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ABSTRACT

Multi-objective evolutionary algorithms (MOEAs) based on
decomposition are aggregation-based algorithms which trans-
form a multi-objective optimization problem (MOP) into
several single-objective subproblems. Being effective, effi-
cient, and easy to implement, Particle Swarm Optimization
(PSO) has become one of the most popular single-objective
optimizers for continuous problems, and recently it has been
successfully extended to the multi-objective domain. How-
ever, no investigation on the application of PSO within a
multi-objective decomposition framework exists in the con-
text of combinatorial optimization. This is precisely the
focus of the paper. More specifically, we study the incorpo-
ration of Geometric Particle Swarm Optimization (GPSO), a
discrete generalization of PSO that has proven successful on
a number of single-objective combinatorial problems, into a
decomposition approach. We conduct experiments onmany-
objective 1/0 knapsack problems i.e. problems with more
than three objectives functions, substantially harder than
multi-objective problems with fewer objectives. The results
indicate that the proposed multi-objective GPSO based on
decomposition is able to outperform two version of the well-
know MOEA based on decomposition (MOEA/D) and the
most recent version of the non-dominated sorting genetic al-
gorithm (NSGA-III), which are state-of-the-art multi-objec-
tive evolutionary approaches based on decomposition.
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1. INTRODUCTION
Particle swarm optimization (PSO) [13] is a bio-inspired

metaheuristic for continuous optimization problems, which
has been applied very successfully to many engineering and
scientific problems. This has motivated researchers to ex-
tend it to multi-objective optimization problems (MOPs).
In the last decade, several multi-objective particle swarm
optimizers (MOPSOs) have been developed (see [26] for a
good survey on this topic). Most of these approaches use
a set of best non-dominated solutions to steer the search,
rather than a single global optimum as in the traditional
PSO, along with an additional mechanism to maintain pop-
ulation diversity during the search. These approaches be-
came very popular in the early days of MOPSOs.

The dominance resistance phenomenon [24], which is com-
monly observed in problems with more than 3 objectives
(known as many-objective problems), hinders performances
of MOPSOs using Pareto dominance relation by making se-
lection ineffective. Researchers have then focused on de-
veloping alternative selection mechanisms to deal with this
drawback, such as for example methods based on indica-
tors [6, 15]. Recently, researchers working on MOEAs have
adopted the idea of decomposing a MOP into several op-
timization subproblems. This approach has become one of
the most useful strategies to deal with MOPs, especially for
many-objective problems, see for instance [31, 9]. In this
approach, a set of approximate solutions to the Pareto op-
timal front is achieved by minimizing each single-objective
subproblem, rather than using Pareto optimality or alter-
native selection mechanisms. This trend has also led to a
new generation of multi-objective particle swarm optimizers
based on decomposition studied by several authors, see for
example [23, 21, 33]. To date, these approaches have focused
on continuous and unconstrained problems, leaving the dis-
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crete case as an open field to be explored. This is precisely
the focus of the work reported herein.

Several extensions of PSO to discrete spaces have been
introduced to date, the majority of these operating on bi-
nary strings, see e.g. [14, 1, 18, 22]. Extensions of PSO
to more complex combinatorial search spaces, such as per-
mutations or TSP tours, are rarer but do exist, see e.g. [7].
The difficulty here lays in defining meaningful notions of
motion, direction, and velocity in such spaces. Geometric
particle swarm optimization (GPSO) [19] is a generalization
of traditional particle swarm optimization to general metric
spaces. These notions and the PSO algorithm dynamics are
defined in this general abstract setting. Specific instantia-
tions of GPSO can then be formally derived by using spe-
cific distances and associated solution representations in the
general definition of GPSO. This approach has the advan-
tage that PSO for specific representations can be derived
in a principled way, rather than reinvented and adapted
ad-hoc to each new representation. Representation-specific
GPSO have been derived for binary strings [19], permuta-
tions and applied to solving Sudoku [20], and tree structures
and used as an alternative search strategy for genetic pro-
gramming [29]. The binary GPSO has been successfully
adopted in several applications, e.g. [2, 3, 11, 28, 25].

In this paper, we introduce a new multi-objective particle
swarm optimizer for combinatorial problems. The proposed
approach extends the binary GPSO to work with MOPs
adopting the decomposition approach. The study presented
here indicates that the proposed approach is efficient and
produces a good approximation to the Pareto front on multi-
objective knapsack problems with a number of objectives
ranging from two to ten. It is also found to be significantly
better than the well-known multi-objective evolutionary al-
gorithm based on decomposition (MOEA/D) [34] and than
the most recent version of the non-dominated sorting genetic
algorithm (NSGA-III) [9].

2. BASIC CONCEPTS

2.1 Preliminaries of Multi-objective Optimiza-
tion

Assuming maximization, a general multi-objective opti-
mization problem (MOP) can be stated as:

maximize: F(x)
s.t. gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , q
x ∈ X

(1)

where x = (x1, . . . , xn)
⊺ is an n dimensional vector of deci-

sion variables. The vector F = (f1(x), . . . , fM (x))⊺ consists
of M objective functions fj ’s to be maximized. gi(x) ≤ 0
and hj(x) = 0 represent the p inequality constraints and the
q equality constraints, respectively. The set of solutions that
satisfy the constraints of problem (1) defines the feasible re-
gion Ω ⊂ X. When problem (1) is continuous X = R

n.
In the case of pseudo-boolean combinatorial problems the
search space is X = {0, 1}n.

The following definitions introduce the concept of opti-
mality of interest in this paper (see [17]).

Definition 1. Let x,y ∈ Ω, we say that x dominates
y (denoted by x ≻ y) if and only if: 1) fi(x) ≥ fi(y) for

all i ∈ {1, . . . ,M} and 2) fj(x) > fj(y) for at least one
j ∈ {1, . . . ,M}.

Definition 2. Let x⋆ ∈ Ω, we say that x⋆ is a Pareto
optimal solution, if there is no other solution y ∈ Ω such
that y ≻ x⋆.

Definition 3. The Pareto optimal set PS is defined by:
PS = {x ∈ Ω|x is a Pareto optimal solution} and its image
PF = {F(x)|x ∈ PS}) is called Pareto front PF .

In multi-objective optimization problems, we are typically
interested in finding a finite number of elements from the
Pareto set, while maintaining a proper representation of the
Pareto front.

2.2 Decomposition of a Multi-objective Opti-
mization Problem

It is well-known [17] that a Pareto optimal solution to
the problem (1) is an optimal solution of a scalar optimiza-
tion problem in which the objective is an aggregation of
all the objective functions fi’s. Many scalar approaches
have been proposed to aggregate the objectives of a MOP.
Among them, the Tchebycheff approach [5] is one of the
most used methods, and it is the one adopted in this study.
Other scalarization approaches could also be easily used, see
e.g., [10, 17].

Tchebycheff approach. This approach transforms the vec-
tor of function values F into a scalar maximization problem
which is of the form:

minimize gtch(x|λ, z) = max
1≤j≤M

{λj |zj − fj(x)|}

s.t. x ∈ Ω
(2)

where Ω is the feasible region, z = (z1, . . . , zk)
⊺ is the ref-

erence point such that zj = max{fj(x)|x ∈ Ω} for each
i = 1, . . . ,M , and λ = (λ1, . . . , λM )⊺ is a weight vector, i.e.,

λj ≥ 0 for all j = 1, . . . ,M and
∑M

j=1
λj = 1.

For each Pareto optimal point x⋆, there exists a weight
vector λ such that x⋆ is the optimum solution of equation (2)
and each optimal solution of equation (2) is a Pareto optimal
solution of equation (1). An appropriate representation of
the Pareto front could be reached by solving different scalar-
izing problems. Such problems can be defined by a set of
well-distributed weight vectors, which establish the search
direction in the optimization process.

Therefore, a proper approximation to the Pareto front can
be reached by minimizing a set of scalarizing functions de-
fined by a well-distributed set of weights vectors. This is the
main idea behind mathematical programming methods for
multi-objective problems and current multi-objective evo-
lutionary approaches based on decomposition, e.g. [34, 23,
16].

2.3 Geometric Particle Swarm Optimization
The generalization of the standard PSO algorithm for con-

tinuous spaces to general metric spaces is based on the fol-
lowing idea (see [19] for more details and the mathematical
derivation). The only elements of the standard PSO algo-
rithm that depend on the underlying representation are the
velocity update and position update equations which require
velocities and positions to be real vectors. The velocity up-
date equation can be factored out and equivalently restated
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Figure 1: The convex combination operator moves the par-
ticle based on its current position, position of its personal
best and position of the global best.

in terms of current and past positions of each particle. In
absence of inertia, the new position of a particle can be
written as a convex combination of its current position, its
personal best position, and the position of the global best
(see figure 1).

As the notion of convex combination is well-defined in gen-
eral metric spaces, the PSO algorithm can then be readily
generalized to metric spaces. The generic Geometric PSO
algorithm is illustrated in Algorithm 1. This differs from the
standard PSO in that: (i) there is no explicit velocity up-
date equation (but particles have velocities as they move);
(ii) the equation of the position update is a (randomized)
convex combination as outlined above, with weights ω, φ1,
and φ2, which are are non-negative and add up to one; (iii)
the new position undergoes to mutation to partly compen-
sate for the lack of inertia.

The specific PSO for the space of binary strings 1 endowed
with Hamming distance can be obtained by formally deriv-
ing an explicit definition of randomized convex combination
for this space in terms of manipulation of the underlying rep-
resentation. This operator then specifies operationally how
to obtain an ’offspring’ binary string which corresponds to
the convex combination of ‘parent’ binary strings. In [19],
this operator was shown to be a straightforward general-
ization of mask-based crossover for two parents to a three-
parental recombination, in which the probability of inherit-
ing a bit at each position from a parent string is given by its
weight in the convex combination. The mutation employed
in binary GPSO is standard bit-wise mutation.

3. MULTI-OBJECTIVE GPSO BASED ON

DECOMPOSITION
Our proposed multi-objective GPSO based on decomposi-

tion (MO-GPSO/D) decomposes a MOP into several single-
objective subproblems by using an aggregation function and
a weight vector, as in MOEA/D [34]. However, the proposed
approach does not follow the principles of MOEA/D. The
main differences between MOEA/D and MO-GPSO/D are
the recombination and replacement strategies.

Recombination strategy. MOEA/D defines a neighborhood
in order to select random solutions to be recombined. For bi-

1A Python implementation of this algorithm is available at
https://github.com/amoraglio/.

Algorithm 1: Geometric PSO algorithm

1 for each particle i do

2 initialize position xi at random in the search space

3 while stop criteria not met do

4 for each particle i do

5 set personal best x̂i as best position found so far
by the particle

6 set global best ĝ as best position found so far by
the whole swarm

7 for each particle i do

8 update position using a randomized convex
combination:

xi = CX((xi, ω), (ĝ, φ1), (x̂i, φ2)) (3)

9 mutate xi

nary combinatorial problems, MOEA/D adopts traditional
operators taken from genetic algorithms (specifically, one-
point crossover, and bit-wise mutation), in order to gener-
ate candidate solutions, see [34]. This strategy works well
in continuous problems. However, in the case of combinato-
rial problems (where the fitness landscape is unknown) the
regulatory property of continuous MOPs (the idea behind of
MOEA/D [34]) does not claim that an optimal solution of a
subproblem with weight λ1, is close to other optimal solution
of other subproblem with weight λ2, for ||λ1 − λ2|| < ǫ (for
an ǫ small enough), i.e. neighboring subproblems. Therefore
we hypothesize that MO-GPSO/D could work better than
MOEA/D if the recombination of solutions is not restricted
into a single neighborhood as in MOEA/D. MO-GPSO/D
uses the geometric version of PSO to create new solutions
by using the personal best (the best position of the particle
to the ith subproblem) and the global best solution (solution
found from all the swarm which achieves the best value for
the ith subproblem along the search).

Replacement strategy. MOEA/D replaces all solutions in
the neighborhood which are improved by the new candidate
solution. This mechanism works well for MOPs having rel-
atively easy Pareto sets [16]. However, for more complex
problems (see for example [35]), this strategy becomes in-
efficient and sometimes impractical. In fact, this strategy
can misplace diversity in the population specially in multi-
modal problems or problems with rugged landscapes. This
drawback was treated in [16] where a dynamic neighbor-
hood selection and a maximum number replacements were
implemented, arising in a new version of MOEA/D namely
MOEA/D-DE. In MO-GPSO/D, the replacement of global
best solutions is carried out in different way. We do not re-
place all the improved solutions with the new one. Instead of
this, the new solution is in competition with the current best
solutions and from them, the new set of global best solutions
is defined. Therefore, we speculate that this mechanism
could maintain more diversity in the population, which is
especially important in multi-objective optimization, while
at the same time, GPSO steers the search towards promising
regions employing the best solutions found along the search.
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The pseudocode of the proposed MO-GPSO/D is pre-
sented in Algorithm 2. To follow a decomposition of a MOP,
a well-distributed set of weighted vectors Λ = {λ1, . . . , λN}
has to be defined before running the algorithm. The com-
plete algorithm works as follows.

At the beginning of the algorithm, the set of the positions
of the N particles P = {p1, . . . ,pN} is randomly initialized.
In MO-GPSO/D, the ith particle is set to optimize one of
the subproblems defined by the weighted vector λi. To this
end, in the main cycle, each particle ‘flies’ towards a better
position for its single particular subproblem, i.e., the one
with objective function gtch(pi|λi, z⋆) for the ith particle.

The best personal position is initialized with the initial
position of the particle, i.e., p̂i = pi. On the other hand,
the set of global best positions Gbest is stated by the initial
positions P , i.e. Gbest = P .

The position of each particle is updated by using the
recorded personal best and the global best of each particle.
Then the bitwise mutation is employed as turbulence oper-
ator on each particle. Once a new position is computed, the
reference point needs to be updated (line 10 in Algorithm 2).
Then, the personal best p̂i is updated if the new position
improves the previous position (line 12 in Algorithm 2).

Throughout the search, the set of global bests (denoted by
Gbest = {ĝ1, . . . , ĝN}) shall contain the solutions that opti-
mize each separate subproblem. This set of solutions is then
updated when a new candidate solution is generated (line 17
in Algorithm 2). Thus, the notion of elitism used in evolu-
tionary multi-objective optimization is implicitly employed
in our proposed approach.

The proposed approach tries to optimize a set of subprob-
lems whose final solutions should be very close to the Pareto
optimal set. We expect that all solutions in Gbest are equally
good i.e., that all the subproblems will be approximately sat-
isfactorily solved, as the same search procedure and search
effort is applied to all of them. Therefore, at the end of the
search this set of solutions is considered as the final approx-
imation to the Pareto optimal set.

4. EXPERIMENTAL DESIGN

4.1 Multi-Objective 0/1 Knapsack Problem
In order to test the performance of the proposed MO-

GPSO/D, the knapsack problem, one of the most stud-
ied NP-hard problems from combinatorial optimization, is
adopted in a multi-objective optimization context.

Given a collection of n items and a set of M knapsacks,
the multi-objective 0/1 knapsack problem (MO-KNP) seeks
a subset of items subject to capacity constraints based on a
weight function vector w : [0, 1]n → N

M , while maximizing
a profit function vector p : [0, 1]n → N

M . Formally it can be
stated as:

maximize: fj(x) =
∑n

i=1
pji · xi j ∈ {1, . . . ,M}

s.t.
∑n

i=1
wji · xi 6 cj j ∈ {1, . . . ,M}

xi ∈ {0, 1} i ∈ {1, . . . , n}
(4)

where pji ∈ N is the profit of item i on knapsack j, wji ∈ N

is the weight of item i on knapsack j, and cj ∈ N is the
capacity of knapsack j.

We consider the conventional instances proposed in [37],
with random uncorrelated profit and weight integer values
taken uniformly from [10, 100]. The capacity is set to half of

Algorithm 2: General Framework of MO-GPSO/D

Input:
N : the number of subproblems to be decomposed;
Λ: a well-distributed set of weight vectors {λ1, . . . , λN};
Output:
P : the final approximation to the Pareto set.

1 z = (−∞, . . . ,−∞)⊺;

2 Generate a random set of solutions P = {p1, . . . ,pN} in Ω;
3 Gbest = P ;
4 for i = 1, . . . , N do

5 p̂i = pi;

6 zj = max(zj , fj(pi)); // j ∈ {1, . . . , M}

7 while stopping criterion is not satisfied do

8 for pi ∈ P do
9 Update Position: Update position using a

randomized convex combination:

pi = CX((pi, ω), (ĝi, φ1), (p̂
i, φ2))

10 Turbulence: Apply turbulence operator to the new
particle:

pi = mutation(pi)

11 Update z: Update the reference point z:

zj = max(zj , fj(p
i)); // j ∈ {1, . . . ,M}

12 Update Personal Best:

13 If gtch(pi|λi, z) ≥ gtch(p̂i|λi, z) then p̂i = pi;

14 Update Global Bests:

15 Q = Gbest ∪ {pi};
16 for j ∈ {1, . . . , N} do

17 q̂ = argmax
q∈Q

gtch(q|λj , z);

18 ĝj = q̂;
19 Q = Q \ {q̂};

20 return Gbest = {ĝ1, . . . , ĝN};

the total weight of a knapsack for each objective function,
i.e. cj = 1

2

∑n

i=1
wji for j = 1, . . . ,M . As a result, about

50% of the items are expected to be in the Pareto optimal
front.

Random problem instances of 128 items are investigated
for each objective space dimension. We consider instances
with 2, 3, 5, 8, and 10 objectives2.

In order to satisfy the constraints of the problem, we adopt
a standard decoding procedure which guarantees the fea-
sibility of solutions as proposed in [37]. This procedure
removes items sorted in increasing order of the maximum
profit/weigh ratio over all knapsacks one at a time, until all
constraints are satisfied.

4.2 Experimental Setup
We compare experimentally MO-GPSO/D with three state-

of-the-art MOEAs based on decomposition: the original MO-
EA/D [34], its new variant MOEA/D-DE [16] adapted to
binary spaces (as explained below) and NSGA-III [9].

The method MOEA/D-DE extends MOEA/D as follows:
it uses dynamic selection of the neighborhood with a given
probability δ, and a fixed maximum number of replacements
nr in the neighborhood. Furthermore, MOEA/D-DE uses
Differential Evolution (DE) operator as reproduction mech-

2The set of instances adopted in our comparative
study are available at http://computacion.cs.cinvestav.mx/
˜zapoteca/MO-KNP/
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Table 1: Configuration for the two-layered simplex-lattice
design

M
Layer

Layer Number of
(objectives) configuration weights

2 1 H = 99 100
3 1 H = 19 210
5 1 H = 6 210
8 2 H1 = 3, H2 = 2 156
10 2 H1 = 3, H2 = 2 275

anism, which is however defined for continuous spaces. To
adapt this algorithm to binary string spaces, the DE op-
erator is replaced with standard crossover and mutation
operators for binary strings, as in the original version of
MOEA/D, see [34]. We adopted this variant in order to test
the performances of MOEA/D with dynamic selection and
the limit on the number of replacements. In the rest of the
paper, we refer to this variant as MOEA/D*.

For fairness, the set of weight vectors for all the algo-
rithms in the comparison was the same, and it was gener-
ated using the Simplex-lattice design [27], as follows. The
settings of N (number of weights and population size) and
Λ = {λ1, . . . , λN} are controlled by a parameter H . More
precisely, λ1, . . . , λN are weight vectors whose component
scalar weights λi

j (i = 1, . . . , N and j = 1, . . . ,M) take val-

ues in
{

0

H
, 1

H
, . . . , H

H

}

. Therefore, the number of all pos-

sible choice of vectors in Λ is given by N = CM−1

H+M−1
,

where M is the number of objective functions. Since, this
number increases binomially with the number of objectives,
this methodology becomes quickly impractical when we have
more than a handful of objectives. A strategy to deal with
high dimensional spaces is proposed in [9], known as the
two-layered simplex-lattice design. This strategy uses the
simplex-lattice design to generate an outside layer and an
inside layer in the weights set. Fig. 2 illustrates the two-
layered simplex-lattice design in R

3 when using H1 = 2 for
the outside layer and H2 = 1 for the inside layer. In this
study, we compare the decomposition-based approaches by
using the weights given by the two-layered simplex-lattice
design for problems with more than 5 objectives, otherwise
a single layer is employed. The complete configuration of H
values for different dimensions of the two-layered simplex-
lattice design is shown in Table 1.

In our comparison, MOEA/D, MOEA/D*, and NSGA-III
use the same reproduction operators, one-point crossover

Figure 2: Illustration of the two-layered simplex-lattice de-
sign. The outside layer is stated by H1 = 2 (generating six
weights vectors), while the inside layer is set by H2 = 1
(generating three weights vectors)

Table 2: Parameters for MO-GPSO/D, MOEA/D,
MOEA/D*, and NSGA-III

Parameter MO-GPSO/D MOEA/D MOEA/D* NSGA-III

T — 20 20 —
δ — — 0.9 —
nr — —- 2 —
Pc — 1 1 1
Pm 1/n 1/n 1/n 1/n
ω 1/3 —- – —
φ1 1/3 —- – —
φ2 1/3 —- – —

and bit-wise mutation, as in the original version of MO-
EA/D [34]. MO-GPSO/D uses also bit-wise mutation as
turbulence operator.

Table 2 presents the parameter settings used in our exper-
imental study. The parameters for the adopted algorithms
are set as suggested by their respective authors. T is the
neighborhood size for MOEA/D and MOEA/D*, δ and nr

are the probability of selecting a determined neighborhood
and the maximum number of replacements in the neighbor-
hood (for MOEA/D*). Pc and Pm are the crossover rate and
mutation rate. ω, φ1 and φ2 are the weights used in GPSO.
Finally, the search for all the evolutionary approaches was
restricted to perform 2,000 generations.

4.3 Performance Assessment
In this section, we outline the performance measures used

in our comparison, and the method employed to define the
reference set R.

4.3.1 Performance measures

Set Two Coverage (C). Set Two Coverage (C) was pro-
posed by Zitzler et al. [36], and it compares a set of non-
dominated solutions A with respect to another set B, using
Pareto dominance. This performance measure is defined as:

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(5)

If all points in A dominate or are equal to all points in B,
this implies that C(A,B) = 1. Otherwise, if no point of
A dominates some point in B then C(A,B) = 0. When
C(A,B) = 1 and C(B,A) = 0 then, we say that A is better
than B. Since the Pareto dominance relation is not sym-
metric (i.e. not always C(A,B) = C(B,A) is held), we need
to calculate both C(A,B) and C(B,A).

Inverted Generational Distance (IGD). The Inverted
Generational Distance (IGD) [8] indicates how far a given
Pareto front approximation is from a reference set. Let R

be a proper representation of the Pareto optimal front, the
IGD for a set of approximated solutions P is calculated as:

IGD(P ) = 1

|R|

∑

v∈R
d(v, P ) (6)

where d(v, P ) is a minimum distance between v and any
point in P and |R| is the cardinality of R. The IGD metric
can measure both convergence and diversity when the ref-
erence set R is a proper representation of the true Pareto
front. A value of zero in this performance measure, indicates
that all the solutions obtained by the algorithm are on the
true Pareto front, it is the best possible value.
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4.3.2 Reference set definition

From problem in Equation (2) and replacing the objective
function and constraints by the multi-objective 1/0 knap-
sack problem (Equation (4)), we have:

minimize: gtch(x|λ,z) = max
1≤j≤M

{λj |zj − fj(x)|}

= max
1≤j≤M

{

λj

∣

∣

∣

∣

zj −

(

n
∑

i=1

pji · xi

)∣

∣

∣

∣

}

s.t.
n
∑

i=1

wjixi ≤ cj , j = 1, . . . ,M

(7)
by introducing the relaxed formulation (i.e. allowing real
numbers such that 0 ≤ xi ≤ 1), the above problem can be
rewritten in its linear form as [12]:

minimize: α

s.t. λj

(

zj −
∑n

i=1
pjixi

)

≤ α
∑n

i=1
wjixi ≤ cj ,

0 ≤ xi ≤ 1, i = 1, . . . , n
for all j = 1, . . . ,M

(8)

where z = (z1, . . . , zM )⊺ is the reference point and λ =

(λ1, . . . , λM )⊺ is a weight vector satisfying
∑M

j=1
zj = 1 and

λi ≥ 0.
For each instance, we generated the reference set R solv-

ing a large number of relaxed linear problems (Equation (8))
defined by different weight vectors. Since the reference set
R should contain a large enough number of points to ensure
a good measurement of the IGD metric, we should generate
a finite but well-distributed set of weight vectors. Simplex
lattice method becomes impractical to define a specific num-
ber of weight vectors in high-dimensional spaces, therefore,
we used the methodology presented in [32] and generated
200 × M weight vectors (where M denotes the number of
objectives). All the solutions for different weight vectors of
problem (8), give the points F(x)’s (in the objective space).
Therefore, for a specific instance, the obtained points con-
stitute the reference set R.3

For each instance, the reference point z was found by indi-
vidual optimization of each separate objective in the relaxed
multi-objective 0/1 knapsack problem. Note that all feasible
solutions of the multi-objective 0/1 knapsack problem, are
also feasible solutions of the relaxed problem. Therefore, the
optimum values of each objective on the relaxed problem is
not worse than the optimum value of this objective on the
original problem [12]4.

5. DISCUSSION OF RESULTS
We compared experimentally our proposed MO-GPSO/D

with MOEA/D, MOEA/D*, and NSGA-III on knapsack
problems with 2, 3, 5, 8, and 10 objectives.

Figure 3 shows the results of the evaluation with the per-
formance measure C. In order to illustrate the general per-
formance of the algorithms in comparison, simple box plots
are shown. The thick line represents the median value, the
upper and lower ends of the box are the upper and lower
quartiles, and the ends of the vertical line are minimum and
maximum values. We computed the C performance measure

3The weight vectors and reference set for each in-
stance are available at http://computacion.cs.cinvestav.mx/
˜zapoteca/MO-KNP/
4In order to solve the linear optimization problem, we use
the Python SciPy library by employing the Simplex method.
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Figure 3: Results of the comparison with C(A,B) perfor-
mance measure. Each chart contains five box plots repre-
senting the distribution of C values for a certain ordered pair
of algorithms. Scale is zero at the bottom and one at the
top for each chart. Chart in row of algorithm A and column
of algorithm B presents values of convergence of approxima-
tions generated B by approximations generated by A.

by comparing pairs of algorithms (i.e., C(A,B) and C(B,A)).
These values were obtained as average values of the compar-
isons of all independent runs of algorithm A with all inde-
pendent runs of algorithm B.

In these charts, we show the ratio of solutions produced
by MO-GPSO/D that dominate the solutions produced by
MOEA/D, MOEA/D* and NSGA-III, respectively. This
Figure must be read as C(A,B), where A denotes the al-
gorithm in row, and B the algorithm in column. As we can
see, the algorithms have a similar performance in the two-
objective problem. The same behavior can be observed for
problems with three objectives. However, when the num-
ber of objectives is increased, the ratio of solutions domi-
nated by any algorithm decreases. It does not mean that
the algorithms decrease their performance. When the val-
ues of C(A,B) and C(B,A) are almost the same, and they
are small, it means that both algorithms are competitive in
terms of Pareto relation (and this is the behavior of MOEAs
with 5, 8, and 10 objectives). However, in terms of approxi-
mating the complete Pareto front, this metric could be mis-
understood. It can be the case that algorithm A and B

produce a small value for the C metric. However, solutions
produced by algorithm A can draw a suitable representation
of the Pareto front while solutions produced by algorithm B

can be biased in a specific part of the Pareto front. In order
to investigate precisely this behavior, we use the IGD per-
formance measure which assesses the distance of solutions
produced by an algorithm to the reference Pareto front.

Table 3 shows the results obtained by the algorithms in
the comparison with respect to the second performance mea-
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Table 3: Table of results achieved by MO-GPSO/D,
MOEA/D, MOEA/D*, and NSGA-III for the MO-KNP
with 2, 3, 5, 8, and 10 objectives in the IGD performance
measure.

M MO-GPSO/D MOEA/D MOEA/D* NSGA-III

IGD IGD IGD IGD

(σ) (σ) (σ) (σ)

2
31.30836 42.88855 44.22541 43.32292
(3.661) (4.873) (5.915) (7.194)

3
83.43913 106.15929 107.29307 174.16725
(5.226) (8.826) (9.350) (13.750)

5
302.59052 404.47921 399.88836 619.17796

(6.888) (14.779) (17.213) (18.129)

8
518.70840 507.04133 505.50804 847.17804
(11.896) (7.716) (7.515) (19.274)

10
526.08313 534.27874 531.78527 868.40125

(5.417) (7.710) (6.005) (22.892)

sure, IGD. In each cell, the number on the top is the av-
erage indicator-value (lower is better), and the number be-
low it in brackets is the standard deviation. Best values
for each problem instance are reported in bold. Underlined
values correspond to algorithms that are not statistically
outperformed by any other algorithm for the instance under
consideration (using a Mann-Whitney-Wilcoxon [30] non-
parametric statistical test with a p-value of 0.05 with Bon-
ferroni correction [4]).

As we can see from Table 3, the performance of the MO-
EA/D, MOEA/D* and NSGA-III are very similar for in-
stances with two objectives, while MO-GPSO/D is signifi-
cantly better. The performance of MO-GPSO/D is (statis-
tically significantly) better than all the other algorithms in
the comparison, except on the problem with 8 objectives, on
which MOEA/D* is better than MO-GPSO/D, but the dif-
ferences between their performance is not statistically signif-
icant. This analysis suggests that the way we couple GPSO
into a multi-objective decomposition framework is a good
strategy for the type of problems under study. It is also
remarkable that the performance of NSGA-III decreases as
the number of objective increases. The main reason for this
is that NSGA-III relies on a suitable construction of the hy-
perplane, which is essential for a correct fitness assignment
to solutions. Such hyperplane is defined by finding the best
solutions in the population that minimizes the achievement
scalarization function (ASF) [9] with the canonical basis (in
R

M ). However, in discrete problems, optimal solutions to
the ASF with the specific weight vector cannot be found (it
could be not exist). This could generate a bad definition of
such hyperplane and lead to a wrong ranking of solutions.

Finally, Figure 4 reports the complete convergence plots
for the algorithms in the comparison. This plot also cor-
roborates the good performance achieved by MO-GPSO/D
in the test instances (specially in problems with 2, 3, and
5 objectives), as the plot of MO-GPSO/D is lower than the
plots of the other algorithms.

6. CONCLUSIONS AND FUTURE WORK
We have proposed a new multi-objective particle swarm

optimizer using the geometric particle swarm optimization
algorithm within a multi-objective framework based on de-
composition. The proposed approach was designed to deal
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Figure 4: Convergence plots (in log scale) for IGD perfor-
mance measure on the MO-KNPs having 2, 3, 5, 8, and 10
objective functions, respectively.

with combinatorial MOPs with both low and high dimen-
sionality (in terms of the number of objectives).

The proposed approach follows the decomposition approach
in the sense that it optimizes a set of scalarizing functions
but it does not follow other principles of MOEA/D, i.e.
neighborhoods, dynamic selection or limit on maximum num-
ber replacements.

Experimental results indicate that our proposed approach
(i.e. MO-GPSO/D) outperforms significantly three state-of-
the-art MOEAs based on decomposition, namely MOEA/D,
MOEA/D*, and NSGA-III, on the test problems adopted.

In future work, we will test MO-GPSO/D on more com-
plex and on a greater variety of problems to identify strengths
and weakness of this algorithm. We will also analyze the
scalability of MO-GPSO/D with MOPs with large scale i.e.,
large number of bits. Finally, we will consider improvements
to the proposed approach by introducing local search mech-
anism during the search process.
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