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ABSTRACT One of the main disadvantages of evolutionary multi-objective algorithms (EMOAs) based
on hypervolume is the computational cost of the hypervolume computation. This deficiency gets worse
either when an EMOA calculates the hypervolume several times or when it is dealing with problems having
more than three objectives. In this sense, some researchers have designed strategies to reduce the number of
hypervolume calculations. Among them, the use of the locality property of the hypervolume has emerged as
an alternative to deal with this problem. This property states that if a solution is moving in its neighborhood,
only its contribution is affected and the contributions of the rest of the solutions remain the same. In this
paper, we present a novel evolutionary approach that exploits the locality property of the hypervolume.
The proposed approach adopts a probability to use two or three individuals in its environmental selection
procedure. In this way, it only needs to compute two or three hypervolume contributions per iteration.
The proposed algorithm is evaluated by solving the standard benchmark test problems and two real-world
applicationswhere the features of the problems are unknown. According to the results, the proposed approach
is a promising alternative for solving problems with a high number of objectives because of three main
reasons: 1) it is competitive with respect to the state-of-the-art EMOAs based on hypervolume; 2) it does
not need extra information about the problem (which is particularly essential when solving real-world
applications); and 3) its computational cost is much lower than the other hypervolume-based EMOAs.

INDEX TERMS Evolutionary multi-objective algorithms, indicator-based EMOAs, hypervolume indicator.

I. INTRODUCTION
Many real-world problems involve the simultaneous
optimization of a number of objective functions. Such
problems are commonly known as multi-objective optimiza-
tion problems (MOPs). In contrast to single-objective opti-
mization problems where a unique solution is considered
optimal, in multi-objective optimization, a set of solutions
showing the best trade-offs among the objectives can be
found. Throughout the years, evolutionary multi-objective
algorithms (EMOAs) have become the preferred tool to deal
with this type of problems. Notably, the nature of these
algorithms (based on populations) makes possible to obtain
multiple solutions to the problem. Consequently, a significant

amount of research regarding the development of evolution-
ary approaches can be found in the specialized literature, see
the comprehensive review presented in [1]–[3]. Such evolu-
tionary approaches can be classified into three main groups:
Pareto-based approaches (e.g., NSGA-II [4], SPEA2 [5]),
decomposition-based methodologies (e.g., MOGLS [6], [7],
MOEA/D [8], IM-MOEA [9]), and indicator-based algo-
rithms (e.g., IBEA [10], SMS-EMOA [11]). Particularly,
indicator-based EMOAs explicitly employ a performance
indicator (e.g., hypervolume [12], R2 [13], ε+/∗ indi-
cator [14], IGD [15]) in their environmental selection
procedures. Thus, since its introduction in the early 2000s, the
indicator based evolutionary algorithm (IBEA) [10] marked
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the beginning of a new generation of evolutionary approaches
capable of solving, in a different way, problems with multiple
objectives. To date, several evolutionary approaches based
on performance indicators can be found in the specialized
literature [10], [11], [16]–[19]. With their advantages and
disadvantages, IBEAs constitute an amply line of inves-
tigation that in the last few years has been addressed by
several authors. In the particular case of IBEAs adopting a
reference set to compute the concerned performance indicator
(e.g., R2, ε+/∗, IGD, and their variants), are challenging
to design because such reference set cannot be appropri-
ately established. Nonetheless, several investigators have
innovated different strategies to construct the reference set
for this type of algorithms [16], [18]. On the other hand,
hypervolume indicator [12] (as well referred to as S metric)
has the advantage of not needing a reference set. Hypervol-
ume indicator uses only a reference point which is much
easier to state. This fact makes much more flexible the use
of IBEAs based on hypervolume to deal with real-world
problems where the features of the Pareto front are unknown.
Although IBEAs based on hypervolume are flexible when
solving multi-objective problems, their use is limited by the
high computational cost of the hypervolume indicator which
increases with the number of objectives.1 As a consequence,
an amply variety of research concerning the design of IBEAs
based on hypervolume has been the subject of study in
the last decade [11], [21]–[24]. So far, the development of
hypervolume-based EMOAs is considered an active area of
research into the evolutionary multi-objective optimization
community.

In this paper, we introduce a new hypervolume-based
EMOA that implements an adaptive control strategy to reduce
the calculations of hypervolume contributions. In contrast
to several hypervolume-based EMOAs which need to calcu-
late all contributions to the hypervolume indicator per iter-
ation, our proposed approach (namely iSMS-EMOA-ARA)
only requires to compute two or three hypervolume contri-
butions per iteration. We evaluate the proposed algorithm
comparing its performance against two hypervolume-based
EMOAs (namely iSMS-EMOA, and iSMS-EMOA II) which
employ an environmental selectionmechanisms similar to the
one proposed in iSMS-EMOA-ARA. Besides, our proposed
approach is compared against four state-of-the-art EMOAs
based on different principles: GDE3, MOEA/D, NSGA3,
and SMS-EMOA, on well-known multi-objective benchmark
problems and two real-world applications. As we will see
later on, our proposed iSMS-EMOA-ARA is an excellent
alternative to deal withMOPs with distinct features, specially
in problems with more than three objective functions.

The remainder of this paper is organized as follows.
Section II introduces the basic concepts and terminology
regarding evolutionary multi-objective optimization. It is
followed by Section III which reviews the related work. The

1It cannot be computed precisely in polynomial time regarding the number
of objectives unless NP = P [20].

proposed approach is detailed in Section IV. A comprehen-
sive study of the most critical parameter of our proposed
algorithm is presented in Section V. The experimental studies
on the well-known multi-objective benchmark problems and
the two real-world applications are presented in Sections VI
and VII, respectively. Finally, conclusions and some paths for
future research are given in Section VIII.

II. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION
A. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS
Without loss of generality, a continuous box-constrained
multi-objective optimization problem (MOP), assuming min-
imization problems, can be stated as:

minimize: F(x) = (f1(x), f2(x), . . . , fM (x))T

s.t. x ∈ � (1)

The vector function F : � → RM is composed by M ≥ 2
scalar objective functions fi : �→ R (i = 1, . . . ,M ), where
� denotes the feasible set which is implicitly determined by
the box constraints of the problem, i.e., � =

∏n
i=1[ai, bi].

In MOPs, there is no canonical order on RM , and thus,
we need weaker definitions of order to compare vectors
in RM . In this case, the Pareto dominance relation is usually
adopted [25], [26]. The following definitions are introduced.
Definition 1 (Pareto Dominance Relation): We say that a

solution vector z1 dominates the solution vector z2 (in the
objective space), denoted by z1 ≺ z2, if and only if:

∀i ∈ {1, . . . ,M} : z1i ≤ z
2
i and ∃i ∈ {1, . . . ,M} : z1i < z2i .

(2)

It is said that two vectors, z1 and z2, are mutually non-
dominated vectors if z1 ⊀ z2 and z2 ⊀ z1. For x1, x2 ∈ �,
we write x1 ≺ x2 ⇐⇒ F(x1) ≺ F(x2).
Definition 2 (Pareto Optimality): A solution x? ∈ � is

Pareto optimal if there does not exist another solution x ∈ �
such that F(x) ≺ F(x?).
Definition 3 (Pareto Set): The Pareto optimal set (PS),

is defined as: PS = {x ∈ � | @ y ∈ � : F(y) ≺ F(x)}.
Definition 4 (Pareto Front): For a Pareto optimal set PS,

the Pareto front (PF), is defined as: PF = {z =

(f1(x), . . . , fM (x))T | x ∈ PS}.
As in most of the multi-objective algorithms, we are inter-

ested in finding a finite number of elements of the Pareto
optimal set, while maintaining a proper representation of the
Pareto front.

B. EVOLUTIONARY APPROACHES FOR
MULTI-OBJECTIVE OPTIMIZATION
Through the development of evolutionary algorithms for
multi-objective optimization, various principles have been
proposed. Such tenets involve different search strategies
and methodologies that state the performance of a spe-
cific EMOA. Consequently, a considerable number of
approaches based on these principles can be found in the
specialized literature, see the comprehensive review reported
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in [1]–[3]. Particularly, EMOAs can be classified into three
main groups.

1) PARETO-BASED EMOAs
Initial evolutionary approaches for multi-objective optimiza-
tion, integrate Pareto dominance relation to rank the popula-
tion and assess closeness to the optimal Pareto front. Among
the best known approaches for ranking solutions we found
dominance rank [27], dominance count [5] and dominance
depth [28]. However, a good approximation of the Pareto
front has to fulfill two goals simultaneously: convergence
and diversity. Therefore, to distribute the solutions along the
entire trade-off curve, Pareto dominance has to be used in
cooperation with a second criterion. Some methods have
been proposed to distribute solutions along the Pareto opti-
mal front include: fitness sharing and niching [29], cluster-
ing [5], crowding distance [4], among many others. Although
EMOAs have amply adopted thesemethods in the first decade
of the 2000s, their use has decreased. This is mainly due to
two principal reasons: (i) the quick increase in the number
of non-dominated solutions as we increase the number of
objective functions, rapidly dilutes the effect of the selection
mechanism of an EMOA [30] (many, even all solutions are
equal) and (ii) the difficulty to measure diversity in a set of
non-dominated solutions [31]–[35].

2) DECOMPOSITION-BASED EMOAs
In the last decade, scalarization functions have been
employed by several evolutionary approaches giving rise to
the well-known EMOAs based on decomposition. Decom-
position approaches rely on solving a number of scalarizing
functions which are formulated by an even number of weight
vectors. Decomposition-based EMOAs have been found to
be very efficient for solving complicated test problems (see
for instance [8], [36], [37]). Additionally, by having a well-
distributed set of weight vectors, a proper representation of
the PF can be obtained by some EMOAs. However, because
the unknown geometry of the Pareto front in real-world
problems, the distribution of the weight vectors needs to
be carefully defined. On the other hand, a well-distributed
set of weight vectors in a many-objective scenario becomes
difficult to obtain. These issues are the main disadvantages of
this type of approaches when dealing with MOPs with diffi-
cult PF geometries [38], [39] or high-dimensional objective
spaces [40].

3) INDICATOR-BASED EMOAs
Indicator-based EMOAs employ performance indicators in
their environmental selection procedures. To date, there
exist several indicators to assess convergence and diver-
sity (or both at the same) of non-dominated solutions pro-
duced by EMOAs [14], [41], [42]. Particularly, a proper
PF representation of a MOP can be reached by adopting the
hypervolume indicator [12] or, if there exists an appropriate
PF discretization of the MOP, indicators based on
reference sets such as R2 [13], IGD [15], or 1p

FIGURE 1. Hypervolume indicator. Let A = {z1, z2, · · · , z8} be a set of
non-dominated solutions and yref be a reference point. Then, the light
blue area is the hypervolume of A.

indicator [43]. Despite the difficult task of constructing a
reference set to be employed in the search process of IBEAs,
several researchers have innovated strategies for a proper
construction of the reference set in this type of IBEAs, see
the investigations reported for IGD/IGD+ [44], R2 [45]–
[47], and 1p indicator [16]–[18]. In contrast, hypervolume-
based approaches only require a single reference vector to
compute the hypervolume which results much more comfort-
able to estimate. Unfortunately, hypervolume-based IBEAs
are limited by the high computational cost of the hypervol-
ume indicator which increases as the number of objectives
increases. Nonetheless, an advantage of using IBEAs based
on hypervolume is that they can deal with different Pareto
front geometries, including convex, concave, mixed, discon-
nected and degenerated shapes. It is worth noticing that the
above approaches have difficulties when dealing with MOPs
in high-dimensional objective spaces. In [48], Schutze et al.
discussed the hardness to solve many-objective optimization
problems.

III. RELATED WORK
The hypervolume indicator (or S metric) was introduced
in [12] to evaluate the performance behavior of EMOAs. It is
defined as the space size covered by a set of non-dominated
solutions (see Figure 1). Initially, this performance measure
was adopted into the environmental selection procedure of
the well-known IBEA [10]. IBEA estimates the hypervol-
ume contribution of a solution by aggregating the pairwise
hypervolume difference between the target solution and other
solutions, as illustrated in Figure 2, where solution z5 has
a lower hypervolume contribution than solution z4. Thus,
solutions with less hypervolume contribution are removed
from the current population. This idea of removing the
worst solutions according to their hypervolume contribu-
tions has so far been employed in different ways by several
researchers. Knowles and Corne [49] introduced a bounded
external archive to store the non-dominated solutions found
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FIGURE 2. Hypervolume contribution. Let A = {z1, z2, · · · , z8} be an
approximation to the Pareto optimal set and yref be a reference point.
Then, the green area is the hypervolume contribution of solution z4
because this area is only dominated by solution z4. Similarly, the pink
area is the hypervolume contribution of solution z5.

throughout the search of an EMOA. If the number of allowed
solutions is overcome, the archive is pruned by using Pareto
ranking as the first criterion and the hypervolume contri-
bution of each solution is employed as the second crite-
rion. Analogously, Huband et al. [50] employed an evolution
strategy based on hypervolume. The environmental selection
procedure uses Pareto ranking as the primary selection crite-
rion and the hypervolume contributions as a second selection
criterion. Beume et al. [11] and Emmerich et al. [51] pro-
posed the SMS-EMOAbased on the NSGA-II [4] framework.
SMS-EMOA generates only one offspring solution by
iteration. Consequently, the environmental selection of
SMS-EMOA applies Pareto ranking of NSGA-II. If the last
front has more than one solution, SMS-EMOA uses the
hypervolume contributions to discard theworst solution in the
population. Igel et al. [52] extended the use of CMA-ES [53]
to deal with multi-objective problems (the well-known
MOCMA-ES). The environmental selection in MOCMA-ES
uses Pareto ranking as a primary selection criterion and
crowding distance as the second criterion. When Pareto rank-
ing could no longer discard solutions (all solutions are non-
dominated), the hypervolume contribution is used to remove
solutions as in the strategies described above. Other tech-
niques using similar methodologies of the above approaches
can be found in [23], [24], [54], and [55]. Despite the design
of the different hypervolume-based EMOAs reported in the
literature, the high computational cost of the hypervolume
computation continues being the main limitation of these
evolutionary approaches. Nonetheless, to alleviate in some-
how this problem, several strategies have been investigated.
Some of these approaches are for instance the hypervolume
by slicing objectives (HSO) [56], the recursive pruning of
trees introduced by Fonseca et al. (FPL) [57], the quick
hypervolume (QHV) of Russo and Francisco [58], and the
walking fish group (WFG) hypervolume algorithm [59].

On the other hand, studies to obtain the hypervolume con-
tribution of a solution without computing the exact hyper-
volume have also been studied by some researchers, see the
strategies reported in [60]–[63]. The hypervolume computa-
tion is an NP-hard problem which cannot be computed in
polynomial time [20], [61], [64]. As a consequence, sev-
eral researchers have preferred to approximate the hyper-
volume instead of its exact computation. Examples of these
approaches are the Monte Carlo sampling methods proposed
by Bader et al. [22] and Bader and Zitzler [65] and the
achievement scalarizing functions-based methodologies pro-
posed by Ishibuchi et al. [66], [67]. Although these methods
have reduced the computational time of IBEAs based on
hypervolume, the performance quality of such approaches is
compromised.

In [68], Menchaca-Mendez and Coello Coello pointed out
an apparent disadvantage of most of the hypervolume-based
EMOAs: they need to calculate the hypervolume contribu-
tion of all individuals in the population when all solutions
in the population are non-dominated. This fact causes that
these EMOAs require a considerable computation time in
the search, even impractical in MOPs with more than five
objectives. To address this weakness, Menchaca-Mendez
and Coello Coello [68] proposed a new selection scheme
that calculates three hypervolume contributions: (i) the
new individual, (ii) its closest neighbor from the current
population, and (iii) an individual chosen randomly from the
current population. This is possible because of the locality
property of the hypervolume indicator [69]. In a more recent
work, Menchaca-Mendez et al. [70] studied the possibility
of reducing the calculations of hypervolume contributions
by discarding the selection of random individuals. To this
end, they define a new parameter: the probability of using
the randomly selected individual (prsi) which was tuned with
the tuning method EVOCA [71]. As we mention before,
hypervolume-based EMOAs are a viable alternative to solve
real-world MOPs because they do not need extra information
about the problem. In contrast, EMOAs based on refer-
ence sets or based on decomposition need the definition of
additional components that cannot be adequately defined
beforehand (e.g., the reference set and the weight
vectors set). However, themain disadvantage of hypervolume-
based EMOAs is their high computational cost. For this rea-
son, in this paper, we focus our research on the design of a new
framework which can be adapted to any hypervolume-based
EMOA in order to reduce the effort involved in calculations
of hypervolume contributions. As we will see later on, our
proposed approach can approximate the Pareto front of a
problem by calculating two or three hypervolume contribu-
tions per iteration. This, in fact, can significantly reduce the
computational cost of hypervolume-based EMOAs on many-
objective optimization problems.

In the following sections, we introduce the proposed
hypervolume-based EMOA and the exhaustive empirical
study that we carried out to justify the components stated in
our proposed approach.
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IV. PROPOSED APPROACH
As we mentioned in the above sections, most of IBEAs
based on hypervolume indicator become inefficient because
calculating the hypervolume contributions is computationally
expensive. Two IBEAs suggest to reduce up to two or three
contributions per iteration, instead of considering to compute
the contributions of all individuals in the population (usu-
ally more than 100 individuals) are iSMS-EMOA [68] and
iSMS-EMOA II [70].

iSMS-EMOA generates an individual at each iteration
by using the crossover and mutation operators used by
NSGA-II [4]. After that, iSMS-EMOA applies its environ-
mental selection procedure by considering: 1) the hypervol-
ume contribution of the new individual, 2) the hypervolume
contribution of the nearest neighbor of the new individual,
and 3) the hypervolume contribution of a randomly selected
individual from the current population. Then, iSMS-EMOA
removes the individual with the lowest contribution of the
above-concerned individuals. This process is carried out by
a determined number of iterations. When the new individual
is competing with its nearest neighbor, the locality property
of the hypervolume indicator is implicitly employed.

The idea behind iSMS-EMOA is to increase the hyper-
volume contribution of the solutions set by local move-
ments between neighboring solutions. However, as pointed
out in [68], there exist MOPs for which it is difficult to
generate solutions in some regions of the objective space
that could increase the hypervolume contribution of the
solutions set. Therefore, if the new individual is located in
these regions, it is better to retain both, i.e., the new solu-
tion and its nearest neighbor. For this reason, the randomly
selected individual plays an important role. Following a
similar idea, iSMS-EMOA II introduces a probability prsi
to be considered in its environmental selection procedure.
iSMS-EMOA II simulates to flip a heavy coin to decide if
the randomly selected individual participates in the com-
petition. To set the prsi value, iSMS-EMOA II defines two
optimization problems. The first one is to maximize: IHv(A)
where IHv refers to the hypervolume indicator, and
A is the current Pareto front approximation obtained
by iSMS-EMOA II. The second objective is to minimize:
NCHv(A) such that IHv(A) > ε, where NCHv(A) is the number
of computations of the hypervolume contributions required
to obtain A and ε is the minimum required quality of A
regarding IHv. In other words, iSMS-EMOA II minimizes
the number of hypervolume computations NCHv avoiding to
affect strongly the hypervolume indicator IHv (i.e., the quality
of solutions). The above optimization problems are solved
by a suitable setting of parameter prsi which is tuned using
EVOCA tuner [71].

The prsi values found by EVOCA for the second prob-
lem (i.e., the minimization problem) are shown in Table 1.
The experimental tuning in iSMS-EMOA II was carried out
adopting four MOPs taken from the DTLZ [72] test suite
(DTLZ1, DTLZ2, DTLZ4, and DTLZ7) and three MOPs
taken from the Walking-Fish Group (WFG) test suite [73]

TABLE 1. prsi values when iSMS-EMOA II minimizes the number of
computations of the IHv contributions.

(WFG1, WFG2, and WFG4). The above MOPs were used by
considering between three and five objective functions. These
test problems have different characteristics: DTLZ1 has a
linear PF, and it is multimodal. DTLZ2 and DTLZ4 have a
concave PF, and they are unimodal but DTLZ4 tests EMOAs
ability to maintain proper distribution of solutions.
DTLZ7 has a disconnected PF. WFG1 is unimodal, but it has
flat regions, and it is strongly biased towards small values
of the variables, which makes very difficult its resolution.
WFG2 is nonseparable and multimodal, and it has a discon-
nected PF. Finally, WFG4 has a concave PF, and it is highly
multimodal.

Table 1 shows that each MOP needs a different value
for prsi, i.e. the value of prsi strongly depends on the character-
istics of the MOP (number of objective functions, geometry
of PF, difficult landscapes, etc.). The latter is a significant dis-
advantage because it means that for each MOP it is necessary
to set prsi with EVOCA, and it becomes even more expensive
than calculating the contributions of all individuals in the
population at each iteration of the algorithm. For this reason,
in this work, we propose to implement an adaptive control
strategy to vary the prsi value during the search process as
follows:
• First, let N be the population size, then, one generation
is completed after generating N offspring individuals.

• Second, the randomly selected individual (denoted by
xrsi) is used to allow that both the new individual and its
nearest neighbor survive. It is with the aim to improve
diversity when the new individual is in a sparsely popu-
lated region. If an individual is randomly selected from
the current population and there are highly populated
regions, it is very probable that this individual is in one of
these regions and then its hypervolume contribution will
be small. When the three individuals compete (the new
individual, its nearest neighbor, and a randomly selected
individual), the randomly selected individual will lose,
and the new individual and its nearest neighbor will
survive in the population. Therefore, we say that the
randomly selected individual is successfully employed if
it allows that the new individual and its nearest neighbor
survive.

• Third, the following probabilistic analysis is consid-
ered. Suppose that after generating N individuals, it is
observed that xrsi was successfully used during p × N
times, i.e. p is the probability that xrsi will be successful.
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Therefore, if the same experiment is repeated but now
using prsi to decide if xrsi is employed at each compe-
tition, it is expected that prsi × p × N times, xrsi will
be successfully employed. Then, the number of times
that xrsi was not used, and it could have been used
successfully is (1−prsi)×p×N , i.e., if it is expected that
xrsi will be used successfully at least 90% of the times
that it is successful, prsi should be equal to 0.9.

• Fourth, it is assumed that xrsi is useful if it is successfully
used in at least some percentage ps of the times that it
was employed.

• Fifth, if xrsi is useful, it is wanted that xrsi will be used
the 100% of times that it was successful, and then prsi
is equal to 1.0. Otherwise, xrsi will be used for at least
some percentage (per) of times that it was successful
and per will decrease in a linear way. Therefore, it is
proposed to set prsi = ratio×p at each generation where
p = x

y , x is the number of times that xrsi was successful
and y is the number of times that xrsi was used in the
competition. ratio must be set according to the value
of ps, e.g. if it is considered that xrsi is useful when ps
is at least 50% (i.e. p ≥ 0.5), then ratio must be equal
to 2.

• Sixth, the first generation always uses prsi = 1.0, and in
next steps, the information of the previous generation is
used to update the value of prsi. If prsi > 1, we set it to
1.0. If prsi < 0.1, we set it to 0.1.With this, the algorithm
always makes use xrsi, even prsi can increase again if the
search requires it.

Algorithm 1 shows the Improved SMS-EMOA with Adap-
tive Resource Allocation (iSMS-EMOA-ARA). To con-
trast the main differences with respect to iSMS-EMOA II,
we highlight the additional steps in Algorithm 1. In line 1,
control indicators are initialized. In line 5, a completed gen-
eration is identified and the prsi rate is updated. The control
indicators x and y are updated in lines 15 and 23, respectively.
Now a new question arises: what is the proper value for the
ratio parameter? In the next section, we shall address this
issue.

A. COMPUTATIONAL COST
It is well known that computing the IHv indicator or the con-
tribution to it has an exponential complexity [64]. Therefore,
all hypervolume-based EMOAs have exponential complex-
ity. However, the runtime required by each hypervolume-
based EMOA can vary significantly. Let THv and N be
the time required to compute the hypervolume contribution
and the population size of the hypervolume-based EMOA,
respectively.
• Pioneers EMOAs based on hypervolume, such as
SMS-EMOA, need to calculate N 2 hypervolume con-
tributions per generation. Thus, each time that a new
offspring solution is generated, the hypervolume contri-
bution of each individual in the population is computed.
Thus, the individual with the smallest hypervolume
contribution is removed from the current population.

Algorithm 1 iSMS-EMOA-ARA
Input : pc and ηc (parameters for the crossover

operator), pm and ηp (parameters for the
mutation operator), N (size of the population),
Ngen (maximum number of generations: it is
considered a new generation after N iterations
of the algorithm) and the MOP to be solved.

Output: A (the approximated Pareto front).
1 prsi← 1.0, x ← 1, y← 1;
2 Generate a random initial population (A);
3 n← 1;
4 while n <= N · Ngen do
5 if n mod N = 0 then
6 prsi← min(1.0, ratio · xy );
7 prsi← max(prsi, 0.1);
8 x ← 0, y← 0;

9 Select randomly two individuals from A (x1 and x2);
10 Obtain an offspring (xnew) from x1 and x2, applying

the operators of NSGA-II (crossover and mutation);
11 nearest ← Index of the nearest neighbor to xnew in

A;
12 Cnew

Hv ← hypervolume contribution of xnew;
13 Cnearest

Hv ← hypervolume contribution of xnearest ;
14 if rand(0, 1) < prsi then
15 y← y+ 1;
16 random← Index of a randomly selected

individual from A (such that nearest 6= random);
17 Crandom

Hv ← hypervolume contribution of xrandom;
18 if Cnew

Hv is better than Cnearest
Hv or Crandom

Hv then
19 if Crandom

Hv > Cnearest
Hv then

20 Replace xnearest with xnew;
21 else
22 Replace xrandom with xnew;
23 x ← x + 1;

24 else
25 if Cnew

Hv > Cnearest
Hv then

26 Replace xnearest with xnew;

27 n← n+ 1;

28 return A;

Considering one generation when N offspring solutions
are generated, the computational complexity of
SMS-EMOA, per generation, is O(N 2 THv).

• iSMS-EMOA needs to calculate 3N hypervolume con-
tributions per generation. Thus, each time that a new
offspring solution is generated, it is necessary to com-
pute the hypervolume contribution of the new solution,
its closest neighbor, and a randomly chosen individual
from the current population. Considering one generation
when N offspring solutions are generated, the compu-
tational complexity of iSMS-EMOA, per generation,
is O(3NTHv).
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• iSMS-EMOA II and iSMS-EMOA-ARA can calculate
less than 3N hypervolume contributions per genera-
tion. It depends on the parameters values that control
such EMOAs (prsi for iSMS-EMOA II and ratio for
iSMS-EMOA-ARA). In the case of iSMS-EMOA II,
the parameter prsi is tuned with the tuning method
EVOCA which implies to execute iSMS-EMOA II
a number (K ) of times. Considering one generation
when N offspring solutions are generated, the compu-
tational complexity of iSMS-EMOA II, per generation,
is O(3NKTHv). On the other hand, the parameter ratio
in iSMS-EMOA-ARA is adaptively stated during the
search. Therefore, iSMS-EMOA-ARA has a computa-
tional complexity, per generation, of O(3NTHv) which is
much lower than the other hypervolume-based EMOAs.

V. STUDY OF RATIO PARAMETER
The purpose of these experiments is to validate the applica-
bility of our approach on a variated of test problems reducing
calculations of hypervolume contributions without deteriorat-
ing the quality of solutions.

For this task, we designed an experimental study to eval-
uate the significant deterioration in the quality of results
concerning the reduction of hypervolume calculations pro-
duced by changes on the ratio parameter. In this scenario,
a new multi-objective problem appears. The two objectives
considered in this case are the maximization of hypervolume
and minimization of calculations of hypervolume contribu-
tions. These two objectives are conditioned to the calibration
of parameter ratio. Hence, we can consider it as a multi-
objective tuning problem. In general, the hypervolume indi-
cator and the number of hypervolume calculations increase
as the ratio value increases.

To find the Pareto calibrations set to solve this multi-
objective tuning problem we used MO-ParamILS [74] and
the same MOPs used by iSMS-EMOA II. More precisely,
we adopted four MOPs taken from the DTLZ [72] test suite
(DTLZ1, DTLZ2, DTLZ4, and DTLZ7) and three MOPs
taken from the Walking-Fish Group (WFG) test suite [73]
(WFG1, WFG2, and WFG4). The concerning test problems
were employed using between three and five objective func-
tions. These test problems were selected because they have
different features and it allows us to evaluate the proposed
approach in several scenarios. In the next sections, we intro-
duce MO-ParamILS tuning method used in our experiments,
the concerned tuning scenarios, the results and conclusions
of our adaptive approach.

A. MO-ParamILS
Tuning methods have demonstrated their ability to set param-
eter values for metaheuristics [75]. MO-ParamILS method
is based on the well known ParamILS [76] approach.
MO-ParamILS as ParamILs defines the dominance concept.
In this case, it corresponds to the dominance concept defined
in the multi-objective field: A parameter calibration c dom-
inates a calibration c’ if and only if F(c) dominates F(c’),

with F(·) the objective functions of the multi-objective tuning
process.

MO-ParamILS executes an iterated local search process.
Algorithm 2 shows its pseudocode. The process starts with a
set of default parameter calibrations (line 1). These parameter
calibrations are combined with a set of randomly gener-
ated calibrations (from lines 2 to 5). Dominated calibrations
are removed during the archiving process. The set of non-
dominated calibrations obtained from this process are used
as initial archive (line 8).

At each iteration, a single parameter calibration from the
current archive is selected (line 15). After a sequence of s
1-exchange modifications, the resulting calibration is stored
as a new archive (line 18) from which the next local search
phase starts. During the local search phase, all parameter
calibrations are explored individually. All non-dominated
calibrations found in their neighborhoods are added to the
current set of solutions (line 19). MO-ParamILS also includes
a restart probability that replaces the current archive by a
randomly generated parameter calibration (lines 10 to 13).

In our experiments, we used the MO-FocusedILS
version where comparisons between parameter calibrations
consider both, the indicator quality and the number of exe-
cutions required to reach it [76]. Additional executions were
performed until either of two calibrations being compared
dominates another. Intensification was promoted by increas-
ing the number of executions of parameter calibrations.
MO-ParamILS parameters where fixed according to authors
recommendations: r = 10, s = 3, prestart = 0.01.

B. MULTI-OBJECTIVE TUNING SCENARIO
In our experiments, we tuned the ratio parameter consid-
ering nine possible values between 1 and 20. We selected
ratio ∈ {1, 2, 5, 8, 10, 12, 15, 18, 20}. A multi-objective tun-
ing procedure was executed for each MOP to analyze the
behavior of the proposed iSMS-EMOA-ARA in scenarios
with different features. As stopping criteria, we considered a
maximum effort of executions of parameter calibrations on
the approximated Pareto calibrations set of 300 runs. This
budget was set to limit the effort according to the cost of
comparing all these parameter calibrations using 30 different
random seeds.

Figs. 3–9 show the Pareto calibration fronts found on
each studied MOP considering between three and five objec-
tive functions. Since we aim to maximize the hypervolume,
we minimize −IHv. Also, we normalized the hypervolume
values to fit plots with 3, 4, and 5 objectives in the same
figures. From these figures, we can see that in almost all
the test problems high values for ratio imply a higher hyper-
volume value but also a higher number of calculations of
hypervolume contributions. On the other hand, low values for
ratio imply savings of calculations of hypervolume contribu-
tions but compromising the quality of solutions. Therefore,
we can conclude that effectively these two objective functions
(i.e., maximize IHv and minimize NCHv) are in conflict.
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Algorithm 3 MO-ParamILS
Input : Initial archive Ai, parameters r (number of tries

to generate random parameter calibrations), s
(number of random perturbations of parameter
calibrations) and prestart (probability of restart
the tuning process.)

Output: Acurr (the approximated Pareto calibrations set).
1 Acurr ← initial set of parameter calibrations;
2 for i← 1 . . . r do
3 c← random parameter calibration;
4 update(Acurr , c);
5 archive(Acurr , c);

6 repeat
7 if first iteration then
8 A′← Acurr ;

9 else
10 if prestart then
11 c← random parameter calibration;
12 Acurr ← {c};
13 A′← Acurr ;

14 else
15 c← random calibration from Acurr ;
16 for i← 1 . . . s do
17 c′← random neighbor of c;

18 A′← {c′};

19 A← local search (A′);
20 for c ∈ A do
21 update(Acurr , c);
22 archive(Acurr , c);

23 until termination criterion is met;
24 return Acurr ;

In DTLZ7 with 3, 4, and 5 objectives, WFG2 with 3 and
4 objectives, and WFG4 with 4 objectives, MO-ParamILS
obtained a single solution in each Front with a ratio equal
to 1. This means that for these MOPs the use of the randomly
selected individual is significant at the beginning of the search
but probably its relevance decreases quickly and, at the end
of the search, the randomly selected individual is not useful.
Only in WFG2 with 5 objectives, MO-ParamILS obtained a
single ratio equal to 20. This means that in this MOP it is
necessary the use of the randomly selected individual during
the entire search process.

For problems in which there was a conflict between maxi-
mizing the hypervolume indicator and minimizing the calcu-
lations of hypervolume contributions, we can consider that
these two objectives have the same importance and thus,
we can select the solution in the knee or close to the knee
of the Pareto calibrations front. For DTLZ1, DTLZ2, and
WFG1 solutions with ratio equal to 2 or 5 were close to the
knee (see Figs. 3, 4, and 7) . For DTLZ4, solutions with ratio

FIGURE 3. Pareto calibrations fronts of DTLZ1.

equal to 5 or 8 were close to the knee (see Fig. 5). Finally,
for WFG4, solutions with ratio equal to 1 or 2 were close to
the knee (see Fig. 9). From this, we can say that it is a good
choice to use a ratio = 5 for all MOPs because with this
value, we can obtain a solution near to the knee or even above
it, i.e., we can obtain a better quality in the Pareto calibrations
front. DTLZ4 with 5 objectives was the unique exception
because its ratio value was below the knee but above of the
calibration with the worst hypervolume value. In this way,
we can use a ratio = 5 for any MOP and then we can save
calculations of the hypervolume contribution because the user
should not provide this parameter.

C. BEHAVIOR OF iSMS-EMOA-ARA
In Section V-B, we concluded that it is possible to use a
ratio value equal to 5 for solving any MOP. Since ratio value
is used to adjust the parameter prsi as the search progress.
Figs. 10 and 11 show the convergence plots for this parameter
in all testMOPs, using 3, 4, and 5 objective functions. In these
plots, we can see that as the search progresses the value of
prsi decreased, i.e., the randomly selected individual is less
useful as the search continues. This remark is crucial because
it corroborates the study presented in [68].
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FIGURE 4. Pareto calibrations fronts of DTLZ2.

Another important behavior to observe is that the speed
with which prsi decreased depends on the MOP being solved,
e.g., for DTLZ1 the value of prsi stayed above 0.5 during the
first 200 generations and reached a value of 0.1 around to
generation 350. However, for DTLZ2, DTLZ4, and DTLZ7,
prsi reached a value equal to 0.1 at generation 100 approx-
imately. This behavior can be explained because DTLZ1 is
highly multimodal and it is known that it generates many
weakly dominated solutions. In WFG1, we can observe a dif-
ferent behavior because prsi varied between 0.1 and 0.25 con-
stantly during most of the search. Also, this remark is impor-
tant because, in WFG1, it is difficult to generate solutions
in some areas of the PF, so it was expected that the role of
prsi would be significant and the observed behavior reflected
this difficulty. WFG2 has a similar behavior than WFG1,
prsi varied between 0.1 and 0.3 from generation 50 to gen-
eration 300 and between 0.1 and 0.2 at the end of the search.
Finally, in WFG4 we can observe that in the first 200 gener-
ations the value of prsi was also going up and down, but for
the last 300 generations it was more stable.

Therefore, we can conclude that our proposal to adjust
prsi during the search is successful because it can deal
with different types of MOPs and it does not need extra
information (we can use a ratio equal to 5 for any
problem).

FIGURE 5. Pareto calibrations fronts of DTLZ4.

TABLE 2. Recommended values for parameters for iSMS-EMOA-ARA.

VI. EXPERIMENTAL STUDY
In this section, we compare the proposed iSMS-EMOA-ARA
regarding the iSMS-EMOA and iSMS-EMOA II which are
two algorithms that adopt the local property of hypervolume
to reduce the number of hypervolume computations. Our
experimental study was carried out by performing 30 inde-
pendent runs for each EMOA on the test problem under
consideration. For all EMOAs, we adopted the Simulated-
Binary Crossover (SBX) and the Polynomial-Based Muta-
tion (PBM)mutation used by NSGA-II [4]. Table 2 shows the
parameters used by iSMS-EMOA-ARA. pc, ηc, pm and ηm are
parameters of crossover and mutation operators, respectively.
Since they are taken from NSGA-II, we use the values sug-
gested by its authors [4]. N and n denote the population size
and the number of decision variables, respectively. It is well
known that SMS-EMOA needs to compute N 2 hypervolume
contributions per generation. Therefore, the time consump-
tion of this algorithm became extremely high using large
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FIGURE 6. Pareto calibrations fronts of DTLZ7.

FIGURE 7. Pareto calibrations fronts of WFG1.

populations. As we consider meaningful the comparison of
iSMS-EMOA-ARA against a symbolic hypervolume-based
EMOA such as SMS-EMOA, we use N = 100 as shown
in Table 2. Ngen is the number of generations performed by
each algorithm. We use Ngen = 500 because the adopted

FIGURE 8. Pareto calibrations fronts of WFG2.

FIGURE 9. Pareto calibrations fronts of WFG4.

test problems need at least 50,000 fitness function evalua-
tions to find an approximate PF with good quality. Finally,
ratio is a parameter exclusively used by iSMS-EMOA-
ARA, the experiments reported in Section V indicate that 5 is

VOLUME 6, 2018 63391



A. Menchaca-Méndez et al.: Improved S-Metric Selection EMOA With Adaptive Resource Allocation

FIGURE 10. prsi convergence in DTLZ test problems: Mean of 30 independent runs (in iSMS-EMOA-ARA) at each
generation.

a suitable value for this parameter. We used the same val-
ues for pc, ηc, pm, ηm, N and Ngen for all EMOAs under
comparison.

A. ADOPTED TEST PROBLEMS
In our experimental study, we employed the test problems
adopted in the adjustment of the ratio parameter. In this
regard, we employed four test problems taken from the Deb-
Thiele-Laumanns-Zitzler (DTLZ) test suite [72] (DTLZ1,
DTLZ2, DTLZ4, and DTLZ7) using standard parameters,
i.e., k = 5 for DTLZ1 and k = 10 for the rest of the problems.
Additionally, we adopted three test problems taken from the
WFG toolkit [73] (WFG1,WGF2, andWGF4) using standard
parameters, i.e., kfactor = 2 and lfactor = 10.

B. PERFORMANCE INDICATORS
In the specialized literature, we can find a wide variety of per-
formance indicators to evaluate the performance of EMOAs.
However, it is worth noticing that the use of reference-based
indicators (e.g., IGD,1p indicator, etc.) requires a discretiza-
tion of the real PF. Since we are evaluating the performance of
our proposed approach in many-objective problems, the con-
struction of a proper PF discretization is by itself a hard
problem. Instead, the hypervolume indicator and the C-metric
do not require the real PF, and they are Pareto compliant
(i.e., they perfectly hold with the Pareto optimality) being

a high advantage against reference-based indicators which
are not compliant concerning Pareto optimality. For these
reasons, we evaluate the performance of the proposed
iSMS-EMOA-ARA using these two performance indicators.

1) HYPERVOLUME INDICATOR
The hypervolume performance indicator (IHv) was introduced
in [12] to assess the performance of EMOAs. This perfor-
mance indicator is Pareto compliant [14], and quantifies both
proximity and distribution of non-dominated solutions along
the PF. The hypervolume corresponds to the non-overlapped
volume of all the hypercubes formed by a reference point yref
(given by the user) and each solution z in the PF approxima-
tion (A). Hypervolume indicator is mathematically stated as:

IHv(A) = L
(⋃
z∈A

{x|z ≺ x ≺ yref }

)
(3)

where L denotes the Lebesgue measure and yref ∈ RM
denotes a reference vector being dominated by all solutions
in A.

In our experimental study, the IHv indicator was computed
on the normalized PF approximation achieved by an EMOA.
The normalization of the PF approximationwas carried out by
considering all the PF approximations reached by the EMOAs
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FIGURE 11. prsi convergence in WFG test problems: Mean
of 30 independent runs (in iSMS-EMOA-ARA) at each generation.

on the test problem under consideration. Thus, we employed
r = (1.1, . . . , 1.1) as reference point.

2) SET TWO COVERAGE
The Set Two Coverage (or C-metric) was proposed by
Zitzler et al. [77], and it compares a set of non-dominated
solutions A with respect to another set B, using Pareto domi-
nance. This performance measure is defined as:

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(4)

If all points in A dominate or are equal to all points in B,
this implies that C(A,B) = 1. Otherwise, if no point

of A dominates some point in B then C(A,B) = 0. When
C(A,B) = 1 and C(B,A) = 0 then, we say that A is better
than B. Since the Pareto dominance relation is not symmetric
(i.e. not always C(A,B) = C(B,A) is held), we need to
calculate both C(A,B) and C(B,A).

C. DISCUSSION OF RESULTS
In our comparative study, we elaborated a statistical analy-
sis using Wilcoxon’s rank sum to determine how an algo-
rithm statistically outperforms another one (the null hypoth-
esis ‘‘medians are equal’’ can be rejected at the 5% level,
H = 1) and how they have a similar behavior (the null
hypothesis cannot be rejected at the 5% level, H = 0).
It is worth noticing that this statistical test was applied to
compare two related samples, i.e., the results obtained by
two different algorithms. As we aim to compare the proposed
iSMS-EMOA-ARA regarding the state-of-the-art algorithms,
we applied this statistical test between iSMS-EMOA-ARA
and each EMOA adopted in our comparative study. In the
results tables (Tables 3 and 4), we added a column per each
adopted EMOA and we labeled this column as P(H ). In all
the tables, the best results are in boldface font. If the cell
corresponding to Algorithm A has a darker background than
the cell corresponding to Algorithm B and H = 1, it means
that Algorithm A obtained better results than Algorithm B.
In the case of H = 0, it means that both algorithms have
similar behavior.

Concerning iSMS-EMOA, we can see that in eleven prob-
lems iSMS-EMOA obtained better results than
iSMS-EMOA-ARA regarding the hypervolume indica-
tor. Nonetheless, the proposed iSMS-EMOA-ARA had a
similar behavior to iSMS-EMOA in ten test problems.
In Table 3, we can observe that in DTLZ1, DTLZ7, WFG2,
and WFG4 test problems, iSMS-EMOA-ARA achieved a
similar behavior to iSMS-EMOA. As we saw in the study
of the parameter ratio (Section V), the impact of the ran-
domly selected individual in DTLZ7 test problem was not
significant in all generations. Therefore, it is natural to have
similar behavior in this test problem for both EMOAs. On
the other hand, it is well know that DTLZ1 and WFG4 are
highly multimodal, and then, it is expected that an adequated
use of the randomly selected individual could avoid getting
stuck in local optima. Thus, we can say that the proposed
iSMS-EMOA-ARA suitably adjusted the prsi value. If we
look at Table 4, we can see that iSMS-EMOA-ARA saved
from 16.47% to 28.64% the computation of the hypervolume
contributions, i.e., it saved from 24,656 to 42,874 hypervol-
ume calculations. ForMOPs having five objectives (or more),
this could decrease the runtime up to an order of hours.

Regarding iSMS-EMOA II, we can observe that
iSMS-EMOA II and iSMS-EMOA-ARA had similar behav-
ior in twelve problems. On the other hand, iSMS-EMOA-
ARA was better than iSMS-EMOA II in seven test prob-
lems, and iSMS-EMOA II was better in two test problems.
Although Table 4 shows that iSMS-EMOA II saved a higher
amount of computations of the hypervolume contributions
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TABLE 3. Results obtained by iSMS-EMOA, iSMS-EMOA II, and iSMS-EMOA-ARA regarding IHv . We show average values over 30 independent runs. The
values in parentheses correspond to the standard deviations. P(H) shows the results of statistical analysis applied to our experiments using Wilcoxon’s
rank sum and considering IHv . P is the probability of observing that the null hypothesis ‘‘medians are equal’’ is true. H = 1 indicates that the null
hypothesis can be rejected at the 5% level.

TABLE 4. Results obtained by iSMS-EMOA, iSMS-EMOA II, and iSMS-EMOA-ARA with respect to the number of computations (NCHv ) of the hypervolume
indicator. We present the percentage of saving computations of CHv . We show average values over 30 independent runs. The values in parentheses
correspond to the standard deviations.

in most test problems, iSMS-EMOA II had to be executed
several times by EVOCA (for eachMOPunder consideration)
and then the required computational time was even greater
than the original iSMS-EMOA. Conversely, it is interesting to
see that iSMS-EMOA-ARA can adjust the value of prsi during
the search to obtain good results (considering both to achieve
a good quality of solutions and tominimize the calculations of

the hypervolume contributions). Therefore, we can conclude
that iSMS-EMOA-ARA is a good alternative to solve MOPs,
particularly in high-dimensional objective spaces.

So far, we have compared the proposed iSMS-EMOA-
ARA regarding iSMS-EMOA and iSMS-EMOA II. How-
ever, it could be interesting to compare the performance of
the proposed algorithm regarding the original SMS-EMOA
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TABLE 5. Results obtained by GDE3, MOEA/D-DE, NSGA3, SMS-EMOA and our iSMS-EMOA-ARA regarding IHv . We show average values over
30 independent runs. The values in parentheses correspond to the standard deviations. P(H) shows the results of statistical analysis
applied to our experiments using Wilcoxon’s rank sum and considering IHv . P is the probability of observing that the null hypothesis
‘‘medians are equal’’ is true. H = 1 indicates that the null hypothesis can be rejected at the 5% level.

(which is one of the most popular hypervolume-based
EMOAs) and other EMOAs based on different principles.
Thus, in our comparative study, we adopted three popular
state-of-the-art evolutionary approaches:
• The third evolution step of generalized differential evo-
lution (GDE3) [78], it is an EMOA based on Pareto
optimality and crowding distance. GDE3 is an effective
EMOA with a computational complexity per generation
ofO(N logM−1 N ) [78] (whereM denotes the number of
objectives).

• The multi-objective evolutionary algorithm based
on decomposition with differential evolution
(MOEA/D-DE) [36], it is one of the most powerful
EMOAs based on decomposition to deal with com-
plicated MOPs. Considering a neighborhood size T ,
MOEA/D-DE has a computation complexity per gen-
eration of O(TN ) with probability δ and O(N 2) with
probability 1 − δ. Considering the standard parameter
δ = 0.9, the computational complexity of MOEA/D-DE
becomes much lower than most of multi-objective
approaches found in the literature [36].

• The third version of the non-dominating sorting
genetic algorithm (NSGA3) [79], it is a recent MOEA
based on Pareto optimality and reference vectors.
It has a computational complexity per generation of
O(N 2 logM−2 N ) [79].

In all the algorithms, we employed the standard parameters
suggested by their respective authors.

Since SMS-EMOA can take a long time (up to five
hours) to approximate the Pareto front in problems having
more than four objectives, we have only employed the exact

computation of the hypervolume contributions in problems
with at most, four objective functions. In the case of prob-
lems with five objectives, we used the strategy proposed
in [65] to approximate the hypervolume contributions of a
set of non-dominated solutions. Table 5 shows the results
obtained by iSMS-EMOA-ARA and the adopted EMOAs
regarding IHv indicator. In this experimental study, we also
included a statistical analysis using Wilcoxon’s rank sum
to identify significant differences between the algorithms.
From these tables, we can see that EMOAs based on the
hypervolume indicator outperformed the EMOAs based on
the other principles in all DTLZ test problems andWFG4 test
problem. It is worth mentioning that SMS-EMOA and
iSMS-EMOA-ARA had similar behavior in seven test prob-
lems. On the other hand, iSMS-EMOA-ARA was better than
SMS-EMOA in eight problems meanwhile SMS-EMOAwas
better than iSMS-EMOA-ARA in six test problems. Since
SMS-EMOA calculates the exact hypervolume contributions
of each solution in the population, it had a high computational
cost, even much greater than iSMS-EMOA. SMS-EMOA
required at most 256 seconds to solve MOPs with three
objective functions and at most, 2,610 seconds to solveMOPs
with 4 objective functions. In another way, iSMS-EMOA
required at most 7 seconds and 89 seconds to approximate the
Pareto front of these problems, respectively. Regarding the
other EMOAs, we can see that the proposed iSMS-EMOA-
ARA is better than GDE3, MOEA/D-DE and NSGA3 in all
DTLZ test problems including WFG4. Note besides that for
WFG1 and WFG2, GDE3, MOEA/D-DE, and NSGA3 were
better than the proposed iSMS-EMOA-ARA. However, they
were also better than SMS-EMOA, it means that for these
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FIGURE 12. Two Set Coverage for GDE3, MOEA/D-DE, NSGA3, SMS-EMOA
and our iSMS-EMOA-ARA on the three-objective test problems.

test problems the environmental selection mechanism based
on IHv indicator was not a good alternative to deal with these
problems. Instead, it is suggested the use of decomposition-
based approaches which obtained better results.

The comparison among iSMS-EMOA, iSMS-EMOA II,
and iSMS-EMOA-ARA, was only carried out by using
the hypervolume indicator because these three EMOAs are
based on this indicator, and then, the comparison is fair.
However, when we compare GDE3, MOEA/D-DE, NSGA3,
SMS-EMOA, and iSMS-EMOA-ARA, it is desirable the use
of another indicator to corroborates the performance of any
algorithm. In order to compare the quality of Pareto front
approximations (in terms of dominance relation) between
pairs of EMOAs, we employed the binary C metric (or set
two coverage). Figs. 12–14 show the results of the evaluation
with the performance measure C. In order to illustrate the
general performance of the algorithms in comparison, simple
box plots are shown. The thick line represents the median
value, the upper and lower ends of the box are the upper and
lower quartiles, and the ends of the vertical line are minimum
andmaximumvalues, respectively.We computed the Cmetric
by comparing pairs of algorithms (i.e., C(A,B) and C(B,A)).
These values were obtained as average values of the compar-
isons of all independent runs of algorithm Awith all indepen-
dent runs of algorithm B. In the charts, we show the ratio of
solutions produced by iSMS-EMOA-ARA that dominate the
solutions produced by GDE3, MOEA/D-DE, NSGA3, and
SMS-EMOA, respectively. Each plot must be read as C(A,B),
where A denotes the algorithm in the row, and B the algorithm
in the column. Fig. 12 shows the results obtained by the
EMOAs in problems with three objectives. From this plot,
we can see that iSMS-EMOA-ARA obtained a better ratio
of solutions that dominate those produced by GDE3 and

FIGURE 13. Two Set Coverage for GDE3, MOEA/D-DE, NSGA3, SMS-EMOA
and our iSMS-EMOA-ARA on the four-objective test problems.

FIGURE 14. Two Set Coverage for GDE3, MOEA/D-DE, NSGA3, SMS-EMOA
and our iSMS-EMOA-ARA on the five-objective test problems.

MOEA/D-DE in most of the test problems. However, for
NSGA3 and SMS-EMOA, the quality of solutions (in terms
of Pareto relation) became very similar. This behavior is also
similar in problems with four objectives. iSMS-EMOA-ARA
achieved a better ratio of solutions that dominate the solu-
tions produced by GDE3 and MOEA/D-DE. Regarding
NSGA3 and SMS-EMOA, the performance of the propose
iSMS-EMOA-ARA become similar in terms of C metric.
The same behavior can be observed for problems with five
objectives. It is worth noticing that when the number of
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TABLE 6. Results obtained by GDE3, MOEA/D-DE, NSGA3, SMS-EMOA and our iSMS-EMOA-ARA regarding IHv . We show average values over
30 independent runs. The values in parentheses correspond to the standard deviations. P(H) shows the results of statistical analysis
applied to our experiments using Wilcoxon’s rank sum and considering IHv . P is the probability of observing that the null hypothesis
‘‘medians are equal’’ is true. H = 1 indicates that the null hypothesis can be rejected at the 5% level.

objectives increases, the ratio of solutions dominated by any
algorithm decreases. It does not mean that the algorithms
decrease their performance. When the values of C(A,B) and
C(B,A) are almost the same, and they are small, it means that
both algorithms are competitive regarding Pareto dominance
relation.

VII. TWO REAL-WORLD ENGINEERING PROBLEMS
FROM PRACTICE
After solving a number of test problems, we now apply the
proposed algorithm to a couple of engineering optimiza-
tion problems. Below, we describe the engineering problems
adopted in our comparative study.

A. CASE STUDY I: CRASH-WORTHINESS DESIGN
OF VEHICLES
The crash-worthiness design (CWD) problem of vehicles
aims to optimize the frontal structure of a vehicle for crash-
worthiness [80]. The thickness of five reinforced members
(t1, . . . , t5) around the frontal structure is chosen as design
variables. The multi-objective formulation of the problem
consists of: i) minimize the ‘‘mass of vehicle’’ (Mass); ii) min-
imize the deceleration during the ‘‘full frontal crash’’ (Ain),
which is proportional to biomechanical injuries caused to
the occupants; and iii) minimize the ‘‘toe board intrusion’’
(Intrusion) in the ‘‘offset-frontal crash’’, which accounts
for the structural integrity of the vehicle. Thus, the box-
constrained multi-objective optimization problem is written
as

minimize: f1(x) = Mass

minimize: f2(x) = Ain
minimize: f3(x) = Intrusion (5)

where x = (t1, t2, t3, t4, t5)ᵀ, such that 1mm ≤ ti ≤ 3mm, for
i ∈ {1, . . . , 5}. The mathematical formulation for the three
objectives can be found in the original study [80].

B. CASE STUDY II: LIQUID-ROCKET SINGLE ELEMENT
INJECTOR DESIGN
Liquid-rocket single element injector design (LSEID) prob-
lem has two primary goals: to improve its performance and to
enlarge its life [81]. A proper injector design can achieve such
goals. According to Vaidyanathan et al. [82], the objectives
to be considered for an optimal injector design consist of:
i) minimize the distance from the inlet ‘‘combustion length’’

(Xcc), where 99% of the combustion is complete; ii) mini-
mize the maximum temperature of the injector face, ‘‘face
temperature’’ (TFmax); iii) minimize wall temperature at 3in
(fourth probe) from the injector face ‘‘wall temperature’’
(TW4); and iv) minimize the maximum temperature on the
post tip of the injector ‘‘tip temperature’’ (TTmax). In its
original formulation [82], the LSEID problem considers the
above four objectives. More precisely, the box-constrained
many-objective optimization problem can be written as:

minimize: f1(x) = Xcc
minimize: f2(x) = TFmax
minimize: f3(x) = TW4

minimize: f4(x) = TTmax

where x = (α,1HA,1OA,OPTT )T , such that α is the
‘‘hydrogen flow angle’’ varying between 0◦ to 20◦; 1HA
is the ‘‘hydrogen area’’ increment with respect to the base-
line cross-section area (0.0186 in2) (increment varies from
0% to 25% of the baseline hydrogen area); 1OA denotes
the oxygen area decrement with respect to the baseline
cross-section area (0.0423 in2) of the tube carrying oxygen
(the area varies between 0% and (-40)% of the baseline area);
and OPTT is the oxidizer post tip thickness which varies
between X ′′ to 2X ′′, where X ′′ is the tip thickness with a
baseline value 0.01 in. The mathematical formulation of the
four objectives can be found in [81].

C. ANALYSIS OF RESULTS
In Table 6 we show the numerical values found by the
EMOAs concerning the hypervolume indicator. As can be
seen, the proposed iSMS-EMOA-ARA obtained a higher
hypervolume value than all the EMOAs under comparison
in the crash-worthiness design problem, i.e., CWD problem.
It means that the non-dominated solutions found by iSMS-
EMOA-ARA reached a better convergence and spread along
the PF. Moreover, iSMS-EMOA-ARA significantly outper-
formed all the EMOAs adopted in our comparative study
according toWilcoxon’s rank sum test with a p-value of 0.05.
However, for the liquid-rocket single element injector design
problem, i.e., LSEID problem, the best performance was
achieved by SMS-EMOA. Although in this real-world prob-
lem our proposed approach became significantly better than
GDE3, MOEA/D-DE, and NSGA3, iSMS-EMOA-ARA was
outperformed considerably by SMS-EMOA. However, it is
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FIGURE 15. Pareto front approximation achieved by iSMS-EMOA-ARA in
the CWD problem.

FIGURE 16. Parallel coordinates achieved by iSMS-EMOA-ARA for the
LSEID problem.

worth recalling that SMS-EMOA needs more computational
effort than iSMS-EMOA-ARA.

It is worth noticing that the hypervolume-based approaches
(i.e., SMS-EMOA and iSMS-EMOA-ARA) achieved a better
performance than the EMOAs based on different principles.
This remark suggests that hypervolume-based EMOAs can
adapt in a better way the shape of the Pareto front, i.e., most
of the Pareto front was adequately covered by these two
approaches. Fig. 15 shows the Pareto front approximation
achieved by iSMS-EMOA in the CWD problem, while that
the parallel plots in Fig. 16 give an idea of the objective space
regions covered by iSMS-EMOA in the LSEID problem.

VIII. CONCLUSIONS
Hypervolume-based EMOAs are an attractive alternative to
solve MOPs because of two main reasons: (i) hypervolume
indicator is Pareto compliant, and hence, maximizing it yields
a good-quality approximation of the Pareto front of a MOP,
and (ii) it does not need extra information, which is especially
important in real-world applications where the features of the
problem are unknown. Arguably, the main disadvantage of
this type of EMOAs is that we cannot compute the hyper-
volume indicator in polynomial time. For this reason, some
researchers aim to reduce the number of hypervolume compu-
tations. In this work, we have proposed an adaptative control
strategy to reduce the number of hypervolume contributions
per iteration of a hypervolume-based EMOA. We compared
iSMS-EMOA-ARA against its predecessors: iSMS-EMOA

and iSMS-EMOA II employing standard benchmark test
problems taken from the DTLZ andWFG test suites. Accord-
ing to results, we observed that iSMS-EMOA-ARA obtained
good-quality approximate Pareto fronts, saving up to 28 per-
cent of the hypervolume computations. This means that
iSMS-EMOA-ARA achieved to adjust the value of prsi suc-
cessfully. We also compared iSMS-EMOA-ARA against the
original SMS-EMOA and other three EMOAs based on dif-
ferent principles: GDE3, MOEA/D-DE, and NSGA3 using
the same test problems. iSMS-EMOA-ARA achieved a better
performance than SMS-EMOA in the most problems, and it
required much lower computational time. Regarding GDE3,
MOEA/D-DE and NSGA3, iSMS-EMOA-ARA was the best
EMOA inDTLZ test problems includingWFG4 test problem.
For WFG1 and WFG2 test problems, GDE3, MOEA/D-DE,
and NSGA3 were better than iSMS-EMOA-ARA. However,
they were also better than the original SMS-EMOA and
then we concluded that these two problems are difficult for
hypervolume-based EMOAs.

Finally, we evaluated the proposed approach on two
engineering problems: Crash-Worthiness Design of Vehicles
(CWD) and Liquid-rocket Single Element Injector Design
(LSEID). In the CWD problem, iSMS-EMOA-ARA was
better than SMS-EMOA, GDE, MOEA/D-DE and NSGA3.
In the case of the LSEID problem, iSMS-EMOA-ARA
was better than GDE, MOEA/D-DE, and NSGA3 but
SMS-EMOA was better than iSMS-EMOA-ARA. How-
ever, it is worth recalling that SMS-EMOA has a higher
computational cost that iSMS-EMOA-ARA. Therefore,
iSMS-EMOA-ARA is a promising alternative for solving
problems with a high number of objectives. As a conclusion,
we can say that the proposed approach is an excellent alter-
native to deal with multi-objective optimization problems for
three main reasons: i) it is competitive with respect to state-
of-the-art EMOAs based on hypervolume, ii) it does not need
extra information of the problem (which is particularly essen-
tial when solving real-world applications) and iii) its compu-
tational cost is much lower than the other hypervolume-based
EMOAs. As part of our future work, it is desirable to explore
other ways to adjust prsi, in iSMS-EMOA-ARA, during the
search process.We also consider exploring different selection
schemes to be used into iSMS-EMOA. We hypothesized that
to use a neighborhood of solutions in the environmental selec-
tion scheme of iSMS-EMOA-ARA could improve the quality
of results. However, this fact will increase the computational
cost of the algorithm. Nonetheless, this is in fact, a possible
path for future research.
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