show why the use of MOEAs is convenient, even more the need for a
special hybrid algorithm which is capable of solving these type of MOPs. The second experiment is
the comparison between state-of-the-art MOEAs against the proposed ε-NSGA-II/PT. Here, a point
x is considered to be feasible if ‖h(x)‖ < ε, where we have taken ε = 1e− 04, which is common in
evolutionary computation.

5.1. Performance Assessment

The multi-objective solvers were evaluated by adopting two performance indicators taken from
the literature.

∆p indicator

The ∆p indicator [46,47] can be viewed as an averaged Hausdorff distance between an
approximation set and the real Pareto front of a MOP. This indicator is defined by slight modifications
of the indicators Generational Distance (GD) [48] and Inverted Generational Distance (IGD) [49].
Formally, the ∆p indicator can be written as follows.

Let P = {~x1, . . . ,~x|P|} an approximation and R = {~r1, . . . ,~r|R|} be a discretization of the real PF
of a MOP, then

∆p(P, R) = max{GDp(P, R), IGDp(P, R)}, (22)

where GDp(P, R) =
(

1
|P| ∑

|P|
i=1 dp

i

) 1
p and IGDp(P, R) =

(
1
|R| ∑

|R|
j=1 d̂p

j

) 1
p , and where di and d̂j are the

Euclidean distance from ~xi to its closest member~r ∈ R, and the Euclidean distance from~rj to its closest
member ~x ∈ P, respectively. Here we have chosen p = 2. The ideal indicator value is 0, and a low ∆p

value indicates a good approximation of P.

Feasibility Ratio

The feasibility ratio (IF) indicator refers to the ratio of the number of feasible solutions found in
the final approximation P given by a MOEA. Mathematically, this indicator can bee stated as follows.

IF(P) =
Pf

|P| , (23)

where Pf denotes the number of feasible solutions in P and |P| represents the cardinality of the
population P.

5.2. Solving Equality Constrained MOPs with Mathematical Programming Techniques

In this section, we test the NBI technique and apply it to the selected test problems. First,
we compute the extreme points of the CHIM by separately optimizing each objective. We take the
center of the box defined by each MOP as the initial solution of the optimization process. Then, we
compute the CHIM using the previously obtain solution, here we set a partition of 100 well-distributed
points. Finally, we solve the NBI subproblem taking into a count each NBI weight. We compute the
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extreme points of the MOP and the NBI subproblem via fmincon Matlab function. Table 1 shows the ∆2

value and the computational cost, in terms of function evaluations, for each problem. Feval contains
the global number of function evaluations required by NBI technique without the cost of each objective
optimization process. Feval fi column contains the number of function evaluations that were required
to optimize each objective. Figure A1 of Appendix B shows NBI results for each test problem. Each
figure shows the real Pareto front, the computed CHIM and NBI solution.

From Table 1 we observed that in CZDT1, CZDT2, CZDT4 and Das and Dennis ∆2 value is close
to zero which means that NBI adequately solves these problems, on the other hand, the number of
function evaluations needed is very high. In the remaining test functions, neither the performance
indicator value nor the number of function evaluations is good. Thus, NBI is not capable of solving
these MOPs.

Table 1. Values of ∆2 and number of function calls used by normal boundary intersection (NBI) for
the selected test problems.

Function ∆2 Feval Feval f1 Feval f2 Feval f3

CZDT1 0.0010 25,759 314 314 -
CZDT2 0.0008 30,221 314 693 -
CZDT3 0.2094 4587 638 830 -
CZDT4 0.0011 22,543 186 186 -
CZDT6 0.0325 6902 106 240 -
D&D 0.1005 84,531 1430 498 -
Eq1-ZDT1 2.7541 89,838 405 4528 -
Eq2-ZDT1 2.6567 87,539 373 5181 -
Eq1-Quad 0.9019 22,679 357 231 649
Eq2-Quad 3.5263 10,449 147 144 4739

5.3. Solving Equality Constrained MOPs with MOEAs

In this section, the proposed approach was compared against four state-of-the-art MOEAs
that incorporate different constraint-handling strategies in their environmental selection procedures.
Also we include a comparison with a two-stage algorithm that combines the above mention ε-NSGA-II
(see Section 4.1) and NBI technique.

• NSGA-II. The popular non-dominated sorting genetic algorithm II [50] was adopted in our
comparative study. NSGA-II employs a binary tournament-based on feasibility in the mating
selection procedure. In order to determine the next generation, the crowding comparison operator
considers the feasibility of solutions. In our study, NSGA-II was performed using the standard
parameters given by its authors, i.e., Pc = 1, Pm = 1/n, ηc = 20, ηm = 20.

• GDE3. The third evolution step of generalized differential evolution [51] was also adopted in our
experimental analysis. GDE3 introduces the concept of constraint-domination explained before to
discriminate solutions. GDE3 was employed using CR = 1 and F = 0.5.

• cMOEA/D-DE. We also adopted the first version of the multi-objective evolutionary algorithm
based on decomposition for constraint multi-objective optimization [52]. cMOEA/D-DE utilizes
a penalty function in order to satisfy the constraint of the problem. The penalty function is
straightforward added to the scalarizing function employed by MOEA/D-DE [53] to approximate
the PF of a constrained MOP. cMOEA/D-DE was employed using CR = 1, F = 0.5, T = b0.1×
Nc, nr = b0.01× Nc, Pm = 1/n, η = 20, s1 = 0.01, and s2 = 20.

• eMOEA/D-DE. A version of MOEA/D-DE based on the ε-constraint method for constrained
optimization [54] is also adopted in our experimental study. eMOEA/D-DE employs the
ε-constraint method to satisfy the constraints of the problem by obtaining information about
feasible solutions in the neighborhood of MOEA/D-DE. Thus, the neighboring solutions are
used to defined the ε-constraint value which is dynamically adapted during the search process
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of eMOEA/D-DE. eMOEA/D-DE was performed using the standard parameters suggested by
its authors, i.e., CR = 1, F = 0.5, T = b0.1× Nc, nr = b0.01× Nc, Pm = 1/n, η = 20, τ = 0.3,
and δe = 0.7.

In the above description, N represents the population size which is implicitly defined by the
number of subproblems defined by the decomposition-based MOEAs (i.e., cMOEA/D-DE and
eMOEA/D-DE). Such subproblems were generated by employing the simplex-lattice design [55]
and using the penalty boundary intersection approach (PBI) with a penalty value θ = 5, such as it was
suggested by [14]. Therefore, the number of weight vectors is given by N = CM−1

H+M−1, where M is the
number of objective functions. Consequently, the setting of N is controlled by the parameter H. Here,
we use H = 99 (for two-objective problems) and H = 23 (for three-objective problems), i.e., 100 and
300 weight vectors for problems having two and three objectives, respectively.

For each MOP, 30 independent executions were performed with each MOEA.

5.4. Analysis

Our experiments have shown that the new hybrid needs between 15, 000 and 17, 000 function
evaluations (FEs) to obtain good results for the bi-objective problems and 110, 000 to 150, 000 FEs for
the three-objective problems. In order to make the comparison fair, we have set a final budget of 20, 000
FEs for all the selected MOEAs on the bi-objective problems and 150, 000 FEs for the three-objective
problems. For ε-NSGA-II/PT we have split the budget for the bi-objective problems into 15, 000 FEs
for ε-NSGA-II and the remaining 5000 FEs for PT (and 100, 000 plus 50, 000 FEs for three-objective
problems). For the realization of PE, we have used Automatic Differentiation to compute the gradients
which allows us to express the cost of the continuation method in terms of FEs. For all experiments,
we have executed 30 independent runs. We performed the Wilcoxon Test as statistical significance
proof to validate the results. For this, we consider the value α = 0.05. Based on the test results, for
the comparison between ε-NSGA-II/PT and any of the chosen MOEAs the symbol “↑” means that
the obtained results are statistically significant. The symbol “−−” means that no ∆2 value could be
computed for the algorithm. This was the case if a MOEA detected no feasible solutions for at least
25 runs.

Figures 4 and 5 show the results for Eq1-Quad and Eq2-Quad, respectively. The reader is referred
to Appendix C for more figures. The theoretical PF is marked with dots (.) while approximations from
the algorithms are marked with triangles (4). The Pareto fronts for the other test problems have been
omitted due to space limitations, however, Table 2 shows the indicator values, ∆2 and IF, for all test
problems. Smaller values of ∆2 correspond to better qualities of the approximated solution, while
larger values for IF indicate more feasible solutions in the approximation. The best values are displayed
in bold for each problem and each indicator. We can see that the new hybrid algorithm significantly
outperforms the other algorithms in nine out of the ten test functions considering a compromise
between ∆2 value and the number of the needed function evaluations. Note that in CZDT1, CZDT2,
and CZDT6, ε-NSGA-II/NBI has better performance that our proposal but it needs more function
evaluations in order to achieve these results. In some cases, the MOEAs are not able to find any feasible
solution within the given FE budget. ε-NSGA-II/PT, however, loses against c-MOEA/D on Eq2-Quad.
This is due to the fact that the real Pareto front is disconnected, and in most of the runs, the first stage of
our proposal was not able to find adequate solutions near both components. Therefore, in the second
stage, we were in most cases only able to compute one of the two components. However, note that all
the solutions of the final approximation are feasible in all the independent runs.
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Figure 4. Pareto front approximations for Eq1-Quad for the selected MOEAs using a budget of 150, 000
function evaluations.
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Figure 5. Pareto front approximations for Eq2-Quad for the selected multi-objective evolutionary
algorithms (MOEAs) using a budget of 150, 000 function evaluations.
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Table 2. Values of ∆2 and IF on the selected test problems.

Method ∆2 IF Feval Method ∆p F. Ratio
C

Z
D

T
1

ε-NSGA-II/PT 0.0038 1.0000 15,981

D
&

D

ε-NSGA-II/PT 0.3442 1.0000 17,175.5
(std.dev) (0.0002) (std.dev) (0.6553)

ε-NSGA-II/NBI↑ 0.0015 0.9881 26,317 ε-NSGA-II/NBI↑ 1.2701 0.9887 66,414
(std.dev) (0.0014) (std.dev) (1.8398)

c-MOEA/D – 0.0000 20,000 c-MOEA/D↑ 4.5168 0.0270 20,000
(std.dev) (–) (std.dev) (2.1485)

e-MOEA/D – 0.0000 20,000 e-MOEA/D – 0.0000 20,000
(std.dev) (–) (std.dev) (–)

GDE3 – 0.0000 20,000 GDE3 – 0.0000 20,000
(std.dev) (–) (std.dev) (–)

NSGA-II – 0.0000 20,000 NSGA-II – 0.0000 20,000
(std.dev) (–) (std.dev) (–)

C
Z

D
T

2

ε-NSGA-II/PT 0.0038 1.0000 15,700

Eq
1-

Z
D

T
1

ε-NSGA-II/PT 0.0158 1.0000 15,763.2
(std.dev) (0.0002) (std.dev) (0.0015)

ε-NSGA-II/NBI↑ 0.0008 0.9980 29,298 ε-NSGA-II/NBI↑ 0.7960 1.0000 161,525
(std.dev) (0.0001) (std.dev) (0.4744)

c-MOEA/D – 0.0000 20,000 c-MOEA/D ↑ 0.4088 0.5060 20,000
(std.dev) (–) (std.dev) (0.2504)

e-MOEA/D – 0.0000 20,000 e-MOEA/D ↑ 0.1683 0.3787 20,000
(std.dev) (–) (std.dev) (0.0488)

GDE3 – 0.0000 20,000 GDE3 ↑ 3.0997 0.6653 20,000
(std.dev) (–) (std.dev) (0.5521)

NSGA-II – 0.0000 20,000 NSGA-II ↑ – 0.0013 20,000
(std.dev) (–) (std.dev) (–)

C
Z

D
T

3

ε-NSGA-II/PT 0.0156 1.0000 16,235.1

Eq
2-

Z
D

T
1

ε-NSGA-II/PT 0.1251 1.0000 16,285.3
(std.dev) (0.0164) (std.dev) (0.0428)

ε-NSGA-II/NBI↑ 0.2681 0.8386 201,139 ε-NSGA-II/NBI↑ 0.6204 1.0000 159,702
(std.dev) (0.2298) (std.dev) (0.4138)

c-MOEA/D – 0.0000 20,000 c-MOEA/D ↑ 0.6624 0.4700 20,000
(std.dev) (–) (std.dev) (0.2215)

e-MOEA/D – 0.0000 20,000 e-MOEA/D ↑ 0.7800 0.4617 20,000
(std.dev) (–) (std.dev) (0.1235)

GDE3 – 0.0000 20,000 GDE3 ↑ 3.6144 0.8873 20,000
(std.dev) (–) (std.dev) (0.5234)

NSGA-II – 0.0000 20,000 NSGA-II ↑ 2.4662 0.0037 20,000
(std.dev) (–) (std.dev) (1.6368)

C
Z

D
T

4

ε-NSGA-II/PT 0.0031 1.0000 16,265.4

Eq
1-

Q
ua

d

ε-NSGA-II/PT 0.1261 1.0000 149,826.3
(std.dev) (0.0016) (std.dev) (0.0043)

ε-NSGA-II/NBI↑ 0.0073 0.9990 529,146 ε-NSGA-II/NBI↑ 0.1880 0.2478 40,633
(std.dev) (0.0055) (std.dev) (0.0439)

c-MOEA/D – 0.0000 20,000 c-MOEA/D ↑ 0.5714 0.2533 150,000
(std.dev) (–) (std.dev) (0.0953)

e-MOEA/D – 0.0000 20,000 e-MOEA/D ↑ 3.1760 0.0014 150,000
(std.dev) (–) (std.dev) (0.6012)

GDE3 – 0.0000 20,000 GDE3 ↑ 0.9133 0.2666 150,000
(std.dev) (–) (std.dev) (0.0931)

NSGA-II – 0.0000 20,000 NSGA-II – 0.0001 150,000
(std.dev) (–) (std.dev) (–)

C
Z

D
T

6

ε-NSGA-II/PT 0.0884 1.0000 15,739.5

Eq
2-

Q
ua

d

ε-NSGA-II/PT 1.9969 1.0000 149,049.2
(std.dev) (0.0180) (std.dev) (1.0378)

ε-NSGA-II/NBI↑ 0.0177 0.8545 22,362 ε-NSGA-II/NBI – 0.0000 63,299
(std.dev) (0.0102) (std.dev) ()

c-MOEA/D – 0.0000 20,000 c-MOEA/D ↑ 0.4737 0.1583 150,000
(std.dev) (–) (std.dev) (0.2000)

e-MOEA/D – 0.0000 20,000 e-MOEA/D – 0.0000 150,000
(std.dev) (–) (std.dev) (–)

GDE3 – 0.0000 20,000 GDE3 ↑ 2.8142 0.0047 150,000
(std.dev) (–) (std.dev) (1.1008)

NSGA-II – 0.0000 20,000 NSGA-II – 0.0000 150,000
(std.dev) (–) (std.dev) (–)
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6. Conclusions

Here the have addressed the treatment of equality constrained MOPs. To this end, we have first
proposed three such problems that have different characteristics and that can serve as future benchmark
problems. Next, we have proposed a two-phase hybrid evolutionary algorithm, ε-NSGA-II/PT,
which combines a variant of the well-known and widely used MOEA NSGA-II with the recently
proposed continuation method, the Pareto tracer (PT). More precisely, the evolutionary algorithm,
ε-NSGA-II, computes in a first step a small but ideally well-spread set of solutions around the Pareto
front of a given MOP. In the next step, PT takes over to refine the given rough approximation. Empirical
results on some benchmark functions that included a comparison against the state-of-the-art have
demonstrated that this new hybrid evolutionary algorithm is highly competitive, and yields highly
satisfying results using only a moderate budget of function evaluations.

For future work, it might be interesting to reduce the requirement of directly computing the
gradient information, e.g., via utilizing approximation strategies like the one proposed in [41], and to
apply the new hybrid to the treatment of real-world applications. For instance, our proposal could
improve the results presented in [56], where the authors showed that some classic MOEAs have
an unsatisfactory performance solving the portfolio problem with complex equality constraints.
On the other hand, equality constraints also appear in some single-objective optimization problems
(for instance, the development of computer-controlled material [57], the predictive scheduling [58],
or the production system designing [59]), and more applications of our proposal could emerge from
the extension of such problems to the multi-objective case.
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Appendix A. Pareto Tracer (PT)

Here we briefly describe the main steps of the continuation method PT for equality constrained
MOPs, more details e.g., on how to treat inequalities can be found in [11].

Starting with a solution xi, a next solution xi+1 is computed in the following two steps: first,
the vector νµ that is tangential to the KKT set at xi is chosen via solving(

Wα HT

H 0

)(
νµ

ξ

)
=

(
−JTµ

0

)
, (A1)

where J denotes the Jacobian of F at x, µ ∈ Rk, ξ ∈ Rp and

Wα :=
k

∑
i=1

αi∇2 fi(x) ∈ Rn×n, (A2)

where α ∈ Rk is the Lagrange multiplier, and

H :=

 ∇h1(x)T

...
∇hp(x)T

 ∈ Rp×n. (A3)
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If the ranks of Wα and H are maximal, then νµ is determined uniquely. In that case, it holds

k

∑
i=1

µi = 0, (A4)

as well as
νµ = −W−1

α JTµ. (A5)

For a given vector d ∈ Rk, the direction νd ∈ Rk with Jνµd = d can be computed using (A5):

Jνµd = −JW−1
α JTµd = d. (A6)

Since also (A4) has to hold, µd it is determined via solving(
−JW−1

α JT

e

)
µd =

(
d
0

)
. (A7)

The direction vector d can now be chosen to steer along the Pareto front. For this, we have to
choose d orthogonal to α: let α = QR = (q1, . . . , qk)R be a QR decomposition of α, then define

di := qi+1, i = 1, . . . , k− 1, (A8)

and select the µdi
’s via solving (A7). Then, the vectors νµdi

are tangential to PQ, and the di’s are the
respective directions in objective space.

Using νµ, we can now compute the predictor pi

pi := xi + tiνµ, (A9)

with step size ti as follows:

ti :=
τ

‖Jνµ‖
. (A10)

τ > 0 is a user specified value that represents the desired distance between the images of two
consecutive solutions in objective space.

In the next step, a Newton method is used to project pi to the KKT set. The Newton direction is
hereby chosen as the solution of

min
(ν,δ)∈Rn×R

δ

s.t. ∇ fi(x)Tν + 1
2 νT∇2 fi(x)ν ≤ δ, i = 1, . . . , k,

hi(x) +∇hi(x)Tν = 0, i = 1, . . . , p.

(A11)

Quasi-Newton techniques can be used to realize the algorithm without using Hessians. We will
use this implementation here.
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Appendix B. Graphical Results for the NBI
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Figure A1. Pareto front approximations for the selected test functions using the NBI method.

Appendix C. Graphical results for the ε-NSGAII/PT

Figure A2 shows the numerical results obtained by ε-NSGAII/PT on all the ten considered
test functions.
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Figure A2. Best result for the ε-NSGA-II/PT for all the ten test functions.
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Appendix D. Values of γ and η

Table A1 shows the values of γ and η for different dimensions n of the decision variable space.
γ and η are used to describe the Pareto sets of Eq1-ZDT1 and Eq2-ZDT1.

Table A1. Values of γ and η.

n γ η

16 0.954380 0.863336
17 0.957029 0.848048
18 0.959445 0.832853
19 0.961656 0.817805
20 0.963686 0.802946
21 0.965554 0.788312
22 0.967278 0.773932
23 0.968874 0.759830
24 0.970353 0.746025
25 0.971727 0.732530
26 0.973006 0.719359
27 0.974199 0.706518
28 0.975314 0.694012
29 0.976357 0.681847
30 0.977336 0.670021
31 0.978253 0.658536
32 0.979116 0.647389
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