Synthesis and characterization of new $(\mathrm{N} \rightarrow \mathrm{B})$ phenyl substituted $\left[\mathrm{N}\right.$-benzyliminodiacetate- $\left.O, O^{\prime}, N\right]$ boranes

Teresa Mancilla,* Luis S. Zamudio-Rivera, Hiram, I. Beltrán, Rosa Santillan, and Norberto Farfán

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado postal 14-740, CP07000, México, D. F. MÉXICO. E-mail: tmancill@cinvestav.mx

Dedicated to Professor Eusebio Juaristi on the occasion of his 55 ${ }^{\text {th }}$ birthday
(received 29 Jun 05; accepted 12 Aug 05; published on the web 18 Aug 05)

Abstract

The synthesis of nine $(\mathrm{N} \rightarrow \mathrm{B})$ phenyl substituted[N -benzyliminodiacetate- $\mathrm{O}, \mathrm{O}^{\prime}, \mathrm{N}$]boranes $\mathbf{3 a - 3 i}$ is reported herein. These compounds were characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$, HETCOR, NOESY, infrared spectroscopy, mass spectrometry and in the case of compounds $\mathbf{3 d}$ and $\mathbf{3 g}$ also by ${ }^{19} \mathrm{~F}$ NMR. All compounds exhibit a bicyclic structure due to the presence of an intramolecular $\mathrm{N} \rightarrow \mathrm{B}$ coordination bond. The structure of 4-chlorophenyl[N -benzyliminodiacetate-O,O',N]borane $\mathbf{3 e}$ was further established by a single crystal x-ray diffraction study. The correlation between $\delta\left({ }^{11} \mathrm{~B}\right)$ of compounds 3a, $\mathbf{3 d} \mathbf{- 3 i}$ and $\sigma_{\text {Hammett }}$ values shows that the strength of the $\mathrm{N} \rightarrow \mathrm{B}$ bond depends on the electronic factors of the substituent on the B-phenyl group.

Keywords: Boranes, iminodiacetic acid, NMR, arylboranes and $\sigma_{\text {Hammett. }}$.

Introduction

There is considerable interest in boron heterocycles derived from aminoacids due to their potential use for biological studies. Cyclic boron compounds, mainly phenyl derivatives exhibit cytotoxic activity ${ }^{1-5}$ and have application in boron neutron capture therapy (BNCT) for the treatment of brain tumors ${ }^{6,7}$ and melanomas. ${ }^{8}$ We have been interested in the synthesis, characterization, structural analysis and reactivity of boron heterocycles derived from iminodiacetic acid and N -substitued imino- and aminodiacetic acids. ${ }^{9-14}$ Herein, we describe the synthesis of nine new $(\mathrm{N} \rightarrow \mathrm{B})$ phenyl substituted[N -benzyliminodiacetate-O, $\left.\mathrm{O}^{\prime}, \mathrm{N}\right]$ boranes, 3a$\mathbf{3 i}$, where the phenyl group is substituted at the meta and para positions. Compounds 3a-3i were prepared by the reaction of N -benzyliminodiacetic acid 1 and phenyl substituted boronic acids $\mathbf{2 a - 2 i}$ in a 1:1 molar ratio (Scheme 1). All Compounds were characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$ NMR,

HETCOR, NOESY, infrared spectroscopy and mass spectroscopy, in addition, for compounds $\mathbf{3 d}$ and $\mathbf{3 g}$ the ${ }^{19} \mathrm{~F}$ NMR spectra were also obtained.

Results and Discussion

The reaction of N -benzyliminodiacetic acid $\mathbf{1}$ with substituted phenylboronic acids $\mathbf{2 a - 2} \mathbf{i}$ in a $1: 1$ ratio, led to $(\mathrm{N} \rightarrow \mathrm{B})$ phenyl substituted[N -benzyliminodiacetate- O, O ', N]boranes 3a-3i (Scheme 1). Compounds 3a-3i were obtained as white solids.

Scheme 1

NMR spectroscopy

The ${ }^{1} \mathrm{H}$ NMR spectra in DMSO- d_{6} of compounds 3a-3i clearly show the AB coupling pattern for the diastereotopic $\mathrm{H}-2$ protons, which evidences the presence of the intramolecular $\mathrm{N} \rightarrow \mathrm{B}$ coordination bond as has been observed for analogous compounds. ${ }^{9-21}$ The $\mathrm{H}-3$ benzylic protons exhibit a single signal between 3.75 and 3.87 ppm (Table 1). The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3d shows a doublet of doublets for $\mathrm{H}-9$ and a triplet signal for $\mathrm{H}-10$ due to coupling with ${ }^{19} \mathrm{~F}$. The $\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right)$ NOESY spectra show correlation between $\mathrm{H}-2_{\mathrm{A}}$ and $\mathrm{H}-9_{\text {arom }}$ with $\mathrm{H}-3$, which indicates that the $\mathrm{H}-2_{\mathrm{A}}$ protons are exo and $\mathrm{H}-9$ is close to the $\mathrm{H}-3$ benzylic protons.

The $\delta\left({ }^{11} \mathrm{~B}\right)$ values (Table 1) confirm the tetrahedral environment of the B nucleus, since they lie in the range reported previously for analogous boron heterocycles. ${ }^{9-21}$ Comparison of the $\delta \quad\left({ }^{11} \mathrm{~B}\right)$ values for compounds $\mathbf{3 a - 3 i}$ with the unsubstituted ($\mathrm{N} \rightarrow \mathrm{B}$) phenyl $[\mathrm{N}$ -benzyliminodiacetate-O, $\left.\mathrm{O}^{\prime}, \mathrm{N}\right]$ borane $\left[12.5 \mathrm{ppm}\right.$], ${ }^{11}$ shows that: a) electron donating substituent at para position (3a) decrease the $\mathrm{N} \rightarrow \mathrm{B}$ coordination bond, while electron-withdrawing groups ($\mathbf{3 b}, \mathbf{3 d} \mathbf{- 3 f}$) strengthens this bond; b) electron-withdrawing groups at the meta position (3g-3i)
increase the $\mathrm{N} \rightarrow \mathrm{B}$ coordination bond. This shows that $\delta\left({ }^{11} \mathrm{~B}\right)$ is sensitive to inductive and resonance factors and there should exist a correlation with $\sigma_{\text {Hammett }}$ values. ${ }^{22}$

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR data of 3a-3i: δ_{H} and $\delta_{\mathrm{B}}[\mathrm{ppm}]$ and coupling constants $J[\mathrm{~Hz}]$

		R 1	$\begin{align*} & { }^{14}-\mathrm{C}_{3} \tag{3d}\\ = & 14-\mathrm{CHO} \\ = & p-\mathrm{O}^{14} \mathrm{C} \mathrm{H}_{3} \end{align*}$	$\begin{array}{ll} p-\mathrm{F} & \text { 3g: } \mathrm{R}={ }^{14}-\mathrm{CF}_{3} \\ p-\mathrm{Cl} & \text { 3h: } \mathrm{R}=m-\mathrm{NO}_{2} \\ p-\mathrm{Br} & \text { 3i: } \mathrm{R}=m-\mathrm{Cl} \end{array}$	
Compound	H-2	H-3	$\mathrm{C}_{6} \mathrm{H}_{5}$	B- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}$	$\delta\left({ }^{11} \mathrm{~B}\right)$
3a	$\begin{aligned} & \mathrm{H}_{\mathrm{A}} 4.4016 .9^{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{B}} 3.9116 .9^{\mathrm{a}} \end{aligned}$	3.75	$\begin{gathered} \mathrm{H}-5 \text { 7.57-7-60 } \\ \mathrm{H}-6,7 \text { 7.40-7.44 } \end{gathered}$	$\begin{gathered} \mathrm{H}-9,137.487 .7^{\mathrm{b}} \\ \mathrm{H}-10,127.237 .7^{\mathrm{b}} \\ \mathrm{H}-142.33 \end{gathered}$	+12.9
3b	$\begin{aligned} & \mathrm{H}_{\mathrm{A}} 4.4716 .8^{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{B}} 3.9616 .8^{\mathrm{a}} \end{aligned}$	3.82	$\begin{gathered} \mathrm{H}-57.58-7-60 \\ \mathrm{H}-6,77.40-7.42 \end{gathered}$	$\begin{gathered} \mathrm{H}-9,137.958 .0^{\mathrm{b}} \\ \mathrm{H}-10,127.848 .0^{\mathrm{b}} \\ \mathrm{H}-1410.07 \end{gathered}$	+12.4
3c	$\begin{aligned} & \mathrm{H}_{\mathrm{A}} 4.3516 .8^{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{B}} 3.8616 .8^{\mathrm{a}} \end{aligned}$	3.75	$\begin{gathered} \mathrm{H}-5 \text { 7.55-7-57 } \\ \mathrm{H}-6,7 \text { 7.40-7.42 } \end{gathered}$	$\begin{gathered} \mathrm{H}-9,137.508 .4^{\mathrm{b}} \\ \mathrm{H}-10,126.978 .4^{\mathrm{b}} \\ \mathrm{H}-143.75 \end{gathered}$	+12.0
3d	$\begin{aligned} & \mathrm{H}_{\mathrm{A}} 4.4116 .9^{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{B}} 3.9116 .9^{\mathrm{a}} \end{aligned}$	3.79	$\begin{gathered} \text { H-5 7.55-7-60 } \\ \text { H-6,7 7.40-7.47 } \end{gathered}$	$\begin{gathered} \mathrm{H}-9,137.639 .0^{\mathrm{b}} 6.4^{\mathrm{c}} \\ \mathrm{H}-10,127.249 .0^{\mathrm{b}} \end{gathered}$	+12.2
3 e	$\begin{aligned} & \mathrm{H}_{\mathrm{A}} 4.4016 .8^{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{B}} 3.9016 .8^{\mathrm{a}} \end{aligned}$	3.79	$\begin{gathered} \text { H-5 7.56-7-58 } \\ \text { H-6,7 7.39-7.43 } \end{gathered}$	$\begin{gathered} \mathrm{H}-9,137.598 .4^{\mathrm{b}} \\ \mathrm{H}-10,127.478 .4^{\mathrm{b}} \end{gathered}$	+12.2
3 f	$\begin{aligned} & \mathrm{H}_{\mathrm{A}} 4.4016 .8^{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{B}} 3.9016 .8^{\mathrm{a}} \end{aligned}$	3.79	$\begin{gathered} \text { H-5 7.56-7-58 } \\ \text { H-6,7 7.39-7.43 } \end{gathered}$	$\begin{gathered} \mathrm{H}-9,137.618 .0^{\mathrm{b}} \\ \mathrm{H}-10,127.538 .0^{\mathrm{b}} \\ \mathrm{H}-97.92 \end{gathered}$	+12.1
3g	$\begin{aligned} & \mathrm{H}_{\mathrm{A}} 4.4716 .8^{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{B}} 3.8616 .8^{\mathrm{a}} \end{aligned}$	3.85	$\begin{gathered} \mathrm{H}-5 \text { 7.55-7-57 } \\ \mathrm{H}-6,7 \text { 7.40-7.42 } \end{gathered}$	$\begin{aligned} & \mathrm{H}-117.767 .7^{\mathrm{b}} \\ & \mathrm{H}-127.657 .7^{\mathrm{b}} \\ & \mathrm{H}-137.887 .7^{\text {b }} \end{aligned}$	+12.0
3h	$\begin{aligned} & \mathrm{H}_{\mathrm{A}} 4.4916 .9^{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{B}} 3.9616 .9^{\mathrm{a}} \end{aligned}$	3.87	$\begin{gathered} \mathrm{H}-5 \text { 7.57-7-60 } \\ \mathrm{H}-6,7 \text { 7.40-7.47 } \end{gathered}$	$\begin{gathered} \text { H-9 } 8.43 \\ \text { H-11 } 8.037 .5^{b} \\ \text { H-12 } 7.737 .5^{b} \\ \text { H-13 } 8.277 .5^{b} \end{gathered}$	+11.4
$3 \mathbf{i}$	$\begin{aligned} & \mathrm{H}_{\mathrm{A}} 4.4416 .9^{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{B}} 3.9216 .9^{\mathrm{a}} \end{aligned}$	3.84	$\begin{gathered} \mathrm{H}-57.55-7-57 \\ \mathrm{H}-6,7 \\ 7.40-7.42 \end{gathered}$	$\begin{gathered} \mathrm{H}-9,137.58-7.61 \\ \mathrm{H}-11,127.42-7.48 \end{gathered}$	+12.1

${ }^{\mathrm{a} 2} \mathrm{~J} .{ }^{\mathrm{b} 3} J .{ }^{c} J_{\mathrm{H}-\mathrm{F}}$.

Thus, a plot of $\delta\left({ }^{11} \mathrm{~B}\right)$ for $\mathbf{3 a}, \mathbf{3 d} \mathbf{- 3 i}$ compounds versus $\sigma_{\text {Hammett }}$ values (Fig. 2) gives the equation $\sigma_{\text {Hammett }}=-0.666\left[\delta\left({ }^{11} \mathrm{~B}\right)\right]+7.6224$, with a correlation coefficient $\mathrm{R}^{2}=0.9036$. These data confirm that the strength of the $\mathrm{N} \rightarrow \mathrm{B}$ coordination bond is governed by electronic factors. The ${ }^{19}$ F NMR spectra of $\mathbf{3 d}$ and $\mathbf{3 g}$ compounds exhibit a triplet of triplets at $-113.10 \mathrm{ppm}(J=9.0$, 6.4 Hz) and a single signal at -61.23 ppm , respectively.

Figure 1. Plot of $\delta\left({ }^{11} \mathrm{~B}\right)$ of compounds 3a, 3d-3i versus $\sigma_{\text {Hammett }}$ values.

The ${ }^{13} \mathrm{C}$ NMR data for compounds $\mathbf{3 a - 3 i}$ are summarized in Table 2. For all compounds the assignment of C-2 and C-3 are based on HETCOR experiments. Thus C-2 correlates with the signals showing an AB coupling, which appear in the range between 3.86 and 4.49 ppm and $\mathrm{C}-3$ correlates with the single signal between 3.75 and 3.87 ppm . The $\mathrm{C}-8$ signal is not observed in any of the compounds; C 9 to $\mathrm{C}-13$ in $\mathbf{3 d}$ exhibit a doublet, while $\mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 11$ and C 14 in $\mathbf{3 g}$ appear quartets due to coupling with F atoms.

Mass spectrometry

The 70 eV EI mass spectra of compounds $\mathbf{3 b}$ and $\mathbf{3 d} \mathbf{- 3 i}$ do not exhibit the molecular ion, while the spectra of $\mathbf{3 a}$ and $\mathbf{3 c}$ show the molecular ion. The following important fragment ions are observed, in the spectra of $\mathbf{3 a}, \mathbf{3 b}$, as well as $\mathbf{3 d} \mathbf{- 3 i}$; the base peak is at $\mathrm{m} / \mathrm{z}=91$ and corresponds to tropylium ion; $\mathbf{3 c}$ exhibits the corresponding base peak at $\mathrm{m} / \mathrm{z}=198\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right]^{+}$. All compounds exhibit the fragment ion $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}\right]^{+}$and the fragment ion at $\mathrm{m} / \mathrm{z}=42$ $\left[\mathrm{CH}_{2} \mathrm{NCH}_{2}\right]^{+}$. Compounds 3e, 3i and 3f exhibit fragment ions containing ${ }^{35} \mathrm{Cl},{ }^{37} \mathrm{Cl}$ and ${ }^{79} \mathrm{Br}$, ${ }^{81} \mathrm{Br}$, respectively. Scheme 2 shows some fragment ions and a possible fragmentation pattern.

Infrared spectroscopy

The IR spectra exhibit the $v_{(C=0)}$ carbonyl oxygen band in the range between 1758 and $1772 \mathrm{~cm}^{-1}$, and a band due to B-O between 1292 and $1304 \mathrm{~cm}^{-1}$. Also the band due to $\mathrm{N} \rightarrow \mathrm{B}$ is in the range between 1026 and $1034 \mathrm{~cm}^{-1}$.

Table 2. ${ }^{13} \mathrm{C}$ NMR data of 3a-3i: $\delta_{\mathrm{C}}[\mathrm{ppm}]$

				3a: $\mathrm{R}=p-\mathrm{CH}_{3}$ 3b: $\mathrm{R}=\stackrel{14}{-\mathrm{C}} \mathrm{HO}$ 3c: $\mathrm{R}=p-\stackrel{14}{\mathrm{C}} \mathrm{H}_{3}$		3d: $\mathrm{R}=p-\mathrm{F}$ $3 \mathrm{e}: \mathrm{R}=p-\mathrm{Cl}$ 3f: $\mathrm{R}=p-\mathrm{Br}$		$\begin{aligned} & 14 \\ = & m-\mathrm{CF}_{3} \\ = & m-\mathrm{NO}_{2} \\ = & m-\mathrm{Cl} \end{aligned}$	
	$3 \mathrm{a}^{\text {a }}$	3b ${ }^{\text {b }}$	$3 c^{\text {c }}$	3d	3e	3 f	$\mathbf{3 g}{ }^{\text {d }}$	3h	3i
C-1	169.21	168.96	169.22	169.10	169.02	169.03	169.52	169.47	169.08
C-2	57.88	58.12	57.88	57.97	57.99	58.00	58.70	58.74	58.12
C-3	60.83	60.86	60.88	60.79	60.80	60.83	61.30	61.37	60.84
C-4	130.72	130.49	130.75	130.69	130.60	130.63	131.07	131.07	130.65
C-5	131.64	131.58	131.63	131.64	131.61	131.63	132.11	132.09	131.68
C-6	128.92	128.88	128.93	128.93	128.89	128.92	129.38	129.38	128.96
C-7	129.60	129.62	129.62	129.63	129.60	129.62	130.13	130.13	129.79
C-9	132.82	133.59	134.33	$\begin{gathered} 135.19 \\ 7.8^{\mathrm{g}} \end{gathered}$	134.81	135.14	$\begin{gathered} 129.76 \\ 3.8^{\mathrm{g}} \end{gathered}$	127.96	132.63
C-10	128.43	128.52	113.40	$\begin{gathered} 114.61 \\ 19.8^{\mathrm{e}} \end{gathered}$	127.70	130.63	$\begin{gathered} 128.68 \\ 31.0^{\mathrm{e}} \end{gathered}$	147.99	132.95
C-11	138.25	136.59	160.13	$\begin{gathered} 163.13 \\ 244.90^{\mathrm{f}} \end{gathered}$	134.12	123.06	$\begin{gathered} 126.25 \\ 3.8^{\mathrm{g}} \end{gathered}$	124.48	129.01
C-12	128.43	128.52	113.40	114.61	127.70	130.63	129.03	129.72	129.78
C-13	132.82	133.59	134.33	$\begin{gathered} 135.19 \\ 7.8^{\mathrm{g}} \end{gathered}$	134.81	135.14	137.60	140.21	131.55

${ }^{\mathrm{a}} \mathrm{CH}_{3} \delta=21.08 .{ }^{\mathrm{b}} \mathrm{COH} \delta=193.42 .{ }^{\mathrm{c}} \mathrm{OCH}_{3} \delta=54.92 .{ }^{\mathrm{d}} \mathrm{CF}_{3} \delta=129.56, J_{\mathrm{CF}}=273.30 .{ }^{\mathrm{e} 2} J_{\mathrm{CF}}$. ${ }^{\mathrm{f}} J_{\mathrm{CF} .}{ }^{3}{ }^{3} J_{\mathrm{CF}}$.

X-Ray diffracction

Suitable crystals of $\mathbf{3 e}$ for X-ray analysis were obtained from methylene chloride; the molecular structure and crystallographic numbering is showing in figure 2 . In general the bond distances are within the values characteristic of analogous compounds. ${ }^{13,18}$ Select bond lengths are: $\mathrm{B}_{1}-\mathrm{O}_{10}$ $1.466(3), \mathrm{B}_{1}-\mathrm{O}_{13} 1.472(3), \mathrm{C}_{9}-\mathrm{O}_{10} 1.320(3), \mathrm{C}_{12}-\mathrm{O}_{13} 1.320(3), \mathrm{C}_{8}-\mathrm{C}_{9} 1.502(3), \mathrm{C}_{11}-\mathrm{C}_{12} 1.504(3)$, $\mathrm{C}_{8}-\mathrm{N}_{1} 1.495(2), \mathrm{C}_{11}-\mathrm{N}_{1} 1.489(2)$. The conformations of the two five-membered rings are different
and they are not planar as indicate by the torsion angles (Table 3). The aryl-B and N - Bn groups are bent away from $\mathrm{N}-\mathrm{B}$, as indicated by the angle values $\mathrm{C}_{7}-\mathrm{N}_{1}-\mathrm{B}_{1} 112.48^{\circ}(13)$ and $\mathrm{C}_{14}-\mathrm{B}_{1}-\mathrm{N}_{1}$ $114.78^{\circ}(14)$. The molecular structure establishes the bicyclic structure showing a $\mathrm{N} \rightarrow \mathrm{B}$ bond length of $1.683(2) \AA$, the value being comparable to the $\mathrm{N} \rightarrow \mathrm{B}$ bond length in analogous compounds. ${ }^{13,18}$ This molecule shows a bicyclooctane structure with torsion angle of the junction, $17.25^{\circ}(20)$.

Scheme 2. Mass spectral data for compounds 3a-3i.

The molecule in the crystal structure shows the following intramolecular contacts: $\mathrm{N}_{1}{ }^{\cdots} \mathrm{H}_{7 \mathrm{~A}}$ $2.0047(218), \mathrm{N}_{1} \cdots \mathrm{H}_{7 \text { B }}$ 1.9786(198), $\mathrm{N}_{1} \cdots \mathrm{H}_{8 \mathrm{~A}} 2.0528(265), \mathrm{N}_{1} \cdots \mathrm{H}_{8 \mathrm{~B}} 2.0181(307) \AA$, and $\mathrm{O}_{13} \cdots \mathrm{H}_{19}$, which are significantly shorter than the sum of the van der Walls radii for nitrogen and hydrogen atoms $(2.75 \AA)$, as well as oxygen and hydrogen $(2.70 \AA),{ }^{23}$ In addition, the following intermolecular contact is observed between $\mathrm{O}_{1} \cdots \mathrm{H}_{11 \mathrm{~A}} 2.3919(0.0249) \AA$.

Table 3. Selected torsion angles $\left({ }^{\circ}\right)$ for compound $\mathbf{3 e}$

$\mathrm{O}_{10}-\mathrm{B}_{1}-\mathrm{N}_{1}-\mathrm{C}_{8}$	$14.19(0.17)$	$\mathrm{O}_{13}-\mathrm{B}_{1}-\mathrm{N}_{1}-\mathrm{C}_{11}$	$17.93(0.17)$
$\mathrm{N}_{1}-\mathrm{B}_{1}-\mathrm{O}_{10}-\mathrm{C}_{9}$	$17.11(0.19)$	$\mathrm{N}_{1}-\mathrm{B}_{1}-\mathrm{O}_{13}-\mathrm{C}_{12}$	$11.91(0.20)$
$\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{O}_{10}-\mathrm{B}_{1}$	$13.38(0.23)$	$\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{O}_{13}-\mathrm{B}_{1}$	$1.0(0.23)$
$\mathrm{N}_{1}-\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{O}_{10}$	$2.30(0.22)$	$\mathrm{N}_{1}-\mathrm{C}_{11}-\mathrm{C}_{12}-\mathrm{O}_{13}$	$12.19(0.22)$
$\mathrm{C}_{9}-\mathrm{C}_{8}-\mathrm{N}_{1}-\mathrm{B}_{1}$	$7.70(0.18)$	$\mathrm{C}_{12}-\mathrm{C}_{11}-\mathrm{N}_{1}-\mathrm{B}_{1}$	$18.02(0.18)$

Figure 2. Molecular structure of compound 3e.

Conclusions

The new $(\mathrm{N} \rightarrow \mathrm{B})$ phenyl substituted[N -benzyliminodiacetate- $\left.\mathrm{O}, \mathrm{O}^{\prime}, \mathrm{N}\right]$ boranes $\mathbf{3 a - 3 i}$ were characterized by spectroscopic methods. These compounds exhibit a bicyclic structure due to the presence of an intramolecular $\mathrm{N} \rightarrow \mathrm{B}$ coordination bond and it is confirmed by a single crystal x ray diffraction study of $(\mathrm{N} \rightarrow \mathrm{B})$ 4-chlorophenyl[N-benzyliminodiacetate-O,O',N]borane 3e . The correlation between $\delta\left({ }^{11} \mathrm{~B}\right)$ of compounds $\mathbf{3 a}, \mathbf{3 d} \mathbf{- 3 i}$ and $\sigma_{\text {Hammett }}$ values shows that the strength of the $\mathrm{N} \rightarrow \mathrm{B}$ bond depends on the electronic factors of the substituent on the B-phenyl group.

Experimental Section

General Procedures. N-benzyliminodiacetic acid 1 was prepared according to our methodology. ${ }^{24}$ Reagents 2a-2i were purchased from Aldrich Co. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{11} \mathrm{~B}$ NMR spectra were recorded on Jeol GLX-270, Jeol Eclipse-400 and Bruker Avance 300-DPX spectrometers, DMSO-d ${ }_{6}$ was used as solvent. Infrared spectra were recorded on a Perkin-Elmer 16F PC FT-IR spectrometer. Melting points were measured in an open capillary tube on a Gallemkamp MFB595 apparatus and are uncorrected. The single-crystal X-ray study was performed on an Enraf Nonius Kappa CCD diffractometer. Compound 3e, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BClO}_{4} \mathrm{~N}(\mathrm{MW}=343.56)$, crystallized in the space group P 2121 21, orthorhombic from methylene chloride as colorless flakes, size: $0.12 \times 0.1 \times 0.9 \mathrm{~mm}^{3}$ with $\mathrm{a}=9.9928(2), \mathrm{b}=11.1546(3), \mathrm{c}=14.5858(3) \AA, \mathrm{V}=1625.82(6) \AA^{3}, \alpha$ $=90.00^{\circ}, \beta=90.00^{\circ}, \gamma=90.00^{\circ}, \rho=1.404 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{Z}=4, \mu=0.256 \mathrm{~mm}^{-1}, F(000)=712$. Data collection: a total of 3715 reflections were measured $\left(2^{\circ}>\theta>26^{\circ}\right)$, 3619 were independent and of these 2951 were considered observed $\left[F_{0}>4.0 \sigma\left(F_{\mathrm{o}}\right)\right]$. Solution and refinement: direct methods, all non hydrogen atoms were refined anisotropically, $\mathrm{R}=0.0382$, $\mathrm{Rw}=0.0847, \mathrm{w}=1 / \sigma^{2}$, $\mathrm{GOF}=$ 1.019, largest residual electron density peak/hole in the final difference map: 0.137/-0.211 e^{-3}. Atomic scattering factors were taken from the International Tables for X-ray Crystallography. ${ }^{25}$ Data reduction were performed by Denzo. ${ }^{26}$ All calculations were carried out using the SHELXL-97 (Sheldrick 1997) ${ }^{27}$ and the molecular graphics by Diamond 2.1. ${ }^{28}$

The procedure outline is general for the preparation of compounds $\mathbf{3 a}$ to $\mathbf{3 i}$

$(\mathbf{N} \rightarrow \mathbf{B})$ 4-Methylphenyl[\mathbf{N}-benzyliminodiacetate- $\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}, \mathbf{N}\right]$ borane (3a). A suspension of 0.40 g $(1.79 \mathrm{mmol})$ of N-benzyliminodiacetic acid $1,0.24 \mathrm{~g}(1.79 \mathrm{mmol})$ of 4-methylphenylboronic acid 2a and 66 ml of a mixture of dimethylsulfoxide/benzene (1/10) was placed into a 100 ml flak equipped with a stirrer and a Dean Stark Trap. The mixture was kept under reflux for 12 h . After being cooled to room temperature, the solvent was evaporated under vacuum. The residue was dissolved in acetone and precipitated with hexane to yield $0.57 \mathrm{~g}(98 \%)$ of compound $\mathbf{3 a}$ as a white solid, mp $223-225^{\circ} \mathrm{C}$. IR: 3014, 2952, 2866, 1766, 1612, 1538, 1498, 1296, 1240, 1208, $1034 \mathrm{~cm}^{-1}$ (KBr). MS: m/z (\%), 323 (1), 295 (1), 266 (1), 204 (22), 182 (22), 175 (15), 91 (100), 42 (95). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BNO}_{4}$ (323): C, 66.87 ; H, 5.57; N, 4.33. Found: C, 66.94; H, 5.78; N, 4.23.
$(\mathbf{N} \rightarrow \mathbf{B})$ 4-Formylphenyl[\boldsymbol{N}-benzyliminodiacetate- $\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}, \boldsymbol{N}\right]$ borane (3b). Prepared from 0.40 g $(1.79 \mathrm{mmol})$ of compound $\mathbf{1}$ and $0.27 \mathrm{~g}(1.79 \mathrm{mmol})$ of 4-formylphenylboronic acid $\mathbf{2 b}, 0.58 \mathrm{~g}$ (95%) of compound $\mathbf{3 b}$ were obtained as a white solid, mp 213-215 ${ }^{\circ} \mathrm{C}$. IR: 3008, 2936, 2858, 1768, 1696, 1640, 1562, 1540, 1506, 1298, 1224, $1038 \mathrm{~cm}^{-1}$ (KBr). MS: m/z (\%), 339 (40), 309 (1), 280 (7), 218 (5), 196 (23), 189 (3), 91 (100), 42 (67). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BNO}_{5}$ (337): C, 66.87; H, 5.57; N, 4.33. Found: C, 63.87; H, 5.10; N, 4.10.
$(\mathbf{N} \rightarrow \mathbf{B})$ 4-Methoxyphenyl $\left[\boldsymbol{N}\right.$-benzyliminodiacetate- $\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}, \mathbf{N}\right]$ borane (3c). Prepared from 0.40 g $(1.79 \mathrm{mmol})$ of compound $\mathbf{1}$ and $0.27 \mathrm{~g}(1.79 \mathrm{mmol})$ of 4-methoxyphenylboronic acid $\mathbf{2 c}, 0.59 \mathrm{~g}$ (96%) of compound 3 c were obtained as a white solid, mp 251-253 ${ }^{\circ} \mathrm{C}$. IR: 3006, 2958, 2840,

1772, 1604, 1570, 1512, 1294, 1246, $1026 \mathrm{~cm}^{-1}(\mathrm{KBr}) . \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%), 311$ (1), 282 (11), 220 (11), 198 (100) 191 (11), 91 (64), 42 (67). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BNO}_{5}$ (339): C, 63.71; H, 5.30; N, 4.12. Found: C, 63.45; H, 5.25; N, 4.29.
$(\mathbf{N} \rightarrow \mathbf{B})$ 4-Fluorophenyl $\left[\boldsymbol{N}\right.$-benzyliminodiacetate- $\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}, \mathbf{N}\right]$ borane (3d). Prepared from 0.40 g $(1.79 \mathrm{mmol})$ of compound $\mathbf{1}$ and $0.25 \mathrm{~g}(1.79 \mathrm{mmol})$ of 4-fluorophenylboronic acid $\mathbf{2 d}, 0.57 \mathrm{~g}$ (97%) of compound $\mathbf{3 d}$ were obtained as a white solid, mp $227-228^{\circ} \mathrm{C}$. IR: 3066, 3010, 2954, $2868,1772,1638,1600,1508,1292,1218,1036 \mathrm{~cm}^{-1}$ (KBr). MS: m/z (\%), 299 (1), 270 (9), 208 (6), 186 (52), 179 (4), 91 (100), 42 (90). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BFNO}_{4}$ (327): C, 62.38; H, 4.58; N, 4.28. Found: C, 62.34; H, 4.72; N, 4.32.
$(\mathbf{N} \rightarrow \mathbf{B})$ 4-Chlorophenyl $\left[\boldsymbol{N}\right.$-benzyliminodiacetate- $\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}, \boldsymbol{N}\right]$ borane (3e). Prepared from 0.40 g $(1.79 \mathrm{mmol})$ of compound $\mathbf{1}$ and $0.28 \mathrm{~g}(1.79 \mathrm{mmol})$ of 4-chlorophenylboronic acid $\mathbf{2 e}, 0.58 \mathrm{~g}$ (94%) of compound $3 \mathbf{e}$ were obtained as a white solid, mp $226-228^{\circ} \mathrm{C}$. IR: $3010,2960,2866$, 1764, 1636, 1590, 1560, 1490, 1294, 1224, $1034 \mathrm{~cm}^{-1}$ (KBr). MS: m/z (\%), 315 (2), 288 (6), 286 (18), 226 (4), 224 (11), 204 (38), 202 (52), 197 (6), 195 (8), 91 (100), 42 (82). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BClNO}_{4}$ (343): C, 59.47; H, 4.37; N, 4.08. Found: C, 59.76; H, 4.76; N, 4.06.
$(\mathbf{N} \rightarrow \mathbf{B})$ 4-Bromophenyl[\boldsymbol{N}-benzyliminodiacetate- $\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}, \boldsymbol{N}\right]$ borane (3f). Prepared from 0.40 g $(1.79 \mathrm{mmol})$ of compound $\mathbf{1}$ and $0.36 \mathrm{~g}(1.79 \mathrm{mmol})$ of 4-bromophenylboronic acid $\mathbf{2 f}, 0.64 \mathrm{~g}$ (92%) of compound $3 \mathbf{f}$ were obtained as a white solid, mp $231-233^{\circ} \mathrm{C}$. IR: $3010,2934,2860$, 1764, 1638, 1584, 1558, 1490, 1294, 1240, 1224, $1034 \mathrm{~cm}^{-1}(\mathrm{KBr}) . \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%), 361$ (1), 359 (1), 332 (7), 330 (7), 270 (5), 268 (5), 248 (19), 246 (19), 241 (3), 239 (3), 91 (100), 42 (65). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BBrNO}_{4}$ (388): C, 52.57; H, 3.86; N, 3.60. Found: C, 52.24; H, 3.82; N, 3.86 .
$(\mathbf{N} \rightarrow \mathbf{B}) \quad$ 3(Trifluoromethyl)phenyl $\left[\mathrm{N}\right.$-benzyliminodiacetate- $\left.\boldsymbol{O}, O^{\prime}, N\right]$ borane ($\mathbf{3 g}$). Prepared from $0.40 \mathrm{~g} \quad(1.79 \mathrm{mmol})$ of compound $\mathbf{1}$ and $0.34 \mathrm{~g}(1.79 \mathrm{mmol})$ of 3(trifluoromethyl)phenylboronic acid $\mathbf{2 g}, \quad 0.63 \mathrm{~g}(93 \%)$ of compound $\mathbf{3 g}$ were obtained as a white solid, mp $275-277^{\circ} \mathrm{C}$. IR: 3060, 2934, $2860,1768,1640,1540,1300,1216,1034 \mathrm{~cm}^{-1}$ (KBr). MS: m/z (\%), 349 (3), 236 (25), 320 (7), 241 (7), 229 (2), 91 (100), 42 (74). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{BF}_{3} \mathrm{NO}_{4}$ (377): C, 57.29; H, 3.97; N, 3.71. Found: C, 57.30; H, 4.10; N, 3.80. $(\mathbf{N} \rightarrow \mathbf{B})$ 3-Nitrophenyl $\left[\boldsymbol{N}\right.$-benzyliminodiacetate- $\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}, \boldsymbol{N}\right]$ borane (3h). Prepared from 0.40 g $(1.79 \mathrm{mmol})$ of compound $\mathbf{1}$ and $0.30 \mathrm{~g}(1.79 \mathrm{mmol})$ of 3-nitrophenylboronic acid $\mathbf{2 h}$, it was obtained a white solid, which was washed with chloroform and dissolved with acetone. The mixture was filtered and the solvent was evaporated under vacuum to give $0.32 \mathrm{~g}(50 \%)$ of compound $\mathbf{3 h}$, as a white solid product, $\mathrm{mp} 309-311^{\circ} \mathrm{C}$. IR: $3060,3012,2938,2862,1766,1612$, 1570, 1524, 1304, 1220, $1032 \mathrm{~cm}^{-1}$ (KBr). MS: m/z (\%), 326 (12), 297 (6), 213 (21), 206 (3), 91 (100), 42 (49). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BN}_{2} \mathrm{O}_{6}$ (354): C, 57.62 ; H, 4.23; N, 7.90. Found: C, 58.02; H, 4.36; N, 7.57.
$(\mathbf{N} \rightarrow \mathbf{B})$ 3-Chlorophenyl[\boldsymbol{N}-benzyliminodiacetate- $\left.\boldsymbol{O}, \boldsymbol{O}^{\prime}, \boldsymbol{N}\right]$ borane (3i). Prepared from 0.40 g $(1.79 \mathrm{mmol})$ of compound $\mathbf{1}$ and $0.28 \mathrm{~g}(1.79 \mathrm{mmol})$ of 3-chlorophenylboronic acid $\mathbf{2 i}, 0.59 \mathrm{~g}$ (95%) of compound $\mathbf{3 i}$ were obtained as a white solid product, $\mathrm{mp} 263-265^{\circ} \mathrm{C}$. IR: 3066, 3012, 2956, 2862, 1758, 1612, 1570, 1524, 1288, 1230, $1030 \mathrm{~cm}^{-1}$ (KBr). MS: m/z (\%), 288 (2), 286
(5), 226 (2), 224 (5), 204 (15), 202 (18), 197 (2), 195 (3), 91 (100), 42 (83). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BClNO}_{4}$ (343): C, 59.47 ; H, 4.37; N, 4.08. Found: C, 59.61 ; H, 4.76; N, 4.06.

Supplementary Material

Crystallographic data for $\mathbf{3 e}$ has been deposited at the Cambridge Crystallographic Data Center, UK, CCDC as supplementary material No. 275644.

Acknowledgements

The authors thank the "Consejo Nacional de Ciencia y Tecnología (Conacyt-Máxico)" for financial support and scholarship to L. S. Z. R. and H. I. B., thanks to Maria Eugenia Ochoa for determination of elemental analyses and Ing. Marco Antonio Leyva for his technical assistance in X-ray crystallography.

References

1. Baum, G. J. Organomet. Chem. 1970, 22, 269.
2. Tung, S. H.; Chang, K. M.; Tah, S. L.; Liu C. C.; Chang, S. L. Chem. Abstr. 1967, 66, 37990m.
3. Csuk, R.; Hönig, H.; Weidmann, H.; Zimmerman, H. K. Arch. Pharm. 1984, 317, 336.
4. Miller III, M. C.; Sood, A.; Spielvogel, B. F.; Hall I. H. Anticancer Research. 1997, 17, 3299.
5. Karthikeyan, S.; Sood, A.; Tomas, J.; Spielvogel, B. F.; Hall, I. H. Amino Acids 1995, 8, 323.
6. Perks, C. A.; Mill, A. J.; Constantine, G.; Harrison, K. G.; Gibson, J. A. British J. Radiol. 1988, 61, 1115.
7. Nemoto, H.; Cai, J.; Asao, N. J. Med. Chem. 1995, 38, 1673.
8. Pignol, J. P.; Abbe, J. C.; Lefebvre, O.; Stampfler, A.; Methlin, G.; Sahel, J. C. R. Acad. Sci. III. 1994, 317, 543.
9. Mancilla, T.; Contreras, R.; Wrackmeyer, B. J. Organomet. Chem. 1986, 307, 1.
10. Mancilla, T.; Gálvez, S. L. Main Group Met. Chem. 1992, 15, 9.
11. Mancilla, T.; Alarcón, M. L.; Carrillo, L. Heteroatom Chem. 1994, 5, 455.
12. Mancilla, T.; Carrillo, L.; Reduncido, M. P. Polyhedron. 1996, 15, 3777.
13. Mancilla, T.; Höpfl, H.; Bravo, G.; Carrillo, L. Main Group Met. Chem. 1997, 20, 31.
14. Amaya, D. L.; Calixto, Ma. A. Bachelor thesis, Instituto Tecnológico de Tuxtepec; Cinvestav, 2002. Flores Ancona R. M. Bachelor thesis, Universidad Veracruzana; Cinvestav, 2002.
15. Garrigues. B.; Mullier, M.; Raharinirina, A. J. Organomet. Chem. 1986, 302, 153.
16. Mancilla, T. ; Contreras, R. J. Organomet. Chem. 1987, 321, 191.
17. Contreras, R.; García, C.; Mancilla T.; Wrackmeyer B.; J. Organomet. Chem. 1983, 246, 213.
18. Farfán, N.; Mancilla, T.; Castillo, D.; Uribe, G.; Carrillo, L.; Joseph-Nathan, P.; Contreras R. J. Organomet. Chem. 1990, 381, 1.
19. Barba, V.; Cuahutle, D.; Ochoa, Ma. E.; Santillan, R.; Farfán, N. Inor. Chim. Acta 2000, 303, 7.
20. Farfán, N.; Höpfl, H., Barba, V.; Ochoa, Ma. E.; Santillan, R.; Gómez, E.; Gutiérrez, A. J. Organomet. Chem. 1999, 581, 70.
21. Farfán, N.; Santillan, R.; Höpfl, H. Main Group Chem. News 1999, 7, 5.
22. Johnson, C. D. The Hammett Equation, Cambridge University Press: 1980, 3, 25.
23. Bondi, A. J. Phys. Chem. 1964, 68, 441.
24. Zamudio-Rivera, L. S. Ph.D. thesis, Cinvestav, 2001
25. Cromer, D. T.; Waber, I. T. International Tables for x-ray Crystallographic Data, Kynoch Press: England, 1974; Vol. IV.
26. (a) Otwinowski, Z.; Minor, W. In Processing of x-ray Diffraction Collection in Oscillation Mode; Carter, C. W. ; Sweet, R. M., Eds; Academic Press, 1996. (b) Prince, E. Methods Enzymol. 1997, 276, 307.
27. Sheldrick, G. M. SHELX-97, Program for Crystal Structure Solution, University of Göttingen, Germany, 1993.
28. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.
