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ABSTRACT
Source code plagiarism can be identified by analyzing sim-
ilarities of several and diverse aspects of a pair of source
code. In this paper we present three types of similarity fea-
tures that account for three aspects of source code docu-
ments, particularly: i) lexical, ii) structural, and iii) stylis-
tics. From the lexical view, we used a character 3-gram
model without considering reserved words for the program-
ming language in revision. For the structural view, we pro-
posed two similarity metrics that take into account the func-
tion’s signatures within a source code, namely the data types
and the identifier’s names of the function’s signature. The
third view consists on accounting for several stylistics’ fea-
tures, such as the number of white spaces, lines of code,
upper letters, etc. Accordingly, we proposed 8 similarity
features to represent pairs of source code in order to, under
a supervised approach, identify plagiarized pairs of source
codes. We use a set of more than 32000 source code doc-
uments from Java and C to perform our experiments. The
results show the pertinence of our set of features to identify
plagiarism for source code documents that satisfy particular
conditions, such as, source code that solve difficult prob-
lems.

CCS Concepts
•Information systems → Content analysis and fea-
ture selection; Near-duplicate and plagiarism detec-
tion; •Applied computing → Document analysis;
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1. INTRODUCTION
Plagiarism detection in source code documents is a topic

of growing interest for both the software industry and the
academia. In the software industry, systems that automat-
ically detect plagiarism cases help in the prevention of in-
tellectual property infringements. In the academia, due to
the enormous among of forums, blog, repositories, etc., stu-
dents can easily download almost any source code required
for their computing assignments; thus, automatic systems
are helpful to avoid this increasing dishonest practice among
students.

The first formally stated definition of the problem was
proposed in 1987 by Faidhi and Robinson [6]. According to
their proposal, the most frequent modifications performed
by a source code’s plagiarist are categorized in a set of seven
sub-types or levels according to the severity of plagiarism,
shown as follows:

Level 0 : Exact copy of the original source.
Level 1 : Modification in comments.
Level 2 : Changing identifier names.
Level 3 : Changing variable position (using different in-

dentation level or switching the order of variables
in a symmetric function).

Level 4 : Procedural combination.
Level 5 : Changing program statements.
Level 6 : Changing logical control.

However, it is important to notice that programmers who
plagiarize source code usually apply not one, but several
obfuscation techniques to avoid detection. Therefore, even
though there are several proposed techniques to detect dif-
ferent types of source code plagiarism, it is very difficult for a
single automatic system to detect all of these different types
of obfuscation practices.

Particularly, the main research tackling a source code pla-
giarism is mostly centered on the analysis of the structure
of the source code documents mainly focusing on the study
of syntactic trees and tracking function’s calls, to mention a
few. These type of methods have been proved useful in this
task; however, its complexity and its computation is usually
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expensive.
Therefore, we proposed a method that, at the same time,

takes into account different aspects of a source code and also
accounts for the structure in a more inexpensive way than
previously proposed methods. Accordingly, we propose dif-
ferent representations for a source code, namely: character
n-grams, data types, identifiers’ names, and some stylistics
features. Our intuitive idea is that by means of the cap-
ture of several aspects of a source code, it will be possible to
identify some of the most common practices performed by
programmers when they plagiarize source code.

Thus, in this paper we posed the following research ques-
tions:
Q1: Which aspect of a source code is more important in

order to identify plagiarism?
Q2: It is possible to capture some of the structure of source

code files by looking only at function’s signatures?
The rest of this paper is organized as follows. Section

2 presents some related work concerning to algorithms for
identifying source code plagiarism that use natural language
processing techniques. Section 3 describes our proposed
method; based on getting the 8 similarity measures extracted
from lexical, structural and stylistic aspects of source codes.
Then, Section 4 describes the experimental evaluation, par-
ticularly the data collection, evaluation measures, and our
initial analysis done over our proposed features. Obtained
results and a deeper analysis are described in Section 5. Fi-
nally, Section 6 depicts our conclusions and some future work
ideas.

2. RELATED WORK
Lately, developed automated systems to identify source

code re-use are applying natural language processing (NLP)
techniques that are been adapted to this specific context.
One example of those systems is one that takes into account
a remanence trace left after a copy of source code, such
as, white space patterns [2]. The intuitive idea behind this
approach indicates that a plagiarist camouflages almost ev-
ery thing when copying a source code but the white spaces.
Accordingly, it compute similarities between source codes
taking into account the use of letters (all represented as X)
and white spaces (represented as S). As another example of
automatic systems that employ NLP techniques, are those
based on word n-grams [1, 12]. These works consider sev-
eral features of source code, such as, identifiers, number of
lines, number of hapax, etc. Their obtained results were
very promising.

Some other works employed transformations techniques
based on LSA, for example the work presented in [5]. The
authors of this work focused on three components: prepro-
cessing (keeping or removing comments, keywords or pro-
gram skeleton), weighting (combining diverse local or global
weights) and the dimensionality of LSA. The experiments
were based on information retrieval: given a query as a
source code aimed to obtain the most similar source codes.

A slightly different approach was presented in [7], they
used syntax trees to represent each source code. Their pla-
giarism detection technique is based on abstract syntax tree
algorithm (AST-CC algorithm). Each document is repre-
sented in terms of nodes that are likely to being plagiarized
into a hash table. They argue that the AST-CC algorithm
can effectively detect several plagiarism cases such as, chang-
ing the variable name, reordering the sequence of the expres-

sion evaluation and changing part of the code statements.
As can be observed, a common characteristic of previous

works is that they attempt to capture several aspects from
source codes into one single/mixed representation (i.e., a
single view) in order to detect source code re-used. Con-
trary to these previous methods, our hypothesis states that
each aspect (i.e., either structural or superficial elements)
provides its own important information, that if mixed with
other aspects their importance could be diluted, thus better
results would be obtained when each aspect is considered
independently when representing source codes.

3. SIMILARITY MEASURES
Our proposed method depicts a supervised classification

approach that represents a pair of source codes D1 and D2

by means of eight distinct features, namely:

〈flexical, f1
structural, . . . , f

6
structural, fstylistic〉 (1)

Proposed features aim at measuring several aspects of
source code that help to capture some of the most common
practices among plagiarist when camouflaging plagiarized
sections. As can be seen in Expression 1, we divided these
features into three categories according to the information
that they are able to capture, namely: lexical, structural and
stylistic features.

3.1 Lexical Feature
Given that the use of words n-grams [4] and characters

n-grams [15], as representation of documents, have showed
good performances on identifying plagiarism in both, text
documents and source code files [9, 15], we use this repre-
sentation to measure the lexical aspect of source codes. To
some extent this lexical feature has been associated with
content information.

As in [9] we represent a source code document as a bag of
character 3-grams, where every white spaces and line-breaks
were deleted and every letter was lower-cased. Additionally,
we eliminated all the reserved words of the two program-
ming languages (Java and C) in our data collection to avoid
misleading the classification due to the large amount of key-
words in the documents (more information about the data
collection is given in Section 4.1).

In order to measure the similarity between a pair of source
code documents D1 and D2 each code is represented as a
vector according to the vector space model [3], where the
dimension of these vector is given by the vocabulary of 3-
grams in both documents. Then, the similarity between
the two source code documents are computed by the cosine
similarity (Equation 2).

flexical(D1, D2) =

−→
D1 ·
−→
D2

‖
−→
D1‖‖

−→
D2‖

(2)

The obtained similarity value from Equation 2 is consid-
ered as one feature in our proposed representation (Expres-
sion 1), particularly represents the lexical feature (flexical).

3.2 Structural Features
To take into account some structural characteristics of a

source code, we decided to measure the similarities of the
function’s signatures within the documents. To some extent
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the signatures give information about the organization and
structure of source codes, at low cost.

The proposed structural features (six total) consist of two
forms of representation; both of them based on the func-
tion’s signatures definition within a source code. Accord-
ingly, three of such similarity measures are based solely on
the data types, and the other three are based merely on the
identifier’s name from the signature’s function. The general
procedure to compute the structural features is described by
Algorithm 1.

Algorithm 1. Given two source code documents, D1 and
D2, compute the structural features as:

1. Extract all signature’s function of both D1 and D2.

2. Select one representation from the signature’s func-
tion: data types or identifiers names, and extract the
corresponding features to compute the similarity.

(a) Compute the similarity between every pair of func-
tion within the two documents for data types or
for identifiers names.

3. The computed similarities form a similarity matrix
where each cell (i, j) represent the similarity between
the i-th function and the j-th function. The columns
of the matrix represent all functions of document D1

and the rows all functions of document D2.

4. From the similarity matrix compute a global similarity
for the pair of source code documents D1 and D2.

Steps 1 and 3 are straightforward. In step 2 we use two
different type of representations attempting to compare el-
ements that may be considered as part of the structure of
the program. The first type of representation takes only the
data type within the signature’s function (e.g., char, int,

float, String, etc.). This representation aims to capture
when the programmer tries to obfuscate the plagiarism by
changing only the parameter’s names and the function name
itself. The second representation accounts for all the identi-
fiers names within the signatures, i.e., the function name and
the parameter’s names. The idea behind this second repre-
sentation can be considered complementary to the former
and aims to capture a more complex plagiarism technique,
according to [6].

Similarity between Data Types.
Each function is represented as a list of data types. For

example, the following function’s signature “int sum(int

numX, int numY)”will be translated into“int (int, int)”.
Our proposed representation also accounts for the frequency
of each data type. Then, we need to compare two elements
independently to calculate the similarity between two func-
tions: i) the return data type, and ii) arguments’ data types.

Accordingly, in order to compute the return data type
similarity we proceed as follows. Given two functions, m1

and m2, belonging to source code documents D1 and D2,
respectively; the similarity of their return data type (simr)
is 1 if both functions have the same return data type, and 0
otherwise.

Next, to determine the similarity of their arguments’ data
types we propose a more elaborated strategy. First, we de-
termine the data-types for each function with their frequen-
cies, hence each function is represented as a vector where its

components are frequencies of data-types. Then, we com-
pute a similarity between two functions’ vectors m1 and m2

as defined in Equation 3, where n indicates the number of
different data types in both functions, i.e., the vocabulary
of data types.

sima(m1,m2) =

∑n
i=1 min(m1

i,m
2
i)∑n

i=1 max(m1
i,m2

i)
(3)

Heretofore, we have computed the return data type simi-
larity (simr), as well as the arguments’ data type similarity
(sima) between the two initial functions, i.e., m1 and m2;
now it is possible to determine a single value (sim1) for the
data type similarity between these two functions by means
of a linear combination as defined in Equation 4, where σ
is a scalar that weights the importance of each term and it
satisfies that 0 ≤ σ ≤ 1. For our performed experiments,
we established σ = 0.5 so both parts are considered equally
important. Considering ρ = 1− σ, then sim1 is:

sim1(m1,m2) = σ ∗ simr(m1,m2) + ρ ∗ sima(m1,m2) (4)

Similarity between Identifiers.
Each function is represented as a concatenation of the

function’s name and the names of all its arguments. We
eliminate spaces and every letter is lower-cased. For exam-
ple, the function ‘int sum(int numX, int numY)’ is repre-
sented as the string ‘sumnumxnumy’. The next step consists
on computing the corresponding character 3-grams repre-
sentation.

Consequently, given the functions m1 and m2, belonging
to source code documents D1 and D2, respectively; and their
corresponding bags of character 3-grams, m1 and m2, we com-
pute their similarity using the Jaccard coefficient as follows:

sim2(m1,m2) =
m1 ∩ m2

m1 ∪ m2
(5)

Step 4 in Algorithm 1 involves the calculation of a global
similarity for a given pair of source code documents D1 and
D2. This requires the construction of a similarity matrix
where each cell is the similarity of every pair of functions in
source code documents D1 and D2. Therefore, two matrix
are computed: Mtype

D1,D2
and Mnames

D1,D2.
Lastly, values of similarity between two codes are defined

as shown in Equation 6 and Equation 7, for data types and
identifiers’ names, respectively; where f(x) represents either
the maximum value contained in the matrix, the minimum
value contained in the matrix, or the average value among
all values from the matrix.

simDataTypes(D1, D2) = f(Mtype
D1,D2

) (6)

simNames(D1, D2) = f(Mnames
D1,D2

) (7)

Notice that selecting either the maximum or the mini-
mum value from Mtype

D1,D2
implies that the similarity be-

tween D1 and D2 is been determined just by considering
the similarity of one pair of functions (the most similar or
the less similar respectively), whilst the average value con-
siders the similarity between all the possible pairs of func-
tions contained in D1 and D2. Our intuition is that all
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of these values might convey important information, hence
we preserve these values as three elements on Expression 1:

{fTmin
structural, f

Tmax
structural, f

Taverage

structural}. Similarly, from Mnames
D1,D2

we take the other three features of the Expression 1, namely,

{fNmin
structural, f

Nmax
structural, f

Naverage

structural}.

3.3 Stylistic Feature
Analogous to natural language text documents which in-

herently contain author specific writing style characteristics,
we hypothesize that the source codes also carry programmer
specific stylistic features.

Accordingly, we choose a set of 11 stylistic features, namely:
the number of lines of code, the number of white spaces, the
number of tabulations, the number of empty lines, the num-
ber of defined functions, average word length, the number of
upper case letters, the number of lower case letters, the num-
ber of under scores, vocabulary size, and the lexical richness
(i.e., the total number of tokens over the vocabulary size).

To determine the stylistic similarity we use a vector repre-
sentation for all these features and apply the cosine similar-
ity (Equation 2) to determine the stylistic feature (fstylistic)
on Expression 1.

4. EXPERIMENTAL EVALUATION

4.1 The Data Collection
The data collection was provided by SoCO competitive

evaluation campaign for systems that automatically detect
the source code re-use phenomenon [10]. SoCO, Detection
of SOurce COde Re-use, is a shared task that focuses on
monolingual source code re-use detection. Participant sys-
tems were provided with a set of source codes in C and Java
programming languages. The task consists on retrieving the
source code pairs that have been re-used at a document level.

The data set provided for the shared task is divided into
two sets: training and test. On the one hand, the training
set (338 source codes in total) was manually labeled where
the relevance assessments represent cases of re-use in both
directions, i.e., the direction of the re-use is not being de-
tected.

On the other hand, in order to evaluate the systems on the
test set (31,975 source codes in total), the organizers applied
the standard pooling approach [14]. The union of the set of
plagiarized pairs reported by the participating systems was
used to construct the pool1. More information about the
collection data set is presented in Table 1.

Table 1: Data collection provided by SOCO competition
Train subset

# of source codes Re-use code source pairs
C 79 26

Java 259 84

Test subset
# of source codes Re-use code source pairs

C/C++ 19,895 322
Java 12,080 222

It is worth to mention that the test subset is divided into
6 scenarios, namely A1, A2, B1, B2, C1, and C2. Where a

1The entire collection is available from
http://users.dsic.upv.es/grupos/nle/soco/

scenario means that all source code from it solve the same
problem. The complexity of the problems increases from sce-
nario A to C and from 1 to 2 (for a more detailed description
see [10, 8]).

Considering, in Table 2 we present information of the
source code documents in the test set by scenario. We in-
clude information about the total number of source codes per
scenario, the average number of lines, the average number
of functions within source codes, as well as, the percentage
of the total source code documents containing functions (we
exclude the ‘main’ function in this count).

Table 2: Average of number of functions in the data collec-
tion for the test set per scenario

C/C++ language
A1 A2 B1 B2 C1 C2

# of source codes 5408 5195 4939 3873 335 145
avg. # of lines 63.7 68.1 70.0 80.9 180.4 255.2

% docs w/functions 36.3 35.6 61.9 47.8 77.3 83.4
avg. # of functions 2.99 2.98 2.66 2.74 4.86 4.70

Java language
A1 A2 B1 B2 C1 C2

# of source codes 3239 3089 3266 2266 124 88
avg. # of lines 99.3 107.9 90.9 102.5 227.1 361.0

% docs w/functions 98.4 98.3 98.4 98.3 94.3 95.4
avg. # of functions 3.32 3.23 3.52 3.76 9.51 9.48

This Table 2 shows that in general the average number
of function in the source codes is low; but it is bigger for
scenarios that solve more difficult problems (i.e., C1 and
C2). It is also interesting that almost every source code in
Java has functions, in contrast with values for source codes
in C/C++ (see the row ‘% docs w/functions’).

4.2 Evaluation Measures
As the problem is the identification of pairs of source codes

that can be considered as plagiarism, we tackle it as a clas-
sification problem with two classes: plagiarized and non-
plagiarized. Thus, the evaluation of the effectiveness of our
method was carried out by means of the macro F-measure.

The F-measure is widely used for classification tasks and
is computed as a linear combination of the precision and the
recall values from the two classes. Equation 8 define the
measure formally.

F −measure =
1

|C|
∑
ci∈C

[
2× Recall(ci)× Precision(ci)

Recall(ci) + Precision(ci)

]
(8)

Recall(ci) =
number of correct predictions of ci

number of examples of ci

Precision(ci) =
number of correct predictions of ci

number of predictions as ci

4.3 Initial Analysis
An initial analysis was performed on the training sub-

set to determine the amount of information given by each
proposed feature. Consequently, we carried out a series of
experiments using single views (i.e., single feature). There-
fore, we measure the performance of each proposed feature
by means of establishing a manual threshold for considering
when two codes were plagiarized. That threshold was set
from 10 to 90 percent of similarity in increments of 10%. At
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each threshold we evaluated the F-measure. The results of
this evaluation are shown in Figure 1.
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Figure 1: F-measure of classifying source code plagiarism
with single features at several similarity threshold. Where,
L corresponds to the lexical feature, T means the structure
feature taken from the data types, N corresponds to the
structure feature taken from the identifiers’ names. Note
that the right y-axis only applies to the continuous line (Lex-
ical measure).

From graphs in Figure 1 we first notice that the lexical
feature is a good indicator at 50% of similarity threshold
(F-measure of almost 0.8). For all other features, the F-
measure values do not exceed 0.3 of F-score. However, we
observe that even with low performance, each type of struc-
tural attributes contains information to identify plagiarized
cases, some more than other. For instance, feature N-max

(or fNmax
structural) that is also based on characters 3-grams for

the signature’s function is the best attribute obtained from
the identifier’s names of signature’s functions.

4.4 Results
This section shows the results of combining our 8 pro-

posed similarity features by means of a supervised approach
to classify source code documents into plagiarized and not
plagiarized. Based on our initial analysis, we believe that a
supervised method will learn the best way of combining the
similarity values, instead of try to figure it out manually.
For this we use a J48 decision tree implemented in Weka
with the default parameters as our classification algorithm
[11]. Note that to train the classification model we only use
the training set of the data collection, while for testing we
used only the test set.

In order to compare the performance of our method, we
use the two baselines proposed during the SoCO competi-
tion: JPlag [13] and an n-gram based-approach proposed
in [8]. JPlag is a popular source code plagiarism tool; it
parses and converts each source code into tokens, then using
a greedy algorithm it identifies the longest non-overlapped
common sub-strings within the tokens. The second base-
line uses a character 3-gram model weighted with the term
frequency to compute the cosine similarity among a pair of
source code (a pair with a similarity above 95% is considered
a plagiarism case).

In addition to the previous baselines we propose a third

one. Our baseline is based on the similarity value of a pair of
source codes that rely solely on the lexical feature described
in Section 3.1. This baseline uses a similarity threshold man-
ually set to 50% in accordance with the initial analysis we
performed in Section 4.3; that means that a pair of source
code is considered a plagiarized case when their lexical sim-
ilarity is equal or greater to 50%. The Table 3 shows the
results of the three baselines and the classification perfor-
mance of J48 algorithm using our proposed representation.

Table 3: F-measure for 3 baselines and our proposed method
on C and Java programming languages

Method C/C++ Java
JPlag 0.190 0.380
Flores et al [8] 0.295 0.556
Lexical feature only 0.013 0.517
Our proposed method 0.013 0.807

Our proposed method outperform all three baselines for
the Java programming language. However, this is clearly
not the case for the C language. To understand this behav-
ior we evaluate each of the 6 different scenarios of the test
data independently. Table 4 shows the F-measure for both
programming languages on each scenario.

Table 4: F-measure of each 6 scenarios in the test set. A
hyphen means that there are not plagiarized cases for that
scenario

A1 A2 B1 B2 C1 C2
C/C++ 0.010 0.009 0.024 0.019 0.737 -
Java 0.776 0.739 0.847 0.815 - 1.000

The F-measure values in Table 4 show that our supervised
approach performs better in scenarios C1 and C2 for C/C++
and Java respectively. These results in addition with the
information from Table 2 strongly suggest that our proposed
approach is more adequate for larger source code documents
that seemingly solve more complex problems than on shorter
ones that solve simpler problems.

Hitherto, we show the pertinence of our similarity features
to identify plagiarized cases on source code documents. In
next section, we will discuss to what extent the proposed
measures are useful for this task.

5. FURTHER ANALISYS
This section aims at answering the research questions we

posed in this paper, namely (i) which aspect of a source code
is more important in order to identify plagiarism?; and (ii)
it is possible to capture some of the structure of source code
files by looking at function’s signatures?

5.1 Similarity among Source Codes from the
Same Class

To investigate the impact of each proposed similarity fea-
ture we compute the similarity values among pairs of source
code labeled as plagiarized, i.e., 26 pairs for C and 84 pairs
for Java. We also compute the similarity values among pairs
of source code labeled as non-plagiarized, i.e., 3055 pairs for
C and 33,327 pairs for Java. It is worth to mention that
we did this computation only on the training set, since this
subset is the manually labeled one; therefore, it is reliable.

Accordingly, Figure 2 shows the average and standard de-
viation of each category per proposed similarity feature. The
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Figure 2: Average similarity and standard deviation per
class across proposed features. Middle lines within the bars
indicate the average percentage of similarity.

middle lines within the bars represent the average, while the
bars show +/− a standard deviation. Continuous lines indi-
cate values for plagiarized cases, while dotted lines illustrate
values for non-plagiarized cases. Note that all similarity val-
ues are always equal or grater than zero.

From Figure 2a and Figure 2b we are able to draw several
conclusions. First of all, the similarity of non-plagiarized
pairs of source code on both languages is very low, between
0 and 20%, which is consistent with the finding derived from
our initial analysis (see Section 4.3).

Secondly, the lexical similarity by itself proved to be a
good feature for distinguishing both classes, since the bars
(in Figure 2) are not overlapping in either language. The
reason could be that the type of plagiarized (posed by Faidhi
[6]) present on the data collection are the simpler ones.

Third, there is a high similarity of writing style (stylistic
similarity) among source code documents for both program-
ming languages. This finding suggests that the style’s fea-
tures commonly used on text documents might not be well
suitable for source codes; that is, we need to focus on find-
ing a good set of stylistics characteristics that capture the
particularities of source codes.

In addition, we notice that this stylistic similarity is more
useful for Java than for C language, since there is not over-
lapping on the similarities values for the two classes. This is

one reason why in our evaluation we obtained better results
in Java than in C language (see Table 3).

Fourth, by looking at the structural attributes, we notice a
grater similarity variation among pairs of plagiarized source
code in C than the variation for the same class in Java.
Therefore, structural attributes are not very helpful for C
language.

5.2 Correlation among our Proposed Similar-
ity Features

The analysis carried out in the previous section strongly
suggests a correlation among all the structural similarity
measures. Therefore, to establish if the proposed type of fea-
tures, namely lexical, structural and stylistic, provide com-
plementary information of source codes such that different
aspects of the source code documents are in fact being cap-
tured.

To investigate this inquiry we computed the Pearson cor-
relation values for the 8 proposed similarity features from
both programing languages. Tables 5 and 6 shows this in-
formation from C and Java programming languages, respec-
tively.

Table 5: Correlation matrix for the proposed similarity mea-
sures for the C programming language

Considering non-plagiarized cases

L Tmin Tmax Tavg Nmin Nmax Navg S

L 1
Tmin 0.05 1
Tmax 0.00 0.76 1
Tavg 0.02 0.88 0.93 1
Nmin 0.07 0.39 0.33 0.37 1
Nmax 0.10 0.48 0.56 0.54 0.52 1
Navg 0.12 0.56 0.44 0.53 0.78 0.75 1
S 0.14 -0.08 -0.06 -0.08 -0.03 -0.043 -0.05 1

Considering plagiarized cases

L Tmin Tmax Tavg Nmin Nmax Navg S

L 1
Tmin 0.31 1
Tmax 0.46 0.76 1
Tavg 0.42 0.93 0.94 1
Nmin 0.25 0.70 0.53 0.65 1
Nmax 0.53 0.66 0.96 0.87 0.50 1
Navg 0.40 0.93 0.84 0.95 0.72 0.79 1
S 0.33 0.10 0.23 0.18 -0.05 0.20 0.11 1

Table 6: Correlation matrix for the proposed similarity mea-
sures for the Java programming language

Considering non-plagiarized cases

L Tmin Tmax Tavg Nmin Nmax Navg S

L 1
Tmin 0.01 1
Tmax 0.01 0.91 1
Tavg 0.01 0.89 0.93 1
Nmin 0.03 0.26 0.22 0.30 1
Nmax 0.03 0.28 0.25 0.30 0.97 1
Navg 0.03 0.24 0.20 0.29 0.99 0.99 1
S 0.19 0.00 0.00 0.00 0.00 0.00 0.00 1

Considering plagiarized cases

L Tmin Tmax Tavg Nmin Nmax Navg S

L 1
Tmin 0.07 1
Tmax 0.07 1.00 1
Tavg 0.05 0.85 0.85 1
Nmin 0.07 0.89 0.89 0.52 1
Nmax 0.07 0.89 0.89 0.52 1.00 1
Navg 0.07 0.99 0.99 0.92 0.82 0.82 1
S 0.31 0.05 0.05 0.07 0.02 0.02 0.06 1

The correlation values shown in Tables 5 and 6, support
the same conclusion emerged before. That is, similarity
features extracted from the structural view are positively
correlated. More specifically, structural features originated
from the same representation, i.e., data type (Tmin, Tmax

and Tavg) or identifier’s name (Nmin, Nmax and Navg),
are strongly correlated in both classes for both languages.
However, the structure similarities extracted from the data
types, Tmin, Tmax and Tavg, versus the features from the

36



identifiers, Nmin, Nmax and Navg, are less correlated for
the non-plagiarized class (with correlation values from 0.2
to 0.3).

In conclusion, taking different representation from the sig-
nature’s functions contribute, to some extent, with a slightly
different information from distinguish the negative classes
(non-plagiarize). Nevertheless, only one of the three varia-
tion of each representation will be needed.

Regarding the stylistic (S) feature, tables show that it
contains important and different information to any of the
other seven attributes. Particularly, stylistic feature is spe-
cially useful for Java (see the last row in Table 6 for both
classes). Likewise, the lexical (L) feature also provides dif-
ferent information to any of other seven attributes, specially
for Java (see second column in Tables 5 and 6).

5.3 Impact of Similarity Features per Scenar-
ios

In this latest analysis we study the impact of our pro-
posed features regarding to the difficulty of the problems
that source codes in question solve. We carried out the same
computation we did in subsection 5.1. We compute the sim-
ilarity percent of documents in the same class for each sce-
nario in the test set. Recall that each scenario gather source
codes that solve the same problem and also the difficulty of
the problems increases from scenario A to C [10, 8].

The results we obtained for scenarios A and B are very
similar to those we show in Figure 2 for both languages; in
contrast with the results we obtained for the most difficult
scenario i.e., C1 for C/C++ and C2 for Java.

Figure 3 shows the average of similarities and standard
deviation for the scenario C1 and C2, for C/C++ and Java,
respectively. While lexical (L) and stylistic (S) feature have
a similar behavior to that seen before, the structural features
tell another story.

To start, the structural features taken from the identifier’s
names are not useful at all for C/C++. Furthermore, the
structural features taken from the data types are very useful
for both cases, since there are almost not overlap between
classes; additionally, the similarity average are more distant
that the values we saw for the training set (in Figure 2).

This new information gives us more evidence on the im-
portance of the structure, captured by the function’s sig-
natures only, to identify cases of plagiarism in source code.
In particular, source codes that solve complicated problems,
that need more lines of codes and, consequently, more func-
tions.

6. CONCLUSIONS AND FUTURE WORK
In this paper we proposed three different categories of

similarity features; namely, lexical, structural and stylistics
similarity features. A combination of these features is able
to capture important aspects of source codes, which in turn
helps to detect plagiarism patterns.

For the lexical feature, we used a modified representation
first proposed by Flores [9]. With respect to the structural
aspect, we proposed two similarity metrics that consider the
function’s signatures within the source code. Finally, for
the last similarity feature we defined eleven attributes that
intent to extract some stylistic characteristics from the orig-
inal author that are more difficult to obfuscate. We combine
these similarity features in a supervised approach that learn
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Figure 3: Average similarity and standard deviation per
class across proposed features. Middle lines within the bars
indicate the average percentage of similarity.

how to classify any pair of source code, using a decision tree
(J48) algorithm.

We evaluated our supervised approach in the context of
SoCO competition, a shared task that focuses on monolin-
gual source code re-use detection. The data collection we
used contains more than 32000 source code documents.

We carried out analysis on the aforementioned features
from which lexical and stylistic features show salient charac-
teristics on the task of plagiarism detection. Besides, struc-
tural features show complementary characteristics. How-
ever, further analysis must be done, for instance the analysis
of correlation between the proposed features and the source
code length.

For our future work we will focus on two directions. One
is related to the addition of more types of similarity feature
to our model in order to capture more and diverse aspect
of source codes. In the second direction, we will pursue
the construction of a model for cross-language plagiarism
detection, that is, train a model with examples of plagiarized
cases for one language and classify source code written in
another language.
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