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3Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico

Correspondence should be addressed to A. Schaum; alsc@tf.uni-kiel.de

Received 28 February 2018; Accepted 20 June 2018; Published 19 July 2018

Academic Editor: Xiaoliang Jin

Copyright © 2018 Pedro Franco et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work the control design problem for the Schrödinger equation with an arbitrary potential is addressed. In particular a
controller is designed which (i) for a space-dependent potential steers the state probability density function to a prescribed solution
and (ii) for a space and state-dependent potential exponentially stabilizes the zero solution. The problem is addressed using a
backstepping controller that steers to zero the deviation between the initial probability wave function and the target probability
wave function. The exponential convergence property is rigorously established and the convergence behavior is illustrated using
numerical simulations for the Morse and the Pöschl-Teller potentials as well as the semilinear Schrödinger equation with cubic
potential.

1. Introduction

The problem of quantum control is an important problem
in today’s quantum technology with relevant applications
in quantum information systems, molecular chemistry, and
atomic physics, among others [1–3]. Even though control
theory of classical mechanical systems has been extensively
developed and applied in recent years, its application to
quantum mechanical systems bears some additional hur-
dles due to particularities of the quantum world which in
particular impose restrictions on the controllability of these
systems [4–6]. In spite of the progress made in this field, still
more research and understanding of the underlying quantum
phenomena are necessary in order to fully achieve control in
the quantummechanical realm [7–9]. A particularly interest-
ing approach to the boundary control of Partial Differential
Equations (PDEs) in general and Schrödinger equations
in particular is the backstepping method [10, 11], yielding
exponential stabilization of the 𝐿2-norm in the case of a
potential-free Schrödinger equation.Thismethod is used in a
variety of engineering problems [12, 13] and has been recently
extended to the case of regulator design for a Schrödinger
equation with a general purpose space-dependent potential

and subject to distributed and boundary perturbations [14].
It is an interesting question, which to the authors knowl-
edge still remains open, how these approaches perform for
particular potentials of interest, like the Morse potential
[15–17] or the Pöschl-Teller potential [18–21]. Furthermore,
the aforementioned results are restricted to potentials which
are not a function of the state, i.e., to the case of linear
Schrödinger equations. Nevertheless, important application
examples require the consideration of state-dependent poten-
tials, e.g., to describe the evolution of solitons in optical
fibers [22, 23] or the description of deep water waves [24].
This leads to a semilinear Schrödinger equation. As it is
well-known, the application of the backstepping approach
to semilinear systems is only resolved for particular cases
[25–29]. Accordingly, the problem of controlling a semilinear
Schrödinger equation is still an open task.

In this work, we consider the problem of steering a Prob-
ability Density Function (PDF) into a target PDF. It should
be noted that the use of the PDF control perspective has not
been widely explored [30]. In particular, for space-dependent
potentials convergence to an arbitrary desired solution is
achieved, and for state-dependent potentials, i.e., the case
of a semilinear Schrödinger equation, the zero solution is
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exponentially stabilized.This task is resolved by using bound-
ary actuation following the backstepping method [10]. In
contrast to transforming the complete Schrödinger equation
into a target PDE, the system is viewed as an interconnection
of a linear dynamic with a nonlinear static subsystem, just as
in the framework of absolute stability analysis [31, 32], and the
backstepping transformation is performed only for the linear
subsystem.

The paper is organized as follows. In Section 2, the
problem is stated from the perspective of PDF control and the
initial and target systems are given. In Section 3, the boundary
control is designed and themain results of thiswork are given.
In Section 4, to illustrate our findings, we set the control
for three significant physical systems in order to show the
validity of the method developed in this paper. In Section 4.1,
we control a Schrödinger system with a Morse potential,
and a system with a Pöschl-Teller potential is examined
in Section 4.2. In Section 4.3 the exponential stabilization
of the solution for the semilinear Schrödinger equation is
considered. Conclusions are given in Section 5.

2. Problem Formulation

Consider the Schrödinger equationwith a nonlinear potential
𝑉 and boundary control

𝑖𝜕𝑡𝜓 (𝑥, 𝑡) = −𝜕2𝑥𝜓 (𝑥, 𝑡) + 𝑉 (𝑥, 𝜓 (𝑥, 𝑡)) 𝜓 (𝑥, 𝑡) ,
𝜓 (𝑥, 0) = 𝜓0 (𝑥)

(1a)

𝜕𝑥𝜓 (0, 𝑡) = 0 (1b)

𝜓 (1, 𝑡) = 𝑢 (𝑡) (1c)

with the restriction

∫1
0
𝜓 (𝑥, 𝑡) 𝜓 (𝑥, 𝑡)𝑑𝑥 = 1, ∀𝑡 ≥ 0. (1d)

In (1a), (1b), (1c), and (1d), 𝑥 ∈ [0, 1] is the spatial
coordinate describing the position of a confined particle
within a bounded space or cavity, 𝑡 is the time, 𝜓(𝑥, 𝑡) ∈
𝐿2([0, 1]×R) 󳨀→ C is the complex-valuedwave function that
gives the quantum state of the system and 𝜓(𝑥, 𝑡) is its con-
jugate complex counterpart, 𝑉(𝑥, 𝜓(𝑥, 𝑡)) is the real-valued
nonlinear potential function determining the movement of
the particle within the cavity, and 𝑢(𝑡) ∈ C∞(R+) is the
control input. The function 𝑉 is continuously differentiable
with respect to both arguments.

Equation (1d) states that the system is confined into 𝑥 ∈
[0, 1] and that the probability of finding the particlewithin the
cavity is conserved for all times. Stated in terms of the PDF

𝜌 (𝑥, 𝑡) = 𝜓 (𝑥, 𝑡) 𝜓 (𝑥, 𝑡) (2)

this means that

∫1
0
𝜌 (𝑥, 𝑡) 𝑑𝑥 = 1, ∀𝑡 ≥ 0. (3)

Theproblems addressed in this paper consist in the design
of a control law 𝑢 = 𝜛(𝑡, 𝜓) such that the wave function

𝜓(𝑥, 𝑡) converges exponentially in the 𝐿2-norm to a target
wave function 𝜓𝑑(𝑥, 𝑡), i.e., that there exist constants 𝑀 ≥
1, 𝜅 > 0 such that, for all t ≥ 0,

󵄩󵄩󵄩󵄩𝜓 − 𝜓𝑑󵄩󵄩󵄩󵄩 = (∫1
0

󵄨󵄨󵄨󵄨𝜓 (𝑥, 𝑡) − 𝜓𝑑 (𝑥, 𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑥)
1/2

≤ 𝑀󵄩󵄩󵄩󵄩𝜓0 − 𝜓𝑑0󵄩󵄩󵄩󵄩 𝑒−𝜅𝑡,
(4)

where 𝜓0(𝑥) = 𝜓(𝑥, 0), 𝜓𝑑0(𝑥) = 𝜓𝑑(𝑥, 0) denote the initial
profiles of 𝜓(𝑥, 𝑡) and 𝜓𝑑(𝑥, 𝑡), respectively, and the target
wave function 𝜓𝑑(𝑥, 𝑡) is a solution of the same Schrödinger
equation (1a), (1b), (1c), and (1d) with the control input 𝑢(𝑡) =
𝑢𝑑(𝑡). Two different cases are considered:

(I) For the case of a space-dependent potential 𝑉(𝑥) an
arbitrary target system can be considered with the
state 𝜓𝑑(𝑥, 𝑡) associated with a quantum system with
the same potential but different boundary and initial
conditions 𝜓𝑑(1, 𝑡) = 𝑢𝑑(𝑡), 𝜕𝑥𝜓𝑑(0, 𝑡) = 0, and
𝜓𝑑(𝑥, 0) = 𝜓𝑑0.

(II) For the case of a space and state-dependent potential
𝑉(𝑥, 𝜓(𝑥, 𝑡)) the target state is given by the zero
solution 𝜓𝑑(𝑥, 𝑡) = 0 ∀𝑥 ∈ [0, 1], 𝑡 ≥ 0, which
corresponds to the solution of (1a), (1b), (1c), and (1d)
with initial condition 𝜓𝑑0(𝑥) = 0, ∀𝑥 ∈ [0, 1], and
the control input 𝑢𝑑(𝑡) = 0, ∀𝑡 ≥ 0.

Introducing the deviation variables

𝜓̃ (𝑥, 𝑡) = 𝜓 (𝑥, 𝑡) − 𝜓𝑑 (𝑥, 𝑡) ,
𝑢̃ (𝑡) = 𝑢 (𝑡) − 𝑢𝑑 (𝑡)

(5)

where in case (I) 𝜓𝑑(𝑥, 𝑡) ̸= 0 and in case (II) 𝜓𝑑(𝑥, 𝑡) =
0, 𝑢𝑑(𝑡) = 0, it can easily be verified that the associated
Schrödinger equations for 𝜓̃(𝑥, 𝑡) have the form

𝑖𝜕𝑡𝜓̃ (𝑥, 𝑡) = −𝜕2𝑥𝜓̃ (𝑥, 𝑡) + 𝑉 (𝑥, 𝜓̃ (𝑥, 𝑡)) 𝜓̃ (𝑥, 𝑡) ,
𝜓̃ (𝑥, 0) = 𝜓̃0 (𝑥)

(6a)

𝜕𝑥𝜓̃ (0, 𝑡) = 0 (6b)

𝜓̃ (1, 𝑡) = 𝑢̃ (𝑡) . (6c)

The associated error PDF is given by

𝜌 (𝑥, 𝑡) = 𝜓̃ (𝑥, 𝑡) 𝜓̃ (𝑥, 𝑡) = 󵄨󵄨󵄨󵄨𝜓 (𝑥, 𝑡) − 𝜓𝑑 (𝑥, 𝑡)󵄨󵄨󵄨󵄨2 ≥ 0 (7)

together with the probability of a nonzero estimation error

𝑃 (𝑡) = ∫1
0
𝜌 (𝑥, 𝑡) 𝑑𝑥. (8)

In terms of the PDF 𝜌(𝑥, 𝑡) and the probability 𝑃(𝑡) the
convergence requirement (4) reads

𝑃 (𝑡) ≤ 𝑀𝑒−𝜅𝑡𝑃 (0) , 𝑃 (0) = ∫1
0
𝜌 (𝑥, 0) 𝑑𝑥 (9)

and corresponds to the convergence in the 𝐿1-norm of 𝜌 to
zero.
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Figure 1: Interconnection scheme (10a), (10b), (10c), (10d), and (10e)
withL given by (10a)-(10d) andN given by (10e).

3. Control Design

For the purpose of control design, the dynamics (6a), (6b),
and (6c) are interpreted as an interconnection of a linear
dynamical subsystemL given by (10a)-(10d) with distributed
input ]̃(𝑥, 𝑡) and output 𝜎̃(x, 𝑡), and a nonlinear static subsys-
temN given by (10e) is defined as follows:

𝑖𝜕𝑡𝜓̃ (𝑥, 𝑡) = −𝜕2𝑥𝜓̃ (𝑥, 𝑡) + ]̃ (𝑥, 𝑡) ,
𝜓̃ (𝑥, 0) = 𝜓̃0 (𝑥)

(10a)

𝜕𝑥𝜓̃ (0, 𝑡) = 0 (10b)

𝜓̃ (1, 𝑡) = 𝑢̃ (𝑡) (10c)

𝜎̃ (𝑥, 𝑡) = 𝜓̃ (𝑥, 𝑡) (10d)

]̃ (𝑥, 𝑡) = 𝑉 (𝑥, 𝜎̃ (𝑥, 𝑡)) 𝜎̃ (𝑥, 𝑡) . (10e)

Note that this kind of interpretation of semilinear (or non-
linear) systems in terms of interconnected subsystems is
standard in absolute stability theory [31, 32] and corresponds
to the nonlinear feedback loop sketched in Figure 1.

Accordingly, the main idea behind the approach in the
present paper consists in designing a feedback control for the
linear part in such a way that the semilinear system given
by the two-subsystem interconnection has an exponentially
stable zero solution.

3.1. Open-Loop Dynamics. Before addressing the control
design problem, the stability properties of the open-loop
dynamics are analyzed. The following result establishes the
instability of 𝜌(𝑥, 𝑡) = 0 and will further be very useful in the
subsequent developments.

Lemma 1. For 𝑢̃(𝑡) = 0, the probability that the wave function
𝜓(𝑥, 𝑡) does not converge to the desired wave function 𝜓𝑑(𝑥, 𝑡)
is conserved over time; i.e.,

∀𝑡 ≥ 0 :
𝑃 (𝑡) = ∫1

0
𝜌 (𝑥, 𝑡) 𝑑𝑥 = 𝐾,

𝐾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.
(11)

Accordingly, the solution 𝜌(𝑥, 𝑡) = 0 for the error PDF (7) is
unstable.

Proof. A direct calculation shows that

𝑑𝑃 (𝑡)
𝑑𝑡 = ∫1

0
𝜕𝑡𝜌 (𝑥, 𝑡) 𝑑𝑥 = ∫1

0
[(𝜕𝑡𝜓̃ (𝑥, 𝑡)) 𝜓̃ (𝑥, 𝑡)

+ 𝜓̃ (𝑥, 𝑡) (𝜕𝑡𝜓̃ (𝑥, 𝑡))] 𝑑𝑥

= ∫1
0
[(𝑖𝜕2𝑥𝜓̃ (𝑥, 𝑡) − 𝑖𝑉 (𝑥, 𝜓̃ (𝑥, 𝑡)) 𝜓̃ (𝑥, 𝑡))

⋅ 𝜓̃ (𝑥, 𝑡) + +𝜓̃ (𝑥, 𝑡)
⋅ (−𝑖𝜕2𝑥𝜓̃ (𝑥, 𝑡) + 𝑖𝑉 (𝑥, 𝜓̃ (𝑥, 𝑡)) 𝜓̃ (𝑥, 𝑡))] 𝑑𝑥.

(12)

Taking into account the fact that 𝑉(𝑥, 𝜓(𝑥, 𝑡)) ∈ R, it holds
that

𝑉 (𝑥, 𝜓 (𝑥, 𝑡)) = 𝑉 (𝑥, 𝜓 (𝑥, 𝑡)) ∈ R. (13)

Thus, it follows that

𝑑𝑃 (𝑡)
𝑑𝑡 = 𝑖 ∫1

0
[𝜕2𝑥𝜓̃ (𝑥, 𝑡) 𝜓̃ (𝑥, 𝑡)

− 𝜓̃ (𝑥, 𝑡) 𝜕2𝑥𝜓̃ (𝑥, 𝑡)] 𝑑𝑥

+ −𝑖 ∫1
0
[𝑉 (𝑥, 𝜓̃ (𝑥, 𝑡)) 𝜓̃ (𝑥, 𝑡) 𝜓̃ (𝑥, 𝑡)

− 𝜓̃ (𝑥, 𝑡) 𝑉 (𝑥, 𝜓̃ (𝑥, 𝑡)) 𝜓̃ (𝑥, 𝑡)] 𝑑𝑥.

(14)

The second term is clearly zero, and integration by parts of the
first term and substitution of the boundary conditions (6b),
(6c) yield

∫1
0
𝑖 [𝜕2𝑥𝜓̃ (𝑥, 𝑡) 𝜓̃ (𝑥, 𝑡) − 𝜓̃ (𝑥, 𝑡) 𝜕2𝑥𝜓̃ (𝑥, 𝑡)] 𝑑𝑥

= 𝑖 [𝜕𝑥𝜓̃ (𝑥, 𝑡) 𝜓̃ (𝑥, 𝑡) − 𝜓̃ (𝑥, 𝑡) 𝜕𝑥𝜓̃ (𝑥, 𝑡)]10
− 𝑖 ∫1
0
[𝜕𝑥𝜓̃ (𝑥, 𝑡) 𝜕𝑥𝜓̃ (𝑥, 𝑡)

− 𝜕𝑥𝜓̃ (𝑥, 𝑡) 𝜕𝑥𝜓̃ (𝑥, 𝑡)] 𝑑𝑥.

(15)

The second term is again zero and from the first term it holds
that

𝑑𝑃 (𝑡)
𝑑𝑡 = 2I (𝜕𝑥𝜓̃ (1, 𝑡)) 𝑢̃ (𝑡) , (16)

and for 𝑢̃(𝑡) = 0 it results that the probability 𝑃 is conserved
over time, implying that 𝜌(𝑥, 𝑡) does not converge to zero or,
equivalently, that 𝜌𝑑(𝑥, 𝑡) = 0 is unstable.
Remark 2. From the preceding proof it follows that the con-
servation property (11) holds independently of the particular
shape of the potential 𝑉(𝑥, 𝜓(𝑥, 𝑡)).
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Figure 2: Interconnection scheme for the control of the linear
Schrödinger systemL with ]̃(𝑥, 𝑡) = 0 and controllerC.

3.2. Control of the Linear Subsystem. Note that the control of
the linear subsystem with ]̃(𝑥, 𝑡) = 0 corresponds to con-
trolling the linear Schrödinger equation without potential, as
depicted schematically in Figure 2.

The problem of stabilizing the zero solution of the linear
Schrödinger equation has been solved in [10, 11].The purpose
of this section is to recall the results from [10, 11] and to put
them in perspective for the analysis of the linear-nonlinear
subsystem interconnection (10a), (10b), (10c), (10d), and
(10e).

For 𝜓̃, a solution of (10a), (10b), (10c), (10d), and (10e)
(with ]̃(𝑥, 𝑡) = 0) considers the state transformationT

𝜙 (𝑥, 𝑡) = T𝜓̃ (𝑥, 𝑡) = 𝜓̃ (𝑥, 𝑡) − ∫𝑥
0
𝑘 (𝑥, 𝜉) 𝜓̃ (𝜉, 𝑡) 𝑑𝜉 (17)

and the target dynamics for 𝜙(𝑥, 𝑡) given by

𝑖𝜕𝑡𝜙 (𝑥, 𝑡) = −𝜕2𝑥𝜙 (𝑥, 𝑡) − 𝑖𝛾𝜙 (𝑥, 𝑡) ,
𝜙 (𝑥, 0) = 𝜙 (𝑥, 0)

(18a)

𝜕𝑥𝜙 (0, 𝑡) = 0 (18b)

𝜙 (1, 𝑡) = 0. (18c)

A straightforward calculation (see [10, 11] for details) shows
that the dynamics of 𝜙(𝑥, 𝑡) corresponds to (18a), (18b),
and (18c) if and only if the kernel 𝑘(𝑥, 𝜉) of the integral
transformation (17) satisfies the PDE

𝜕2𝑥𝑘 (𝑥, 𝜉) + 𝜕2𝜉𝑘 (𝑥, 𝜉) = −𝑖𝛾𝑘 (𝑥, 𝜉) (19a)

𝜕𝜉𝑘 (𝑥, 0) = 0 (19b)

𝑘 (𝑥, 𝑥) = − 𝛾2𝑖𝑥. (19c)

The solution of this PDE is given by (see [10, 11, 33])

𝑘 (𝑥, 𝜉) = 𝑖𝛾𝑥
𝐼1 (√−𝑖𝛾 (𝑥2 − 𝜉2))
√−𝑖𝛾 (𝑥2 − 𝜉2)

, (20)

where 𝐼1(𝑥) represents the first-order modified Bessel func-
tion of the first kind. From (17) it follows that the control input
𝑢̃(𝑡) is given by

𝑢̃ (𝑡) = ∫1
0
𝑘 (1, 𝜉) 𝜓̃ (𝜉, 𝑡) 𝑑𝜉

= ∫1
0
𝑖𝛾
𝐼1 (√−𝑖𝛾 (1 − 𝜉2))
√−𝑖𝛾 (1 − 𝜉2)

𝜓̃ (𝜉, 𝑡) 𝑑𝜉.
(21)

For the dynamics (18a), (18b), and (18c), it is known from [11]
that the following result holds true.

Lemma 3. The solution 𝜙(𝑥, 𝑡) of (18a), (18b), and (18c)
converges exponentially to zero; i.e., there exist constants 𝑁 ≥
1, 𝜅 > 0 such that󵄩󵄩󵄩󵄩󵄩𝜙 (𝑥, 𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑁 󵄩󵄩󵄩󵄩󵄩𝜙 (𝑥, 0)󵄩󵄩󵄩󵄩󵄩 𝑒−𝜅𝑡. (22)

Proof. Consider the 𝐿2 norm of 𝜙
󵄩󵄩󵄩󵄩󵄩𝜙 (𝑥, 𝑡)󵄩󵄩󵄩󵄩󵄩 = √𝐸 (𝑡), 𝐸 (𝑡) = ∫1

0
𝜙 (𝑥, 𝑡) 𝜙 (𝑥, 𝑡)𝑑𝑥 (23)

and recall that it corresponds to the𝐿1 normof the probability
density function

𝜌𝜙 (𝑥, 𝑡) = 𝜙 (𝑥, 𝑡) 𝜙 (𝑥, 𝑡). (24)

From Lemma 1, it follows that, for 𝛾 = 0, the conservation of
probability implies that 𝑑𝐸(𝑡)/𝑑𝑡 = 0. For 𝛾 ̸= 0, it follows
from a short calculation that
𝑑𝐸 (𝑡)
𝑑𝑡 = ∫1

0
[𝜕𝑡𝜙 (𝑥, 𝑡) 𝜙 (𝑥, 𝑡) + 𝜙 (𝑥, 𝑡) 𝜕𝑡𝜙 (𝑥, 𝑡)] 𝑑𝑥

= −2𝛾∫1
0
𝜙 (𝑥, 𝑡) 𝜙 (𝑥, 𝑡)𝑑𝑥 = −2𝛾𝐸 (𝑡)

(25)

implying that

𝐸 (𝑡) = 𝐸 (0) 𝑒−2𝛾𝑡 (26)

or equivalently that
󵄩󵄩󵄩󵄩󵄩𝜙 (𝑥, 𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩𝜙 (𝑥, 0)󵄩󵄩󵄩󵄩󵄩 𝑒−𝛾𝑡 (27)

meaning that 𝜙(𝑥, 𝑡) converges exponentially to zero; i.e.,
inequality (4) holds for 𝜙 with𝑁 = 1 and rate 𝜅 = 𝛾 > 0.

Given the invertibility of the integral transformation (17)
(see [11]), it holds that 𝜓̃ also converges exponentially to zero
in the 𝐿2-norm or, equivalently, 𝜌 converges exponentially
to zero in the 𝐿1-norm. This is summarized in the following
corollary.

Lemma 4. Let the control 𝑢̃(𝑡) be chosen according to (21) for
some 𝛾 > 0. Then, for ]̃(𝑥, 𝑡) = 0, it holds that the deviation
state 𝜓̃(𝑥, 𝑡) defined in (5) converges exponentially to zero and
the probability 𝑃(𝑡) defined in (8) satisfies

𝑃 (𝑡) ≤ 𝑀𝑒−2𝛾𝑡𝑃 (0) (28)

for some𝑀 > 0; i.e., (9) is satisfied.
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Figure 3: Real and imaginary parts of the solution 𝜙 of (18a), (18b), and (10c).

Proof. From [11] it is known that the inverse transformation
for (17) exists, is unique, and is given by

𝜓̃ (𝑥, 𝑡) = T
−1𝜙 (𝑥, 𝑡)

= 𝜙 (𝑥, 𝑡) + ∫𝑥
0
𝑙 (𝑥, 𝜉) 𝜙 (𝜉, 𝑡) 𝑑𝜉 (29)

with a bounded kernel 𝑙(𝑥, 𝜉) (see, e.g., [11] for details).
Both transformations, T and its inverse T−1, are linear
and bounded operators, which implies that the following
inequalities hold:

󵄩󵄩󵄩󵄩𝜓̃ (𝑥, 𝑡)󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩T−1𝜙 (𝑥, 𝑡)󵄩󵄩󵄩󵄩󵄩
2 ≤ 󵄩󵄩󵄩󵄩󵄩T−1󵄩󵄩󵄩󵄩󵄩

2

𝑜𝑝

󵄩󵄩󵄩󵄩󵄩𝜙 (𝑥, 𝑡)󵄩󵄩󵄩󵄩󵄩
2

≤ 𝑁𝑒−2𝛾𝑡 󵄩󵄩󵄩󵄩󵄩T−1󵄩󵄩󵄩󵄩󵄩
2

𝑜𝑝

󵄩󵄩󵄩󵄩󵄩𝜙 (𝑥, 0)󵄩󵄩󵄩󵄩󵄩
2

= 𝑁𝑒−2𝛾𝑡 󵄩󵄩󵄩󵄩󵄩T−1󵄩󵄩󵄩󵄩󵄩
2

𝑜𝑝

󵄩󵄩󵄩󵄩T𝜓̃ (𝑥, 0)󵄩󵄩󵄩󵄩2

≤ 𝑁𝑒−2𝛾𝑡 󵄩󵄩󵄩󵄩󵄩T−1󵄩󵄩󵄩󵄩󵄩
2

𝑜𝑝
‖T‖2𝑜𝑝 󵄩󵄩󵄩󵄩𝜓̃ (𝑥, 0)󵄩󵄩󵄩󵄩2 ,

(30)

where ‖ ⋅ ‖𝑜𝑝 denotes the norm of an operator, defined by (see
[34])

‖T‖𝑜𝑝 = sup {󵄩󵄩󵄩󵄩T𝜓󵄩󵄩󵄩󵄩 : 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩 = 1} , (31)

and in the second inequality, Lemma 3 was used.This implies
that

󵄩󵄩󵄩󵄩𝜓̃ (𝑥, 𝑡)󵄩󵄩󵄩󵄩2 ≤ 𝑀𝑒−2𝛾𝑡 󵄩󵄩󵄩󵄩𝜓̃ (𝑥, 0)󵄩󵄩󵄩󵄩2 (32)

or, equivalently, that

𝑃 (𝑡) = 󵄩󵄩󵄩󵄩𝜓̃ (𝑥, 𝑡)󵄩󵄩󵄩󵄩2 ≤ 𝑀𝑒−2𝛾𝑡𝑃 (0) (33)

with𝑀 = 𝑁‖T−1‖2𝑜𝑝‖T‖2𝑜𝑝 ≥ 1.
From the preceding lemma the following useful corollary

is obtained.

Corollary 5. For 𝑢̃(𝑡) given by (21) the differential equation

𝑑𝑃 (𝑡)
𝑑𝑡 = 2𝑢̃I (𝜕𝑥𝜓̃ (1, 𝑡)) (34)

with 𝜓̃(𝑥, 𝑡) being the solution of the Schrödinger equation
(10a), (10b), (10c), (10d), and (10e) with ]̃(𝑥, 𝑡) = 0 has a
solution 𝑃(𝑡) which satisfies (28).
Proof. It follows from (16) and Lemma 4.

To illustrate the functioning of the backstepping con-
troller, in Figure 3 the real and imaginary parts of the solution
𝜙(𝑥, 𝑡) of (18a), (18b), and (18c) are shown for the initial
condition

𝜙 (𝑥, 0) = 𝐴𝑒−𝜎(𝑥−𝑥0)2𝑒−𝑖𝑥 , (35)

with 𝐴 = √2, 𝜎 = 10, and 𝑥0 = 0.5. It can be seen that both
real and imaginary parts of 𝜙(𝑥, 𝑡) converge exponentially to
zero, as stated in Lemma 3.

3.2.1. Arbitrary Potential Case. In this subsection, the main
result of this work is obtained by proving that, in the presence
of an arbitrary 𝑉(𝑥, 𝜓(𝑥, 𝑡)), the controller (21) stabilizes
the origin for the dynamics (6a), (6b), and (6c), which in
turn means that 𝜓(𝑥, 𝑡) converges exponentially to 𝜓𝑑(𝑥, 𝑡).
In terms of the system-interconnection structure presented
in Figure 4, this means that the controller yields absolute
stability of the linear subsystem with respect to the nonlinear
feedback.

The main result is stated in the next theorem.

Theorem 6. For an arbitrary potential 𝑉(𝑥, 𝜓̃(𝑥, 𝑡)), the
error state 𝜓̃(𝑥, 𝑡) satisfying (6a), (6b), and (6c) converges
exponentially to zero if the control 𝑢̃(𝑡) is chosen according to
(21), i.e.,

󵄩󵄩󵄩󵄩𝜓̃ (𝑥, 𝑡)󵄩󵄩󵄩󵄩2 = ∫1
0
𝜌 (𝑥, 𝑡) 𝑑𝑥 ≤ 𝑀𝑒−2𝛾𝑡 󵄩󵄩󵄩󵄩𝜓0 (𝑥)󵄩󵄩󵄩󵄩2 (36)

with𝑀 given in (28).
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Figure 4: Interconnection scheme (10a), (10b), (10c), (10d), and
(10e) withL given by (10a)-(10d),N by (10e), andC by (21).

Proof. From (16) in the proof of Lemma, 1 it follows that

𝑑𝑃 (𝑡)
𝑑𝑡 = 2𝑢̃I (𝜕𝑥𝜓̃ (1, 𝑡)) (37)

holds for (10a), (10b), (10c), (10d), and (10e) for an arbitrary
potential 𝑉(𝑥, 𝜓̃(𝑥, 𝑡)). Thus, the rate of change of the proba-
bility does not depend on the potential and, as a consequence
of Corollary 5, by applying the control (21) with 𝛾 > 0 it
follows that

𝑃 (𝑡) ≤ 𝑀𝑒−2𝛾𝑡𝑃 (0) , (38)

with 𝑀 given in (28). This implies that 𝜓̃(𝑥, 𝑡) converges
exponentially to zero.

4. Application Examples

In this section, the stabilization of the Schrödinger equation
is studied for three different potentials. In the first case,
the Schrödinger equation with a Morse potential [15] is
considered.This potential has been extensively used tomodel
the interatomic potential energy of the diatomic molecule
in the study of anharmonic vibrations [15–17]. Coupled
Morse potentials have been used to model bond interactions
and describe the vibrational states of complex molecules
[20]. In Section 4.2 the control of the Schrödinger equation
with a Pöschl-Teller potential [18] is studied. The study
of this potential is important in the description of out of
planemolecular vibrations [20], diatomic vibrations [21], and
atomic and neutron scattering modeling, among others [19].
Both potentials are shown in Figure 5.

In Section 4.3 a cubic state-dependent potential is con-
sidered which corresponds to the study of solitons in optical
fibers [22, 23] or the description of deep water waves [24].

For the associated stabilization tasks, the control law (21)
is applied to the initial system (1a), (1b), (1c), and (1d) by
setting

𝑢 (𝑡) = 𝑢𝑑 (𝑡) + 𝑢̃ (𝑡) (39)

with
𝑢𝑑 (𝑡) = 2 sin (2𝑡) ,

𝛾 = 10. (40)

The resulting Schrödinger equations are solved using the
time-splitting finite difference (TSFD) method [35].

4.1.Morse Potential. Consider the Schrödinger equationwith
a Morse potential

𝑉 (𝑥) = 𝐷𝑒 (1 − 𝑒−𝑎(𝑥−𝑥𝑒)) (41)

with depth𝐷𝑒 andwidth 𝑎, and an initial condition as defined
in (35) (with 𝐴 = 4√100/𝜋, 𝜎 = 50 and 𝑥0 = 0.3), i.e., a
Gaussian function modeling a wave packet.

The target wave function is defined as the solution of the
same equation with a translated initial condition 𝜓0𝑑 with
respect to the initial system 𝜓0 (𝑥0 = 0.7) and boundary
condition 𝑢𝑑(𝑡) = 2 sin(2𝑡)

Making the state transformation (17) on the error variable
(5) with 𝑘(𝑥, 𝜉) given in (20) and choosing the control 𝑢̃(𝑡)
according to (21), 𝜓̃(𝑥, 𝑡) satisfies (36); i.e., ‖𝜓̃(𝑥, 𝑡)‖ 󳨀→ 0.
This, in turn, means that ‖𝜓(𝑥, 𝑡) − 𝜓𝑑(𝑥, 𝑡)‖ 󳨀→ 0.

Figure 6 shows the initial system, the target system, and
the error system, alongwith the controlled system for𝜓which
can be seen to be converging to 𝜓𝑑.
4.2. Pöschl-Teller Potential. Weconsider now the stabilization
of the Schrödinger equation (1a), (1b), (1c), and (1d) with a
Pöschl-Teller potential given by

𝑉 (𝑥) = −𝜆 (𝜆 + 1)2 sech2 (𝑎 (𝑥 − 𝑥𝑒)) (42)

with the same initial and boundary conditions used in the
example of the Morse potential. Using the same target wave
function as in the previous example and error variable (5),
we make the state transformation (17) with 𝑘(𝑥, 𝜉) given in
(20). Once more, choosing the control 𝑢̃(𝑡) according to (21),
𝜓̃(𝑥, 𝑡) satisfies (36); i.e., ‖𝜓̃(𝑥, 𝑡)‖ 󳨀→ 0. This, in turn, means
that ‖𝜓(𝑥, 𝑡) − 𝜓𝑑(𝑥, 𝑡)‖ 󳨀→ 0 as in our last example. The
stabilization for this system is shown in Figure 7.

4.3. Semilinear Schrödinger Equation. In the semilinear
Schrödinger equation, the potential is given by

𝑉 (𝑥, 𝜓 (𝑥, 𝑡)) = − 󵄨󵄨󵄨󵄨𝜓 (𝑥, 𝑡)󵄨󵄨󵄨󵄨2 𝜓 (𝑥, 𝑡) (43)

and the target wave function is the zero solution 𝜓𝑑(𝑥, 𝑡) = 0.
The initial condition chosen for this simulation is a soliton
centered in 𝑥 = 0.2

𝜓0 = √2𝑒−𝑖(𝑥−.2)/2 cosh [20 (𝑥 − .2)] , (44)

and the kernel was chosen equal to the preceding cases.
Simulation results are shown in Figure 8.

5. Conclusions

In this work a control law for the Schrödinger equation
with an arbitrary space- and state-dependent potential has
been designed to steer the state evolution to match a target
wave function in a bounded domain. For the case of a state-
independent potential the target wave function is an arbitrary
solution of the Schrödinger equation for a given initial state
and input signal, whereas for the case of a state-dependent
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Figure 6: Numerical simulations for the case in which the Morse potential is used. (a) Initial system. (b) Target system. (c) Error system. (d),
(e), (f) Comparison between |𝜓|2 (red) and |𝜓𝑑|2 (dotted in blue) at times t=0.04, t=0.6, and t=1, respectively.

potential the target wave function is given by the zero
solution.The control design is carried out by interpreting the
semilinear dynamics as a two-subsystem interconnection of a
linear dynamic subsystem with a nonlinear static subsystem
and following the backstepping design approach for the
linear subsystem. The closed-loop stability of the target wave
function is rigorously established in terms of the probability
of convergence.

In order to illustrate our findings, three different cases
of the Schrödinger equation with physically significant

potentials have been considered: (i) a Morse potential, (ii)
a Pöschl-Teller potential, and (iii) a cubic state-dependent
potential. In these examples, numerically solved using the
time-splitting finite difference method, it is shown that the
designed controlmakes an initial probability density function
to approach and match a target probability density function.

Future research will focus on the question of how to
stabilize nonzero target wave functions for the case of the
semilinear Schrödinger equation and to include the observer
design problem for output-feedback control.
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[18] G. Pöschl and E. Teller, “Bemerkungen zur Quantenmechanik

des anharmonischen Oszillators,” Zeitschrift für Physik, vol. 83,
no. 3-4, pp. 143–151, 1933.

[19] J. Lekner, “Reflectionless eigenstates of the sech2 potential,”
American Journal of Physics, vol. 75, no. 12, pp. 1151–1157, 2007.

[20] R. Bernal and R. Lemus, “Algebraic local vibrational spec-
troscopic description of formaldehyde,” Journal of Molecular
Spectroscopy, vol. 235, no. 2, pp. 218–234, 2006.

[21] R. Lemus and R. Bernal, “Connection of the vibron model with
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