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ABSTRACT

In this paper, we present a Multi-objective Particle Swarm
Optimizer (MOPSO) based on a decomposition approach,
which is proposed to solve Constrained Multi-Objective Aero-
dynamic Shape Optimization Problems (CMO-ASOPs). The
constraint-handling technique adopted in this approach is
based on the well-known ε-constraint method. Since the ε-
constraint method was initially proposed to deal with con-
strained single-objective optimization problems, we adapted
it so that it could be incorporated into a MOPSO. Our
main focus is to solve CMO-ASOPs in an efficient and ef-
fective manner. The proposed constrained MOPSO guides
the search by updating the position of each particle using
a set of solutions considered as the global best according
to both the decomposition approach and the ε-constraint
method. Our preliminary results indicate that our proposed
approach is able to outperform a state-of-the-art MOEA in
several CMO-ASOPs.

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search.

Keywords

Constrained Multi-objective Optimization, Multi-objective
Swarm Optimization, Aerodynamic Shape Optimization.

1. INTRODUCTION
Multi-objective Evolutionary Algorithms (MOEAs) have

been successfully applied to the solution of a wide vari-
ety of problems in the fields of science and engineering [6,
7]. Although MOEAs were originally designed for solving
unconstrained multi-objective optimization problems, most
real-world applications require satisfying equality and/or in-
equality constraints. Generally, Constrained Multi-objective
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Optimization Problems (CMOPs) are difficult to solve, be-
cause finding feasible solutions may require substantial ad-
ditional computational resources (i.e., an important num-
ber of extra objective function evaluations). In aeronautical
systems design as well as in the design of propulsion system
components, such as turbine engines, aerodynamics plays a
key role. Thus, Aerodynamic Shape Optimization (ASO) is
a crucial task, which has been extensively studied and de-
veloped. This discipline has recently benefited from the use
of MOEAs, which have gained an increasing popularity in
the last few years. For a detailed survey of applications of
MOEAs in this field, the interested reader is referred to [3].

The simplicity and success of particle swarm optimiza-
tion (PSO) algorithms, has motivated researchers to extend
their use to solve Multi-objective Optimization Problems
(MOPs) in the field of engineering and science, giving rise to
the well-known Multi-Objective Particle Swarm Optimizers
(MOPSOs). In recent years, the use of swarm intelligence
applied to ASO problems has attracted the interest of sev-
eral researchers. However, most of these approaches have
been used to deal with single-objective ASO problems (see
e.g. [20]) or with unconstrained MOPs (see e.g. [21]).

In this paper, we study the performance of a recent Multi-
Objective Particle Swam Optimizer based on decomposition
(called here DMOPSO1) [23], which was initially introduced
for solving unconstrained MOPs. Here, we add to DMOPSO
a constraint-handling mechanism based on the well-known
ε-constraint method [19], which was proposed for single-
objective optimization. The resulting approach is used to
solve CMO-ASOs, which, are normally difficult to tackle in
an efficient way, because of the high computational time that
it is required to evaluate their objective functions. We ar-
gue that our proposed approach is a viable choice for solving
CMO-ASOs in an effective and efficient way.

The remainder of this paper is organized as follows. In
Section 2, we provide the basic concepts required for un-
derstanding the rest of the paper. Section 3 describes our
proposed approach, including a detailed explanation of the
adaptation of the ε-constraint method into DMOPSO in or-
der to maintain a suitable balance between feasible solutions
and convergence towards the Pareto optimal front. Section 4
presents the experimental study used for assessing the per-
formance of our proposed algorithm. In Section 5, we pro-
vide a discussion of our results. Finally, in Section 6, we

1The acronym DMOPSO (used in this paper) should not be
confused with the Dynamic Multiobjective Particle Swarm
Optimization (DMOPSO) presented in [11].
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provide our conclusions and some possible paths for future
research.

2. BASIC CONCEPTS

2.1 Constrained Multi-objective Optimization
A nonlinear Constrained Multi-objective Optimization Prob-

lem (CMOP) can be stated as (assuming minimization of all
the objective functions):

min F(x) = (f1(x), . . . , fk(x))
T

s.t. gi(x) ≤ 0, i = 1, . . . , p
hj(x) = 0, j = 1, . . . , q
Li ≤ xi ≤ Ui, i = 1, . . . , n

(1)

where x = (x1, . . . , xn)
T ∈ R

n is an n dimensional vector
of decision variables, gi(x) ≤ 0 and hj(x) = 0 represent
the q inequality constraints and the p equality constraints,
respectively. Li and Ui are the lower and upper bounds of
each of the decision variables xi. The vector F consists of k
objective functions fi’s (i = 1, . . . , k) to be minimized. The
set of solutions that satisfy the constraints of problem (1)
defines the feasible region Ω ⊆ R

n.
In order to describe the concept of optimality in which

we are interested on, the following definitions are intro-
duced [13]:

Definition 1. Let x,y ∈ Ω, we say that x dominates
y (denoted by x ≺ y) if and only if, fi(x) ≤ fi(y) and
fi(x) < fi(y) in at least one fi for all i = 1, . . . , k.

Definition 2. Let x⋆ ∈ Ω, we say that x⋆ is a Pareto op-
timal solution, if there is no other solution y ∈ Ω such that
y ≺ x⋆.

Definition 3. The Pareto optimal set PS is defined by:
PS = {x ∈ Ω|x is Pareto optimal solution}, and the Pareto
optimal front PF is defined as: PF = {F(x)|x ∈ PS}.

We thus wish to find the best possible trade-offs among the
objectives, such that no objective can be improved without
worsening another one. However, in this case, our solutions
must also satisfy the constraints of problem (1). We are
also interested in generating a set of solutions that are well-
distributed along the Pareto front.

2.2 Decomposition of a Multi-objective Opti-
mization Problem

It is well-known that a Pareto optimal solution to the
problem (1), under certain conditions, could be an optimal
solution of a scalar optimization problem in which the ob-
jective is an aggregation of all the objective functions fi’s.
Many scalar approaches have been proposed to aggregate
the objectives of an MOP. Among them, the Tchebycheff
approach is one of most widely used methods reported in
the specialized literature. In the following, we describe the
Tchebycheff problem which is adopted in this study. Note
however, that other scalarization approaches could also be
easily coupled to this work–see for example those presented
in [8, 13].

Tchebycheff approach

This approach transforms the vector of function values F
into a scalar optimization problem which is of the form:

min gte(x|w, z) = max1≤j≤k{wj |fj(x)− zj |}
s.t. x ∈ Ω

(2)

where Ω is the feasible region, z = (z1, . . . , zk)
T , such that:

zj = min{fj(x)|x ∈ Ω} for each i = 1, . . . , k and w =
(w1, . . . , wk)

T is a weight vector, i.e., wj ≥ 0 for all j =

1, . . . , k and
∑k

j=1
wj = 1.

For each Pareto optimal point x⋆ there exists a weight vec-
tor w such that x⋆ is the optimum solution of equation (2)
and each optimal solution of equation (2) is a Pareto optimal
solution of equation (1). An appropriate representation of
the Pareto front could be reached by solving different scalar-
ization problems. Such problems can be defined by a set of
well-distributed weight vectors, which establish the search
direction in the optimization process.

2.3 Constraint Violation Degree
The overall constraint violation φ(x) of a solution x can

be given by the maximum of all constraints or the sum of
all constraints.

φ(x) = max{max
i

{0, gi(x)},max
j

{|hj(x)|}} (3)

φ(x) =
∑

i

||max{0, gi(x)}||
α +

∑

j

||hj(x)||
α (4)

where α is a positive number, i.e. α ∈ (0,+∞). Equality
constraints can be transformed into inequality constraints
by using [5]:

|hj(x)− ε| ≤ 0, j = 1, . . . , q (5)

where ε is a small real-value threshold.
For methods that do not require gradient information, it

does not matter if equation (5) is non-differentiable. There-
fore, a CMOP with equality constraints can be stated as a
CMOP having only inequality constraints. Assuming that
all constraints of problem (1) are inequality constraints, the
constraint violation in equations (3) and (4) can be com-
puted as:

φ(x) = max
1≤i≤p

{0, gi(x)} (6)

φ(x) =

p
∑

i=1

||max{0, gi(x)}||
α (7)

Thus, we can say that without loss of generality, in this pa-
per we consider only constraint functions of the form g(x) ≤
0. Any equality constraint h(x) = 0 needs to be transformed
into an inequality constraint using equation (5).

2.4 The ε-Constraint Method
The ε-constraint method for single-objective optimization

was proposed by Takahama and Sakai [19]. This constraint-
handling technique adopts a lexicographic ordering with re-
laxation of the constraints. The basic idea is to define an ε
level comparison in order to state an order relation on pairs
consisting of the objective function value and the constraint
violation value, (f(x), φ(x)). If the violation of a constraint
is greater than 0, then the solution is not feasible and its
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value will be low. Since the feasibility of a solution x is more
important than the minimization of the objective function,
the ε level comparisons are defined as a lexicographic order
in which φ(x) precedes f(x).

Let f1(f2) and φ1(φ2) be the function values and the con-
straint violation at a solution x1(x2), respectively. Then,
for any ε satisfying ε ≥ 0, the ε level comparison <ε and ≤ε

between (f1, φ1) and (f2, φ2) is defined as follows:

(f1, φ1) <ε (f2, φ2) ⇔











f1 < f2, if φ1, φ2 ≤ ε

f1 < f2, if φ1 = φ2

φ1 < φ2, otherwise

(8)

(f1, φ1) ≤ε (f2, φ2) ⇔











f1 ≤ f2, if φ1, φ2 ≤ ε

f1 ≤ f2, if φ1 = φ2

φ1 < φ2, otherwise

(9)

In case of ε = ∞, the ε level comparison <∞ and ≤∞ are
equivalent to the ordinal comparison < and ≤ between func-
tion values. Furthermore, the cases ε = 0, <0 and ≤0 are
equivalent to the lexicographic order in which the constraint
violation φ(x) precedes the function value f(x).

2.5 The Framework of DMOPSO
The decomposition-based Multi-Objective Particle Swarm

Optimizer (called here DMOPSO) [23], transforms a MOP
into several scalarization problems. Therefore, an approx-
imation of the Pareto front is obtained by solving the N
scalarization subproblems in which a MOP is decomposed.

Considering W = {w1, . . . ,wN} as a well-distributed set
of weight vectors, DMOPSO finds the best solution to each
subproblem defined by each weight vector using the Tcheby-
cheff approach. The objective function of the jth subprob-
lem is then defined by gte(x|wj , z), where wj ∈ W and
z = (z1, . . . , zk)

T is the artificial utopian vector whose com-
ponent zi is the minimum value found so far for the objective
fi.

At each generation, DMOPSO finds the best solution to
each subproblem throughout the evolutionary process and
maintains:

1. a population of N particles P = {x1, . . . ,xN}, where
xi is the current solution to the ith subproblem; the
velocity vi, the age ai and the personal best xi

pb of

each particle xi, for each i = 1, . . . , N .

2. F 1, . . . , FN , where F i is the F -value of each particle
xi, i.e., F i = F(xi) for each i = 1, . . . , N ;

3. the global best set Gbest = {g1, . . . ,gN} which consti-
tutes the set of particles considered to be the best for
the ith subproblem along the search process.

The general framework of DMOPSO is presented in Al-
gorithm 1, where each particle in the swarm is evolved by
updating both its velocity vi and its position xi according
to the following equations:

vi = wvi + c1r1(x
i
pb − xi) + c2r2(g

i
best − xi) (10)

and the new particle’s position is updated according to the
equation:

xi = xi + vi (11)

Algorithm 1: General Framework of DMOPSO

Input:
a stopping criterion;
N : the number of the subproblems considered in εDMOPSO;
W : a set of weight vectors {w1, . . . ,wN};
Output:
P : the final swarm of particles found by εDMOPSO.

1 Initialize a swarm of N particles P = {x1, . . . ,xN};

2 z = (+∞, . . . ,+∞)T ;
3 foreach {1, . . . , N} do

4 F i = F(xi);

5 vi = 0;

6 xi
pb

= xi;

7 ai = 0;

8 If fj(xi) < zj then zj = fj(xi), for each j = 1, . . . , k;
9 end

10 Gbest = P ;
11 while stopping criterion is not satisfied do
12 foreach i ∈ {1, . . . , N} do

13 Select randomly a solution gi
best

from Gbest, such

that: xi 6= gi
best

;

14 if ai < Ta then

15 // Using gi
best and xi

pb do:

16 Update velocity vi (equation (10));

17 Update position xi (equation (11));

18 ai = ai + 1;
19 else

20 Reset the particle xi (equation (12));

21 vi = 0;

22 ai = 0;
23 end

24 Repair bounds of the particle xi (equation (13));

25 Calculate F(xi);

26 If fj(x
i) < zj then zj = fj(x

i), for each j = 1, . . . , k;
27 // Updating xi

pb:

28 if gte(xi|wi, z) < gte(xi
pb
|wi, z) or ai = 0 then

29 xi
pb

= xi;

30 ai = 0;
31 end

32 // Using Algorithm 2:

33 Gbest = update Gbest(P ∪Gbest,W );
34 end

35 end

where w ≥ 0 represents the inertia factor, c1, c2 ≥ 0 are the
constraints on the velocity, r1, r2 are two random variables
having a uniform distribution in the range (0, 1], vi,xi

pb and

gi
best represent the velocity, the personal best and the se-

lected global best position for the ith particle, respectively.
If a particle does not improve its personal position in a

flight cycle, then the particle increases (by one) its age. On
the other hand, if a particle exceeds a certain (pre-defined)
age threshold, the particle (including, its velocity, its age
and its best personal) is reinitialized. DMOPSO employs a
reinitialization mechanism based on a parametric probabil-
ity density function, which involves the selected global best
gi
best and the personal best xi

pb of the current particle xi.

Therefore, the jth component of the new particle is reset
according to the following equation:

xi
j = N

(

gibest,j − xi
pb,j

2
, |gibest,j − xi

pb,j |

)

(12)
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Algorithm 2: update Gbest(Q,W )

1 T = Q;
2 foreach i = {1, . . . , N} do

3 gi = {x|min
x∈T

gte(x|wi, z)}, where wi ∈ W ;

4 T = T \ {x}
5 end

6 G = {g1, . . . , gN};
7 return G;

where N(m,σ) represents a random number using a Gaus-
sian distribution with mean m and sigma σ.

When a particle goes beyond the boundaries of the deci-
sion variables, this particle needs to be repaired. DMOPSO
adopts the deterministic back mechanism [4] to repair so-
lutions that are generated outside the allowable bounds.
Therefore, the jth bound of the particle’s position xi =
(xi

1, . . . x
i
n)

T and of its velocity vi = (vi1, . . . , v
i
n)

T , are re-
established as follows:

xi
j =

{

xL
j , if xi

j < xL
j

xU
j , if xi

j > xU
j

, j = 1, . . . , n

vij = −γvij , j = 1, . . . , n.

(13)

where xL
j and xU

j are the lower and upper bounds in the

component jth (for each j = 1, . . . , n) of the allowable de-
cision variable values, respectively. In the same way than
other MOPSOs [15, 14], DMOPSO adopts γ = 1.

In DMOPSO, a (µ+ λ)-selection mechanism is employed
in order to obtain the global best set by using the current
set of particles P and the current global best set Gbest. In
other words, DMOPSO updates the Gset set by finding the
best solution for the ith subproblem from {P ∪ Gbest} as
it is shown in Algorithm 2. A more detailed description of
DMOPSO can be found in [23].

3. OUR PROPOSED APPROACH FOR CON-

STRAINED OPTIMIZATION
As indicated before, the proposed ε-constrained DMOPSO

(εDMOPSO) is based on the ε-constraint method [19] and it
adopts the decomposition-based Multi-Objective Optimizer
(DMOPSO), which was initially introduced for dealing with
unconstrained MOPs [23]. Our proposed εDMOPSO uses
the information related to the whole swarm of particles in
order to approximate solutions towards the Pareto optimal
front while satisfying the constraints of the problem.

In the following description we assume that W is a set
of well-distributed weight vectors {w1, . . . ,wN}. Along the
search, εDMOPSO finds the best solution to each subprob-
lem defined by the Tchebycheff approach (equation (2)) us-
ing each weight vector in W . In this way, the objective func-
tion of the jth subproblem is then defined by gte(x|wj , z),
where wj ∈ W and z = (z1, . . . , zk)

T is the artificial utopian
vector whose component zi is the minimum value found so
far for the objective fi.

At each generation, εDMOPSO finds the best solution to
each subproblem according to the decomposition approach
and the proposed ε level comparison. Throughout the search,
εDMOPSO maintains:

1. a population of N particles P = {x1, . . . ,xN}, where
xi is the current solution to the ith subproblem;

2. F 1, . . . , FN , where F i is the F -value of xi, i.e., F i =
F(xi) for each i = 1, . . . , N ;

In an analogous way, εDMOPSO adopts the same frame-
work as DMOPSO (Algorithm 1). However, in order to
satisfy the constraints of the problem, the updating algo-
rithm (Algorithm 2) to select the global best set is modified.
In the following section we present a detailed description
of the proposed constraint-handling technique employed by
εDMOPSO.

3.1 Normalized Constraint Violation Degree
In order to measure an appropriate constraint violation

between two solutions, we use the normalized constraint vi-
olation degree. In the following description, we assume that
the constraint violation degree of a solution x is computed
using equation (7).

Let P be the set of particles found by εDMOPSO. Assum-
ing p inequality constraints of the form gi ≤ 0 (i = 1, . . . , p),
the normalized constraint violation of any solution x can be
computed as:

φN (x) =

p
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

max

{

0,
gi(x)

gimax

}∣

∣

∣

∣

∣

∣

∣

∣

α

(14)

where α is a positive number (in this work, α = 1) and
gimax is the maximum violation value for the ith constraint
in the set of solutions P . To be more precise, gimax can be
calculated by:

gimax = max
x∈P

{0, gi(x)}, i = 1, . . . , p (15)

Note however that if gimax = 0, all the solutions x ∈ P are
feasible for the ith constraint and equation (14) cannot be
computed. For this case, we set gimax = 1, thus penalizing
the normalized constraint value φN(x) if solution x is not
feasible for the ith constraint.

3.2 The ε level value
For the ε-constraint method, we use the formulation that

prefers a solution with strictly less function value than other
one, i.e., the order relation <ε (equation (9)). In our ap-
proach, the ε value is defined by:

ε = φN,min + τ × (φN,max − φN,min) (16)

where φN,min and φN,max are the minimum and the maxi-
mum value given by the normalized constraint violation of
each solution x in P . To be more precise:

φN,max = max
x∈P

{φN (x)}

φN,min = min
x∈P

{φN (x)}
(17)

τ represents a parameter given by the user, which tries to
balance the generation of feasible solutions with the mini-
mization of each subproblem defined by εDMOPSO.

The value of τ should be given in the range [0, 1]. If τ =
0, the search is driven towards the generation of solutions
with a normalized constraint value lower than φN,min, i.e.,
preferring feasible solutions. If τ = 1, the search is driven
towards the generation of solutions with a lower cost for each
subproblem, instead of preferring to satisfy the constraints
of the CMOP.
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3.3 Obtaining the global best set for constrained
optimization

Along the cycles, each particle xi in the swarm P gives
the best solution to the ith subproblem. Considering N sub-
problems, the set W has the same number of elements, i.e.,
the cardinality of W is N . At the beginning, the set of
particles P constitutes the global best set Gbest (line 10 in
Algorithm 1). Therefore, the number of solutions in Gbest is
also N . The following updates of the global set are carried
out in two different stages.

1. Preferring convergence. Let T = {P ∪ Gbest} be the
set of solutions to be considered as the new global best
set Gbest. We select from T , the set of solutions C1 =
{a1, . . . ,aN} which minimize each subproblem defined
by each wi in W by using Algorithm 2, i.e., C1 =
update Gbest(T,W ).

With this, we prefer solutions with a lower function
value for each separate subproblem even if they do not
satisfy the constraints of the CMOP.

2. Satisfying constraints. Let R = {T \ C1} be the re-
maining solutions in T . In an analogous way, we define
a new set C2 = {b1, . . . ,bN} by using Algorithm 2,
C2 = update Gbest(R,W ). It is worth noting that the
selected solutions ai and bi correspond to the best so-
lutions for the ith subproblem defined by wi.

The tiebreaker for selecting a new solution as part of
the new global best set Gbest is carried out by using
the ε-constraint method according to the next rule.

Let gte1 (gte2 ) and φ1
N (φ2

N) be the function values given
by the Tchebycheff aggregation function (equation (2))
and the normalized constraint violation at the solution
ai(bi), respectively. Then, for any ε satisfying ε ≥
0, the ε level comparison <ε between (gte1 , φ1

N) and
(gte2 , φ2

N) is defined as follows:

(gte1 , φ1
N) <ε (gte2 , φ2

N ) ⇔











gte1 < gte2 , if φ1
N , φ2

N ≤ ε

gte1 < gte2 , if φ1
N = φ2

N

φ1
N < φ2

N , otherwise

(18)

Therefore, gi
best = ai, if and only if equation (18) is

satisfied. Otherwise gi
best = bi, for each i ∈ {1, . . . , N}.

The global best set for the next cycle of εDMOPSO is
then constituted by:

Gbest = {gi
best, . . . ,g

N
best}

With this, stage 1 finds convergence towards optimal val-
ues of each subproblem, while stage 2 promotes satisfying
the constraints of the problem, i.e., by performing stage 2,
the ε level will reduce its value along the cycles trying to
satisfy the constraints of the CMOP.

4. EXPERIMENTAL STUDY

4.1 Constrained Multi-Objective Airfoil Shape
Optimization Problems

In order to assess the performance of our proposed ap-
proach we employ CMO-ASOPs adapted from [18, 22, 12,
2]. Two different CMO-ASOPs were defined having two

Parameter Lower bound Upper bound

rleup 0.0085 0.0126
rlelo 0.0020 0.0040
αte 7.0 10.0
βte 10.0 14.0
Zte -0.0060 -0.0030
∆Zte 0.0025 0.0050
Xup 0.4100 0.4600
Zup 0.1100 0.1300
Zxxup -0.90 -0.70
Xlo 0.20 0.26
Zlo -0.0230 -0.0150
Zxxlo 0.05 0.20

Table 1: Parameter ranges for modified PARSEC
airfoil representation

and three objectives and different numbers of constraints.
Since the test CMO-ASOPs deal with airfoil shape geome-
tries, next we describe the geometry parameterization used
in them, which in turn defines the dimensionality of the
search space.

4.1.1 Geometry parameterization

Finding an optimum representation scheme for ASO prob-
lems is an important step for a successful aerodynamic op-
timization task.

In this case, the PARametric SECtion (PARSEC) airfoil
representation [17] is used. Figure 1 illustrates the 11 basic
parameters used for this representation. Where rle is the
leading edge radius, Xup is the location of maximum thick-
ness for the upper surface (extrados), Xlo is the location of
maximum thickness for lower surface (intrados), Zup is the
maximum thickness for upper surface, Zlo is the maximum
thickness for lower surface, Zxxup is the curvature for upper
surfaces, at maximum thickness location, Zxxlo is the cur-
vature for lower surfaces, at maximum thickness location,
Zte is the trailing edge coordinate, ∆Zte is the trailing edge
thickness, αte is the trailing edge direction, and βte repre-
sents the trailing edge wedge angle.

For the present case, the modified PARSEC geometry
representation adopted allows us to define independently
the leading edge radius, both for upper and lower surfaces.
Thus, 12 variables in total are used. Their allowable ranges
are defined in Table 1.

Figure 1: PARSEC airfoil parameterization

The PARSEC airfoil geometry representation uses a linear
combination of shape functions for defining the upper and
lower surfaces. These linear combinations are given by:

Zupper =
6
∑

n=1

anx
n−1

2 , Zlower =
6
∑

n=1

bnx
n−1

2
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In the above equations, the coefficients an, and bn are
determined as functions of the 12 described geometric pa-
rameters, by solving two systems of linear equations.

4.1.2 Definition of the CMO-ASOPs

The goal is to optimize the airfoil shape of a standard-
class glider, aiming at obtaining optimum performance for
this type of aircraft. In the following definition of CMO-
ASOPs, common objectives are to maximize the aerody-
namic efficiency, i.e., the lift to drag forces ratio Cl/Cd, to
maximize the aerodynamic power efficiency, i.e., C3

l /C
2
d , and

to minimize the absolute value for the aerodynamic moment
coefficient, Cm. These objectives reflect the global aerody-
namic efficiency of a glider and are evaluated for different
flight regimes, which are defined in terms of the airfoil’s
angle of attack (α), and the gliding velocity, given by the
Reynolds (Re) and Mach (M) numbers. Note that in the
CMO-ASOPs definition, all objectives are considered to be
minimized, requiring, in consequence, the use of the inverse
of Cl/Cd and C3

l /C
2
d ratios. For some airfoil designs, being

evaluated, it can happen that its Cm value could be positive
or negative. In this case, we consider the moment coeffi-
cient value squared as the objective to minimize. In some
other situations, existing designs serve as reference values
for the new designs. In this case, constraints are imposed in
order to have better performing designs. The mathematical
definition for the CMO-ASOPs is presented next:

Test Problem CMO-ASOP1

This problem considers two objective functions: i) to max-
imize the aerodynamic efficiency, i.e., the lift to drag forces
ratio Cl/Cd, and ii) to minimize the absolute value for the
aerodynamic moment coefficient. From the aerodynamic
point of view, an airfoil’s efficiency could be increased by
reducing its thickness to chord ratio, t/c, leading to very
thin airfoil shapes. In order to avoid this situation, one con-
straint is added to achieve a t/c = 0.13. This thickness
ratio allows to reduce the wing weight while maintaining
good structural strength. The mathematical definition for
CMO-ASOP1 is:

i) Minimize : Cd/Cl @ α = 4.0o, Re = 2.0× 106, M = 0.1

ii) Minimize : C2
m @ α = 4.0o, Re = 2.0× 106, M = 0.1

s.t. t/c = 0.13

Test Problem CMO-ASOP2

This problem considers three objective functions: i) to maxi-
mize the aerodynamic efficiency, i.e., to maximize the Cl/Cd

ratio at a first flight condition, ii) to maximize aerodynamic
power efficiency, i.e., C3

l /C
2
d at a second flight, and iii) to

maximize aerodynamic power efficiency, i.e., C3
l /C

2
d at a

third flight condition. For this problem, four constraints
are formulated. The first three aim to have a better aerody-
namic objective function with respect to a reference airfoil
shape commonly used in this application (the a720 airfoil)
and reported in [18]. The fourth constraint aims to limit
the t/c ratio in a similar way as was done in the previous
problem. The mathematical definition for CMO-ASOP2 is:

i) Minimize : Cd/Cl @ α = 1.0o, Re = 4.0× 106, M = 0.3

ii) Minimize : C2
d
/C3

l
@ α = 3.0o, Re = 3.0× 106, M = 0.3

iii) Minimize : C2
d
/C3

l
@ α = 5.0o, Re = 2.0× 106, M = 0.3

s.t. Cd/Cl ≤ 0.005201
C2

d
/C3

l
≤ 0.004462

C2
d
/C3

l
≤ 0.004458

t/c = 0.13 for all flight operating conditions.

4.2 Performance Measures

Hypervolume

The Hypervolume (IH) performance measure was proposed
in [26]. This performance measure is Pareto compliant [27],
and quantifies both convergence and spread of nondomi-
nated solutions along the Pareto optimal front. It is math-
ematically stated as:

IH(P ) = Λ

(

⋃

p∈P

{x|p ≺ x ≺ r}

)

(19)

where Λ denotes the Lebesgue measure, P is the Pareto ap-
proximation to the true Pareto front and r ∈ R

k denotes
a reference vector being dominated by all valid candidate
solutions in P . A high IH value, indicates that the approxi-
mation P is close to PF and has a good spread towards the
extreme portions of the Pareto front.

Feasibility Ratio

The feasibility ratio (IF ) indicator refers to the ratio of the
number of feasible solutions found in the final approximation
P to the Pareto front. It is mathematically stated as:

IF (P ) =
Pf

|P |
(20)

where Pf denotes the number of feasible solutions in P and
|P | represents the cardinality of the population P .

4.3 Experimental Setup
To assess the performance over the CMO-ASOPs adopted,

we compared the results obtained by our εDMOPSO with
respect to those achieved by the proposal presented by Jan
and Zhang in [9], which we call here cMOEA/D-DE. We se-
lected cMOEA/D-DE for its ability to solve complex prob-
lems [9] and because it uses one of the most representative
MOEAs based on decomposition, the well-known MOEA/D-
DE. Additionally, its source code is in the public domain.

In order to allow a fair comparison, the set of weight
vectors was the same for both algorithms, and they were
generated in the same way using the procedure described
in [25], i.e., the settings of N and W = {w1, . . . ,wN} were
controlled by a parameter H . More precisely, w1, . . . ,wN

are all the weight vectors in which each individual weight
wi

j (i = 1, . . . , N and j = 1, . . . , k) takes a value from:
{

0

H
, 1

H
, . . . , H

H

}

. Therefore, the number of such vectors inW

is given by N = Ck−1

H+k−1
, where k is the number of objective

functions.
Because of the high computational time required by the

CMO-ASOPs adopted in our study, we used a low num-
ber of subproblems. Here, we use H = 49 (for the bi-
objective problem) and H = 13 (for the three-objectives
problem), i.e., we generated 50 and 105 weight vectors for
each CMO-ASOP, respectively. It is worth noting that the
use of large populations (greater than 200 individuals), could
significantly increase the computational time (even requir-
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Figure 2: εDMOPSO and MOEA/D-DE for CMO-
ASOP1.

ing days in some cases) that an optimizer requires (only for
a single run) for solving these CMO-ASOPs.

For each CMO-ASOP, we performed 30 independent runs
with each algorithm. The parameters for both algorithms
where set as follows: N = 50 and N = 105 represent
the number of weight vectors (and the population size) for
CMO-ASOP1 and CMO-ASOP2, respectively. The maxi-
mum number of iterations was set as Nit = 100 for both
test problems. Therefore, both algorithms performed 5,000
and 10,500 fitness function evaluations for each problem, re-
spectively. For cMOEA/D-DE, the parameters were set as:
Tn = ⌈0.1 × N⌉ (neighborhood size) δ = 0.9 (probability
that parent solutions are selected from the neighborhood)
F = 0.5 (the differential factor), CR = 1 (the crossover
ratio), ηm = 20.0 (the mutation index), Pm = 1/n (muta-
tion rate) and nr⌈0.01 ×N⌉ (the number of solutions to be
replaced). These values were set as it is suggested in [9].
For the constraint-handling technique, the parameters for
cMOEA/D-DE we used were: s1 = 0.01 and s2 = 20.0, and
they were set as in [9] (we used the best parameters settings
found by Jan and Zhang in their comparative study).

For εDMOPSO, τ = 0.3 and Ta = 2 represent the control
parameter for equation (18) and the age threshold, respec-
tively. The constraints on the velocity (c1, c2) and the inertia
factor (w) were dynamically defined. As in DMOPSO [23],
we adopted uniformly distributed values, such that: c1, c2 ∈
(1.2, 2.0) and w ∈ (0.1, 0.5).

5. DISCUSSION OF RESULTS
As indicated before, the results obtained by our proposed

approach (i.e., εDMOPSO) were compared against those
produced by cMOEA/D [9]. In Table 2, the hypervolume
values were calculated using the reference vectors r given in
this same table. According to the results presented in Ta-
ble 2, εDMOPSO had a better performance than cMOEA/D-
DE in the two CMO-ASPs adopted. This table provides a
quantitative assessment of the performance of εDMOPSO
in terms of the IH and IF indicators. That means that
the solutions obtained by εDMOPSO achieved a better ap-
proximation of the Pareto optimal front than the solutions
obtained by cMOEA/D-DE while maintaining an acceptable

ratio of feasible solutions. Due to space limitations, we only
show (in Figure 2) the performance of εDMOPSO when it is
compared with respect to cMOEA/D-DE for CMO-ASOP1.
As we can see, εDMOPSO produced solutions with better
convergence to the extremes and most of them dominated
those produced by cMOEA/D. This corroborates the re-
sults of the good performance of our proposed εDMOPSO
regarding CMO-ASOP1. For CMO-ASOP2, numerical re-
sults showed that our proposed approach significantly out-
performed cMOEA/D. In fact, a good value of IH indicates
that εDMOPSO achieved a better convergence towards the
Pareto optimal front2 than cMOEA/D.

In terms of the feasibility of the solutions, we can see from
Table 2 that our proposed εDMOPSO obtained a better ra-
tio of feasible solutions for both problems (CMO-ASOP1
and CMO-ASOP2). This means that our proposal of incor-
porating the ε-constraint method into DMOPSO, seems, at
first sight, a good strategy to deal with expensive optimiza-
tion problems. Although our proposed approach has been
tested here only with CMO-ASOPs, it can clearly be applied
to other real-world problems as well, and that is part of our
ongoing research.

6. CONCLUSIONS AND FUTURE WORK
We have proposed a new approach based on DMOPSO

for constrained multi-objective optimization. Our proposed
εDMOPSO introduces a selection mechanism based on the
ε-constraint method in order to define the set of global best
solutions along the search process. Although the use of
the new constraint-handling technique was adopted here for
DMOPSO, this approach can be easily adopted by any other
decomposition-based MOEA which uses a (µ+ λ)-selection
mechanism to obtain optimal solutions (for example, the
approach presented in [1]). Our preliminary results indicate
that our proposed εDMOPSO is highly competitive with re-
spect to a current state-of-the-art MOEA (i.e., cMOEA/D-
DE) in the test problems adopted here. However, more test
problems are required in order to draw more general conclu-
sions about its performance.

As part of our future work, we would like to validate our
proposed approach in many-objective optimization problems
(i.e., multi-objective problems having more than 3 objec-
tives). We also intend to focus on the design of a strategy
that allows us to adjust, in a dynamic way, the value of ε
employed by our proposed εDMOPSO. We are also consider-
ing the possibility of experimenting with a penalty function
or another powerful constraint-handling technique such as
stochastic ranking [16]. Furthermore, in order to deal in
an efficient way with more complex CMOPs, the introduc-
tion of local search mechanisms to εDMOPSO seems as a
promising path for future research. We believe that the use
of an appropriate local search mechanism coupled with a
MOEA (such as those presented in [10, 24]) could give rise
to a powerful search engine capable of dealing with more
complex CMOPs in a more effective and efficient way.
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Table 2: Results of IH for εDMOPSO and cMOEA/D-DE

MOP

εDMOPSO cMOEA/D-DE

reference vector r
IH IF IH IF

average average average average
(σ) (σ) (σ) (σ)

CMO-ASOP1
9.3477e-04 81.37 8.6921e-04 76.72

(0.065, 0.031)T
(1.0504e-05) (0.093454) (1.5823e-05) (0.021125)

CMO-ASOP2
1.5333e-12 67.20 9.0066e-16 44.72

(0.0053, 0.0045, 0.0045)T
(6.2821e-13) (0.012837) (4.8502e-15) (0.982360)
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