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ABSTRACT

Since the early days of multi-objective particle swarm opti-
mizers (MOPSOs), researchers have looked for appropriate
mechanisms to define the set of leaders (or global best set)
from the swarm. At the beginning, leaders were randomly
selected from the set of nondominated solutions currently
available. However, over the years, researchers realized that
random selection schemes were not the best choice, and
additional information was incorporated in the leader se-
lection mechanism (namely, information related to density
estimation). Here, we study the use of mathematical pro-
gramming techniques for defining the leader selection mech-
anism of a MOPSO. The proposed approach decomposes
a multi-objective optimization problem (MOP) into several
single objective optimization problems by using traditional
multi-objective mathematical programming techniques. Our
preliminary results indicate that our proposed approach is
a viable choice for solving MOPs, since it is able to out-
perform a state-of-the-art multi-objective evolutionary al-
gorithm (MOEA).

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search.

General Terms

Algorithms, Theory.
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1. INTRODUCTION
A continuous and unconstrained multi-objective optimiza-

tion problem (MOP), can be stated as follows 1:

min
x∈Ω

{F (x)} (1)

where Ω defines the decision space and F : Ω → R
k is de-

fined as the vector F (x) = (f1(x), . . . , fk(x))T , such that
fi : R

n → R is a continuous and unconstrained function.
In multi-objective optimization, we aim to produce a set of

trade-off solutions representing the best compromises among
the objectives (i.e., solutions in which no objective can be
improved without worsening another). Therefore, in order
to describe the concept of optimality in which we are inter-
ested, the following definitions are introduced.
Definition 1. Let x, y ∈ Ω, we say that x dominates y

(x ≺ y) if and only if, fi(x) ≤ fi(y) and F (x) 6= F (y), for
all i = 1, . . . , k.
Definition 2. Let x⋆ ∈ Ω, we say that x⋆ is a Pareto

optimal solution, if there is no other solution y ∈ Ω such
that y ≺ x⋆.
Definition 3. The Pareto Optimal Set is defined by PS =
{x ∈ Ω|x is Pareto optimal solution} and its image (i.e.,
PF = {F (x)|x ∈ PS}) is called Pareto Optimal Front.

The main goal in multi-objective optimization is to max-
imize the number of elements of the Pareto optimal set
and to maintain a well-distributed set of solutions along
the Pareto front. In the specialized literature, there ex-
ist several multi-objective programming techniques to solve
MOPs (see for example [6, 11]). However, several researchers
have identified the main limitations of these mathematical
programming approaches [1, 4, 10], which has motivated a
lot of research on multi-objective evolutionary algorithms
(MOEAs). The population-based nature of MOEAs and
their flexible selection mechanisms have shown to be ex-
tremely useful and successful for dealing with MOPs, spe-
cially in the engineering field. In particular, particle swarm
optimization (PSO) has been found to be a very success-
ful bio-inspired metaheuristic for dealing with continuous
and unconstrained optimization problems. This has moti-
vated the interest of researchers in extending PSO to solve
MOPs [14].

In this study, we employ a multi-objective programming
technique for decomposing a MOP into several scalar func-
tions. Then, a multi-objective particle swarm optimizer
(MOPSO) follows the directions defined by each scalar func-
tion. The proposed MOPSO updates the position of each

1Without loss of generality, we assume minimization
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particle using the best solution to each scalar problem. The
proposed approach is compared with respect to a well-known
decomposition-based MOEA (MOEA/D [15]) which is rep-
resentative of the state of the art in the area.

2. THE PROPOSED APPROACH

2.1 Decomposing MOPs
In the specialized literature, there are several approaches

for transforming a MOP into multiple single-objective op-
timization subproblems [6, 11]. These approaches use a
weighted vector as their search direction. In this way, and
under certain assumptions (e.g., the minimum is unique,
the weighting coefficients are positive, etc.), a Pareto op-
timal point is achieved by solving such subproblems. Such
decomposition techniques are perhaps the most common ba-
sis for currently available multi-objective mathematical pro-
gramming approaches. From the many techniques avail-
able, the two most widely used are the Tchebycheff and
the Weighted Sum approaches, in spite of the fact that ap-
proaches based on boundary intersection have certain advan-
tages over them [2, 15]. This motivated the work presented
here, in which we adopt a decomposition approach based on
boundary intersection coupled to a MOPSO.

2.1.1 Penalty Boundary Intersection Approach

The Penalty Boundary Intersection (PBI) approach2 in-
troduced by Zhang and Li [15], minimizes both the dis-
tance (d1) from F (x) to the boundary intersection as well
as the direction error (d2) from F (x) to the weighted vec-
tor, see Figure 1. The problem is mathematically stated as
follows:

Let w = (w1, . . . , wk)T be a weighted vector, i.e., wi ≥ 0

for all i = 1, . . . , k and
Pk

i=1
wi = 1. Then, the optimization

problem is defined as:

minimize: g(x|w, z
⋆) = d1 + θd2 (2)

such that:

d1 =
||(F (x) − z⋆)T w||

||w||

and d2 =
˛

˛

˛

˛

˛

˛

(F (x) − z⋆) − d1
w

||w||

˛

˛

˛

˛

˛

˛

where x ∈ R
n and z⋆ = (z⋆

1 , . . . , z⋆
k)T is the utopian vector,

i.e., z⋆ = min{fi(x)|x ∈ Ω} for each i = 1, . . . , k.
In this way, the PBI approach can generate a good ap-

proximation along the Pareto optimal front by defining a
well-distributed set of weighted vectors.

2.2 Guiding a MOPSO
The proposed MOPSO employs a decomposition-based

framework similar to the one adopted by MOEA/D [15].
Therefore, a well-distributed set of weighted vectors W has
to be previously defined. As it was mentioned before, PBI
is adopted in our proposed approach. Note, however, that
Tchebycheff or any other decomposition technique could be
adopted as well.

At the beginning of the algorithm, a swarm of N parti-
cles P = {x1, . . . , xN} is randomly initialized. Each particle
possesses a flight velocity vi and an age ai, both of which

2based on the well-known Normal Boundary Intersection
(NBI) method [2]

d1

d2

F(x)

z
l
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Figure 1: Illustration of the PBI approach.

are initially set to zero. Along the flight circuits, each parti-
cle tries to minimize one of the subproblems defined by the
weighted vector wi. Therefore, each particle undertakes its
flight towards a better position in order to minimize a single
subproblem g(xi|wi, z

⋆).
The personal best xpb,i of the ith particle, represents the

best solution provided by the particle to the ith subproblem.
Since, at the beginning, a particle does not have a previous
movement, the best personal position is initialized with the
same position as the particle, i.e., xpb,i = xi.

At each cycle, the flight historical record of each particle
is used to find the best solutions to each subproblem. Hence,
global best set (Gbest) is defined in a natural way. This set
contains the solutions that minimize each subproblem and
it is updated in each cycle using (µ + λ)-selection, where µ

and λ represent the current and the next particles in the
swarm, respectively. Therefore, the notion of elitism used in
evolutionary multi-objective optimization is implicitly em-
ployed. However, in this case, a decomposition approach is
used instead of the, more traditional, Pareto optimality.

Once the global best set has been defined, the velocity
and the position of each particle are updated according to
the traditional PSO flight equations:

vt+1

i = wvt
i + c1r1(xpb,i − xt

t) + c2r2(xgb,i − xt
i)

xt+1

i = xt
i + vt+1

i

(3)

where w ≥ 0 represents the inertia factor, c1, c2 ≥ 0 are the
constraints on the velocity, r1, r2 are two random variables
having a uniform distribution in the range (0, 1), and vi, xpb,i

and xgb,i represent the velocity, the personal best and the
global best position for the ith particle, respectively.

Since the proposed approach tries to minimize a set of
subproblems (whose solutions at the end of the flight cycles
should be very close to the Pareto optimal set), and the (µ+
λ)-selection introduces a high selection pressure that should
contribute to this, we assume that all solutions in Gbest are
equally good (i.e., we assume that all the subproblems were
satisfactorily solved). Thus, the velocity of each particle
is computed using as their global best a solution which is
randomly taken from Gbest.

The age of each particle is used to maintain diversity along
the flight circuits. Basically, aging is used to indicate when
a particle is not providing good information in its flight ex-
perience. When a particle does not improve its personal
position in a flight cycle, then the particle increases (by
one) its age. On the other hand, if a particle exceeds a
certain age threshold, the particle (including, its velocity,
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its age and its personal best) is reinitialized. The proposed
approach employs a reinitialization mechanism based on a
parametric probability density function, which involves the
selected global best xgb,i and the personal best xbp,i of the
current particle xt

i. It aims to perform smart reinitializa-
tion movements from the personal best towards the global
best solutions using a Gaussian distribution. Therefore, the
jth component of the new particle is reset according to the
following equation:

x
t+1

i (j) = N

„

xgb,i(j) − xpb,i(j)

2
, |xgb,i(j) − xpb,i(j)|

«

(4)

where N(m, σ) represents a random number using a normal
distribution with mean m and sigma σ.

2.3 Our Proposed Approach
Since its very inception, (MOEA/D) [15] has motivated

the development of other MOEAs based on decomposition
(see for example [9, 12, 13, 16]). This new generation of
MOEAs uses the same idea as MOEA/D (i.e., they define a
neighborhood to select individuals for recombining and up-
dating solutions from this same neighborhood). However,
when it comes to MOPSOs, few of them are based on de-
composition [12, 13]. Such decomposition-based MOPSOs
use a neighborhood as their global best set. Moreover, they
include archiving strategies (based on ǫ-dominance [8]) to
store nondominated solutions along their flight cycles.

As indicated before, one of the main issues involved in
the design of a good MOPSO is the definition of the global
best set. In their early days, MOPSOs relied on simple ran-
dom selection schemes, which were later refined through the
addition of information from a density estimator. Addition-
ally, the use of archiving strategies has also become common
practice.

Unlike traditional MOPSOs, the approach presented here
does not use any explicit diversity maintenance mechanism
to obtain well-distributed solutions along the Pareto front.
Instead, it relies on the penalty from the PBI approach,
which provides diversity to such solutions along the flight cir-
cuits. It is worth noticing, however, that the use of other de-
composition approaches could deteriorate the performance
of our algorithm, especially when dealing with more com-
plex problems. This is because the PBI approach forces
particles to follow a single direction, since moving away from
such direction will be penalized. Furthermore, our approach
does not require neither the use of turbulence nor the Pareto
optimality concept for approximating solutions towards the
Pareto optimal set. Instead, we adopt both, a mechanism
for selecting global best solutions based on the nature of
the decomposition approach, and a mechanism to reinitial-
ize the particles based on their age. Therefore, our proposed
approach avoids the use of an external archive, which results
in a lower computational time than any of the archive-based
MOPSOs currently available.

3. EXPERIMENTAL RESULTS
In order to assess the performance of our proposed ap-

proach, we compared its results with respect to those ob-
tained by MOEA/D [15] in the following test problems:

Standard Test Problems

We adopted six test problems whose Pareto fronts have dif-
ferent characteristics including convexity, concavity, discon-

nections and multi-frontality. For two-objective problems,
we adopted four problems taken from the Zitzler-Deb-Thile
(ZDT) test suite [17] (ZDT2, ZDT3, ZDT4 and ZDT6). For
three-objective problems, we adopted three problems taken
from the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [5]
(DTLZ6 and DTLZ7). For ZDT2 and ZDT3, 30 decision
variables were adopted. ZDT4 and ZDT6 were tested us-
ing 10 decision variables. Finally, DTLZ6 and DTLZ7 were
adopted with 12 and 22 decision variables, respectively.

Experimental Setup

For each MOP, 30 independent runs were performed with
each algorithm. The parameters for MOEA/D were set as
in [15], using a population size N = 100 for the bi-objective
problems and N = 300 for the three-objective problems.
The maximum number of generations was set to 150. For our
proposed MOPSO, the constraints on the velocity (c1, c2)
and the inertia factor (w) were dynamically defined. As
in [12], we used values uniformly distributed, such that:
c1, c2 ∈ (1.2, 2.0) and w ∈ (0.1, 0.5). The parameter θ used
in the PBI approach was set to 5 for both our MOPSO and
MOEA/D.

Performance Measures

For each MOP, the algorithms were evaluated using the Hy-

pervolume performance measure [18]. The results are sum-
marized in Table 1. For the hypervolume metric, the refer-
ence vectors adopted were: r = (1.1, . . . , 1.1)T for DTLZ6
and the ZDT test problems, while for DTLZ7 the reference
vector r = (1.0, 1.0, 6.1)T was used. Table 1 displays both
the average and the standard deviation (σ) of the hyper-
volume performance measure, for each of the test problems
adopted. The best results are shown in boldface for each
test problem adopted.

Preliminary Results

As it is well-known, the hypervolume performance measure
is Pareto compliant [19] and quantifies the approximation of
nondominated solutions to the Pareto optimal front. From
this table, it can be seen that our proposed approach outper-
formed MOEA/D in all the adopted MOPs. This indicates
that our proposed algorithm produced a better approxima-
tion and distribution to the Pareto optimal front. How-
ever, note also that in problem DTLZ6, for example, there
is hardly any difference in the performance between both
algorithms. Finally, Figure 2 shows a comparison of results
for our MOPSO and MOEA/D in the ZDT4 problem.

Table 1: Results of the Hv performance measure for
our proposed MOPSO and MOEA/D

MOP
MOPSO MOEA/D
average average

(σ) (σ)

ZDT2
0.536473 0.316948
(0.000425) (0.091569)

ZDT3
1.317248 1.246748
(0.002921) (0.044609)

ZDT4
0.862245 0.774609
(0.029966) (0.065285)

ZDT6
0.504519 0.457862
(0.000004) (0.009460)

DTLZ6
0.426532 0.426153
(0.000038) (0.000098)

DTLZ7
1.409133 1.375630
(0.007166) (0.141559)
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Figure 2: Comparison of results for our MOPSO and
MOEA/D in ZDT4.

4. CONCLUSIONS AND FUTURE WORK
In this study, we have presented a multi-objective parti-

cle swarm optimizer based on decomposition. Preliminary
results showed that our proposed MOPSO outperformed
MOEA/D in the test problems adopted, with respect to the
hypervolume performance measure. This proposed approach
does not use an external archive to store nondominated so-
lutions and adopts instead, a mechanism to select the glob-
ally best solutions. The penalty defined by the parameter
θ (in the PBI approach) enforces to follow a search direc-
tion defined by each weighted vector. However, the study of
the variation of this parameter along the flight circuits is a
promising path for future research.

As part of our future work, we are interested in providing
a local search mechanism using non-gradient mathematical
programming techniques to improve solutions in different di-
rections. In this way, a new global best set could be defined
using those improved solutions. Additionally, the exploita-
tion of the decomposition approach when coupling it to other
metaheuristics (e.g., scatter search [7] or artificial immune
systems [3]) is also a promising research area. In general, we
are interested in providing to MOEAs, search mechanisms
based on mathematical methods.
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E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener,
L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, and
N. Jonoska, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’2002),
pages 439–447, San Francisco, California, July 2002.
Morgan Kaufmann Publishers.

[9] H. Li and Q. Zhang. Multiobjective Optimization Problems
With Complicated Pareto Sets, MOEA/D and NSGA-II.
IEEE Transactions on Evolutionary Computation,
13(2):284–302, April 2009.

[10] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern
Heuristics. Springer, Berlin, 2000.

[11] K. Miettinen. Nonlinear Multiobjective Optimization,
volume 12 of International Series in Operations Research
and Management Science. Kluwer Academic Publishers,
Dordrecht, 1999.

[12] N. A. Moubayed, A. Petrovski, and J. A. W. McCall. A
novel smart multi-objective particle swarm optimisation
using decomposition. In PPSN (2), pages 1–10, 2010.

[13] W. Peng and Q. Zhang. A decomposition-based
multi-objective particle swarm optimization algorithm for
continuous optimization problems. In IEEE International
Conference on Granular Computing, 2008. GrC 2008,
pages 534 –537, 2008.

[14] M. Reyes-Sierra and C. A. Coello Coello. Multi-Objective
Particle Swarm Optimizers: A Survey of the
State-of-the-Art. International Journal of Computational
Intelligence Research, 2(3):287–308, 2006.

[15] Q. Zhang and H. Li. MOEA/D: A Multiobjective
Evolutionary Algorithm Based on Decomposition. IEEE
Transactions on Evolutionary Computation, 11(6):712–731,
December 2007.

[16] Q. Zhang, W. Liu, and H. Li. The Performance of a New
Version of MOEA/D on CEC09 Unconstrained MOP Test
Instances. In 2009 IEEE Congress on Evolutionary
Computation (CEC’2009), pages 203–208, Trondheim,
Norway, May 2009. IEEE Press.

[17] E. Zitzler, K. Deb, and L. Thiele. Comparison of
Multiobjective Evolutionary Algorithms: Empirical Results.
Evolutionary Computation, 8(2):173–195, Summer 2000.

[18] E. Zitzler and L. Thiele. Multiobjective Optimization Using
Evolutionary Algorithms—A Comparative Study. In A. E.
Eiben, editor, Parallel Problem Solving from Nature V,
pages 292–301, Amsterdam, September 1998.
Springer-Verlag.

[19] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. G. da Fonseca. Performance Assessment of
Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation, 7(2):117–132,
April 2003.

774




