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a b s t r a c t

An edge cutW of a connected graph G is a k-restricted edge cut if G −W is disconnected,
and every component of G −W has at least k vertices. The k-restricted edge connectivity
is defined as the minimum cardinality over all k-restricted edge cuts. A permutation
graph is obtained by taking two disjoint copies of a graph and adding a perfect matching
between the two copies. The k-restricted edge connectivity of a permutation graph is
upper bounded by the so-called minimum k-edge degree. In this paper some sufficient
conditions guaranteeing optimal k-restricted edge connectivity and super k-restricted edge
connectivity for permutation graphs are presented for k = 2, 3.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this work only undirected simple graphs without loops or multiple edges are considered. Unless stated
otherwise, we follow [10] for terminology and definitions.
Let G = (V (G), E(G)) be a graph with set of vertices V := V (G) and set of edges E := E(G). A subsetW of edges is an

edge cut if G−W is not connected. It is widely known that λ(G) ≤ δ(G), where λ(G) is the standard edge connectivity and
δ(G) is the minimum degree of G. A graph G ismaximally edge connected if λ(G) = δ(G).
The restricted edge connectivity was proposed by Esfahanian and Hakimi [11] who denoted it by λ′(G). For a connected

graph G the restricted edge connectivity is defined as the minimum cardinality of a set W of edges such that G − W is not
connected andW does not contain the set of incident edges to any vertex of the graph, then G−W does not contain isolated
vertices. The restricted edge connectivity has been studied under the name of super edge connectivity. This is a stronger
measure of connectivity than the standard edge connectivity, and was proposed by Boesch [7] and Boesch and Tindell [8].
A graph is super edge connected or super-λ, if every minimum edge cut consists of a set of edges incident with one vertex.
See [7,8,14] for more details. Clearly λ′(G) > δ(G) is a sufficient and necessary condition for G to be super edge connected.
Inspired by the definition of conditional connectivity introduced by Hararay [16], Fàbrega and Fiol [12,13] proposed the

concept of k-restricted edge connectivity (where k is a nonnegative integer) as follows. An edge cutW is called a k-restricted
edge cut if every component of G −W has at least k + 1 vertices. In this paper we adopt the following definition. An edge
cutW is called a k-restricted edge cut if every component of G − W has at least k vertices, where k ≥ 1. Assuming that G
has k-restricted edge cuts, the k-restricted edge connectivity of G, denoted by λ(k)(G), is defined as the minimum cardinality
over all k-restricted edge cuts of G. From the definition, we immediately have that if λ(k)(G) exists, then λ(i)(G) exists for
any i < k and λ(i)(G) ≤ λ(k)(G). Observe that any edge cut of G is a 1-restricted edge cut and λ(1)(G) is just the standard
connectivity λ(G). Furthermore, the restricted edge connectivity λ′(G) defined in [11] is λ′(G) = λ(2)(G).
For a graph G and a permutation π of V , the permutation graph Gπ is defined by taking two disjoint copies of G and

adding amatching between these two copies such that each vertex v of one copy of G is joined with vertex π(v) of the other
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copy. Examples of permutation graphs include some generalized Petersen graphs, hypercubes, and prisms. Observe that the
cartesian product graph K2×G can be viewed as the permutation graphGid, where id is the identity permutation. It must also
be pointed out that a permutation graph can be understoodwithin the frame of product graphs H ∗G, since Gπ can bewritten
as K2 ∗ G (see [6] for the definition of this product of graphs). Due to their structure, permutation graphs provide a model
for large-scale parallel processing systems. Moreover, permutation graphs can be seen as suitable models for building larger
interconnection networks from smaller ones without increasing significantly their maximum transmission delay, in such a
way that these larger networks are highly fault-tolerant. In this regard, several results for the connectivity of permutation
graphs are given in [2,15,17,20,21]; see also [3,4] for the connectivity of product graphs H ∗ G.
In this work we study the k-restricted edge connectivity of permutations graphs. We present bounds when k ∈ {2, 3},

generalizing some results contained in [2]. The article is organized as follows. In Section 2 we recall some definitions and
present some basic results about the k-restricted edge connectivity. Section 3 is devoted to presenting the aforementioned
bounds for the k-restricted edge connectivities of permutation graphs.

2. Notation and preliminary results

Let G = (V , E) be a graph. Given a proper subset X of V , letw(X) = [X, V \ X] denote the set of edges with one end in X
and the other end in V \X . Let G[X] denote the subgraph induced by X . For every nonnegative integer k, theminimum k-edge
degree is defined as follows

ξ(k)(G) = min{|w(X)| : |X | = k,G[X] is connected}.

Clearly, ξ(1)(G) = δ(G) and ξ(2)(G) = ξ(G) = min{d(u) + d(v) − 2 : uv ∈ E(G)}, usually known as the minimum edge
degree of G.
A graph G is said to be λ(k)-connected if k-restricted edge cuts exist. In [11] was shown that λ(2)(G) exists and λ(2)(G) ≤

ξ(G) if G is not a star and its order is at least 4. For k = 3, it was shown [9,19] that except for a special class of graphs
named flowers, 3-restricted edge cuts exist and λ(3)(G) ≤ ξ(3)(G) for any connected graph Gwith order at least 7. Following
Ou [19], a graph F of order n ≥ 2k is called a flower if it contains a cut-vertex s such that every component of F − s has order
at most k − 1. Furthermore, Zhang and Yuan [24] showed that if G is a connected graph of minimum degree δ and order
n ≥ 2(δ + 1) that is not isomorphic to any G∗m,δ (where G

∗

m,δ consists ofm disjoint copies of Kδ and a new vertex u adjacent
to all the vertices in those copies) and k ≤ δ + 1, then G has k-restricted edge cuts and λ(k)(G) ≤ ξ(k)(G).
In this paper we restrict ourselves to λ(k)-connected graphs G with λ(k)(G) ≤ ξ(k)(G). A graph G is said to be optimally

k-restricted edge connected if it is λ(k)-connected and λ(k)(G) = ξ(k)(G). In the rest of the paper, an optimally k-restricted
edge connected graph is said to be for short λ(k)-optimal. Several results assuring optimal k-restricted edge connectivity for
graphs with small diameter were obtained in [1,5].
A k-restricted edge cut w(X) = [X, V \ X] is called λ(k)-cut if |w(X)| = |[X, V \ X]| = λ(k)(G). It is clear for any λ(k)-cut

w(X) that G − w(X) has just two connected components. If w(X) is a λ(k)-cut of G, then X ⊂ V is called a k-fragment of G.
It is clear that if X is a k-fragment of G, then so is V \ X and the subgraphs induced by X and by V \ X are both connected.
Let ak(G) = min{|X | : X is a k-fragment of G}. Obviously, k ≤ ak(G) ≤ |V |/2. A k-fragment X is called a k-atom of G if
|X | = ak(G). Xu and Xu [23] proved that every λ(2)-optimal graph other than a triangle has a2(G) = 2. Bonsma et al. [9]
proved that a λ(3)-connected graph is λ(3)-optimal if and only if a3(G) = 3. Inspired by these results we present a result for
guaranteeing ak(G) = k assuming certain additional conditions.

Theorem 2.1. Let G be a λ(k)-connected graph with λ(k)(G) ≤ ξ(k)(G). Then G is λ(k)-optimal if ak(G) = k. Moreover, ak(G) = k
follows when G is λ(k)-optimal and some of the following assertions hold for its minimum degree δ and its girth g:

(i) δ ≥ 2k− 1.
(ii) δ ≥ k+ 1 and g ≥ k+ 1.

Proof. IfX ⊂ V (G) is a k-atomwith cardinality |X | = ak(G) = k, thenλ(k)(G) = |w(X)| ≥ ξ(k)(G), yieldingλ(k)(G) = ξ(k)(G).
Next, suppose λ(k)(G) = ξ(k)(G), and let X ⊂ V (G) be such that |X | = k, G[X] is connected, and |w(X)| = ξ(k)(G). Let C be
any component of G − w(X) distinct from G[X], and consider a vertex z ∈ V (C). As z can be adjacent to at most k vertices
of X , if δ ≥ 2k− 1, there must exist at least d(z)− k ≥ δ − k ≥ k− 1 neighbors of z in C , hence |V (C)| ≥ k. Thenw(X) is a
λ(k)-cut, yielding ak(G) ≤ |X | = k, hence ak(G) = k. Furthermore, if g ≥ k+ 1 holds for the girth and δ ≥ k+ 1, then z can
be adjacent to at most 2 vertices of X . Then if δ ≥ k+ 1 there must exist at least d(z)− 2 ≥ δ− 2 ≥ k− 1 neighbors of z in
C , hence |V (C)| ≥ k. As before we have ak(G) = k. �

The concept of super restricted edge connected graph G, or super-λ(2) was proposed by Li and Li [18] and by Wang [22].
A graph G is super restricted edge connected if G is λ(2)-optimal and the deletion of every minimum 2-restricted edge cut of
G isolates an edge. Clearly, if G is super restricted edge connected, then a2(G) = 2.
The concept of super restricted edge connected can be generalized for any λ(k)-connected graph G as follows.

Definition 2.2. A graph G on n vertices is super k-restricted edge connected, or super-λ(k), if G is λ(k)-optimal and the deletion
of every λ(k)-cut isolates a component with k vertices; that is, if every k-fragment X has cardinality |X | ∈ {k, n− k}.
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Fig. 1. Non super-λ(k)-graph G for which λ(k)(G) = ξ(k)(G), for k = 2 (left) and k = 3 (right).

Observe that a super-λ(k) graph G has ak(G) = k. Moreover, G has λ(k)(G) = ξ(k)(G), but the converse is not true as the
two examples depicted in Fig. 1 show.

Theorem 2.3. Let G be a λ(k)-connected graph such that λ(k)(G) ≤ ξ(k)(G) and λ(k+1)(G) exists. Then G is super-λ(k) if and only
if λ(k+1)(G) > ξ(k)(G).

Proof. Let G be super-λ(k), that is, λ(k)(G) = ξ(k)(G) and every k-fragment of G has cardinality k or n − k, where n is the
order of G. Suppose λ(k+1)(G) ≤ ξ(k)(G), and let W be a λ(k+1)-cut of G. Then |W | = λ(k+1)(G) and G − W consists of
exactly two connected components (due to minimality ofW ) with vertex sets X and X∗ = V \ X , with |X |, |X∗| ≥ k+ 1 and
W = w(X) = w(X∗). Notice thatW is alsoλ(k)-cut, becauseλ(k+1)(G) ≤ ξ(k)(G) = λ(k)(G) yields |W | = λ(k+1)(G) = λ(k)(G),
since clearly λ(k)(G) ≤ λ(k+1)(G). Therefore, X and X∗ are k-fragments of Gwith |X |, |X∗| ≥ k+ 1, which contradicts that G
is super-λ(k).
For the converse suppose that G is not super-λ(k) and λ(k+1)(G) > ξ(k)(G). Then there exists a λ(k)-cut w(X) such that

neither X nor V \ X has cardinality k (hence |X |, |V \ X | ≥ k+ 1). Therefore,w(X) is also a (k+ 1)-restricted edge cut, and
ξ(k)(G) < λ(k+1)(G) ≤ |w(X)| = λ(k)(G), contradicting λ(k)(G) ≤ ξ(k)(G). �

The following result states a relationship between two different minimum k-edge degrees.

Lemma 1. Let G be a connected graph with minimum degree δ and minimum k-edge degree ξ(k)(G) with k ≤ δ + 1. Then for
every k ≥ 2 and for every j ∈ {0, . . . , k} it follows that

ξ(k)(G) ≥ ξ(k−j)(G)+ jδ − 2jk+ j(j+ 1).

Proof. Let X ⊂ V (G) be such that |X | = k, G[X] is connected, and ξ(k)(G) = |w(X)|. Notice that there exists some x ∈ X
such that G[X − x] is still connected. Then

ξ(k)(G) = |w(X)|
= |w(X − x)| − dG[X](x)+ dG−(X−x)(x)
= |w(X − x)| − 2dG[X](x)+ dG(x)
≥ ξ(k−1)(G)− 2(k− 1)+ δ.

By means of an iterative application of this inequality, for j ∈ {0, . . . , k}we have ξ(k)(G) ≥ ξ(k−j)(G)+ j(δ− 2k+ j+ 1). �

As a consequence of Theorem 2.3 and Lemma 1 we obtain the following result.

Theorem 2.4. Let k ≥ 1 and let G be a λ(k+1)-optimal graph with minimum degree δ ≥ 2k+ 1. Then G is super-λ(k−t) for every
t = 0, . . . , k− 1.

Proof. According to the hypothesis on G we have λ(k+1)(G) = ξ(k+1)(G). Therefore Lemma 1 together with the hypothesis
δ ≥ 2k+ 1 allows us to deduce that

λ(k+1)(G) = ξ(k+1)(G) ≥ ξ(k)(G)+ δ − 2(k+ 1)+ 2 > ξ(k)(G).

Thus, Theorem 2.3 implies that G is super-λ(k), hence the result is true for t = 0. Since G is super-λ(k), then λ(k)(G) = ξ(k)(G).
Again Lemma 1 together with the hypothesis δ ≥ 2k+ 1 allows us to deduce that

λ(k)(G) = ξ(k)(G) ≥ ξ(k−1)(G)+ δ − 2k+ 2 > ξ(k−1)(G).

As before Theorem 2.3 implies that G is super-λ(k−1). Repeating this reasoning we obtain the desired result. �
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3. k-Restricted edge connectivity of permutation graphs

From now on, we denote the two copies of G in the permutation graph Gπ by G1 and G2, and call cross edges the edges
joining vertices of G1 and G2. Notice that δ(Gπ ) = δ(G) + 1, ∆(Gπ ) = ∆(G) + 1 hold for the minimum and maximum
degrees, respectively. Next, we obtain a first result concerning the minimum k-edge degree of permutation graphs.

Lemma 2. Let k ≥ 2 and let G be a graph of minimum k-edge degree ξ(k)(G). For any permutation π of V (G) it follows that

ξ(k)(Gπ ) ≤ ξ(k)(G)+ k.

Moreover, if the minimum degree of G is δ(G), then

ξ(Gπ ) ≥ 2δ(G) and ξ(3)(Gπ ) ≥ min{δ(G)+ ξ(G)+ 1, ξ(3)(G)+ 3}.

Proof. Let G1 and G2 denote the two copies of Gπ . Let X ⊂ V (G1) be such that |X | = k, G[X] is connected and |wG1(X)| =
ξ(k)(G). Then ξ(k)(Gπ ) ≤ |wGπ (X)| = ξ(k)(G)+ k.
Let Y ⊂ V (Gπ ) be such that |Y | = k, Gπ [Y ] is connected and |wGπ (Y )| = ξ(k)(Gπ ). Let us write Y = Y1 ∪ Y2 with

Y1 ⊂ V (G1), Y2 ⊂ V (G2). If Y1 = ∅, it is clear that ξ(k)(Gπ ) = |wGπ (Y2)| = |wG2(Y2)| + k ≥ ξ(k)(G) + k, hence
ξ(k)(Gπ ) ≥ ξ(k)(G)+ k. Then suppose that 0 < r = |Y1| ≤ |Y2| = k− r . In this case

ξ(k)(Gπ ) = |wG1(Y1)| + |wG2(Y2)| + |[Y1, V (G2) \ Y2]| + |V (G1) \ [Y1, Y2]|
≥ ξ(r)(G)+ ξ(k−r)(G)+ k− 2r,

because there are at most r cross edges joining vertices of Y1 and Y2. If k = 2, then r = 1 and ξ(2)(Gπ ) = ξ(Gπ ) ≥
2ξ(1)(G) = 2δ(G). If k = 3, then r = 1 and ξ(3)(Gπ ) ≥ ξ(1)(G) + ξ(2)(G) + 1 = δ(G) + ξ(G) + 1. Therefore,
ξ(3)(Gπ ) ≥ min{δ(G)+ ξ(G)+ 1, ξ(3)(G)+ 3}. �

The following theorem generalizes a result contained in [2] concerning the lower bound for the restricted edge
connectivity of any permutation graph Gπ .

Theorem 3.1. Let G be a connected graph on n ≥ 6 vertices and minimum degree δ(G) ≥ 3. Then for k = 2, 3 and for any
permutation π , Gπ is λ(k)-connected and

min{n, 2λ(k)(G), λ(k)(G)+ δ(G), ξ(k)(Gπ )} ≤ λ(k)(Gπ ) ≤ ξ(k)(Gπ ).

Proof. Notice that G and Gπ are λ(k)-connected for k = 2, 3 because neither of them is a flower since δ(Gπ ) > δ(G) ≥ 3.
Therefore, for k = 2, 3, λ(k)(G) ≤ ξ(k)(G) and λ(k)(Gπ ) ≤ ξ(k)(Gπ ) [9,11].
Let us recall that G1, G2 stand for the two disjoint copies of G used to construct Gπ and letW ⊂ E(Gπ ) be a λ(k)-cut, that is,

|W | = λ(k)(Gπ ). Hence Gπ −W consists of exactly two connected components,H ,H∗ such that |V (H)| ≥ k and |V (H∗)| ≥ k.
Observe thatw(V (H)) = w(V (H∗)) = W = [V (H), V (H∗)]. Notice that if |V (H)| = k, then |W | = λ(k)(Gπ ) ≥ ξ(k)(Gπ ) and
the result holds. Let us denote by M the set of edges of Gπ which connect vertices of G1 with vertices of G2. IfW = M the
result is again true since λ(k)(Gπ ) = |M| = n. Let us show next that the result also holds in case k = 3, V (H) = {u, v, u′, w′},
with uv, uu′, u′w′ ∈ E(Gπ ), u, v ∈ V (G1), u′, w′ ∈ V (G2). Indeed, if B = {u, v, u′}, we can write

|wGπ (V (H))| = |wGπ (B)| + dGπ (w′)− 2|[{w′}, B]|
≥ |wGπ (B)| + dGπ (w′)− 4
≥ |wGπ (B)|
≥ ξ(3)(Gπ ),

after taking into account that |[{w′}, B]| ≤ 2.
Thus we assume for the rest of the proof that |V (H)| ≥ k + 1, |V (H∗)| ≥ k + 1, W 6= M , and when k = 3, neither H

nor H∗ is a cycle of length four or a path of length three of exactly two vertices in G1 and exactly two vertices in G2. For the
remaining cases we write heretoforeW = W1 ∪WM ∪W2, withW1 ⊂ E(G1),WM ⊂ M ,W2 ⊂ E(G2).
Notice that ifWi 6= ∅ thenWi is an edge cut of Gi due to the minimality ofW . We claim next that every component of

Gi−Wi has cardinality at least k. On the contrary, assume that some component of G1−W1 or of G2−W2 has at most k− 1
vertices. Let C be such a component, chosen so that no other component of (G1 −W1) ∪ (G2 −W2) has fewer vertices than
C , and (in case two or more components have this minimum order) with the minimum possible number of components
of (G1 − W1) ∪ (G2 − W2) to which C is linked in Gπ − W . Without loss of generality, assume that C is a component of
G1 −W1 ⊂ H satisfying these conditions. As Gπ is λ(k)-connected it follows that there exists a vertex u ∈ V (C) such that
the cross edge uu′ is not inWM . Let us see now that all components of H − V (C) have at least k vertices. Suppose first that
|V (C)| = 1, V (C) = {u}. Let F = H − u, which is connected as vertex u is only adjacent in H to vertex u′. In this case,
|V (F)| = |V (H)| − 1 ≥ k. Notice that |V (C)| = 1 holds when k = 2, hence we can suppose k = 3, V (C) = {u, v}, and
C is linked in Gπ − W to at most two components C∗, C∗∗ (not necessarily distinct) of (G1 − W1) ∪ (G2 − W2) (in fact, of
G2 − W2), |V (C∗)| ≥ 2, |V (C∗∗)| ≥ 2. We are clearly done if |V (C∗)| ≥ 3 = k and |V (C∗∗)| ≥ 3 = k. If |V (C∗)| = 2 and
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C∗ 6= C∗∗, by the way C has been chosen it follows that C∗ is linked in Gπ−W to some other component of G1−W1 different
from C , hence C∗ is contained in some component of H − V (C) of cardinality at least 3 = k (and we can proceed similarly
when |V (C∗∗)| = 2 and C∗ 6= C∗∗). Furthermore, if C∗ = C∗∗ and |V (C∗)| = 2, H is either a cycle of length four or a path of
length three, which contradicts our assumption. Once we have seen that every component of H − V (C) has order at least k,
it follows that the set of edges

W ∗ = (W ∪ {ww′ : w ∈ V (C), w′ ∈ V (G2), ww′ ∈ E(H) \WM}) \ wG1(V (C))

is a k-restricted edge cut of Gπ . ButW ∗ has cardinality |W ∗| ≤ |W | + |V (C)| − |wG1(V (C))| ≤ |W | − |V (C)| ≤ |W | − 1
(because |wG1(V (C))| ≥ 2|V (C)| since δ(G1) ≥ 3 ≥ k and |V (C)| ≥ 1), an absurdity. We conclude that ifWi 6= ∅ thenWi is
indeed a k-restricted edge cut of Gi, hence |Wi| ≥ λ(k)(G).
Therefore, when bothW1,W2 6= ∅, then λ(k)(Gπ ) = |W | ≥ |W1| + |W2| ≥ 2λ(k)(G), and the result holds. Hence we may

assumeW2 = ∅ and in this case V (H) ⊂ V (G1) and 3 ≤ k + 1 ≤ |V (H)| = |WM |. SinceW1 is a k-restricted edge cut of G1
andW2 = ∅, we have

λ(k)(Gπ ) = |W | = |W1| + |WM | ≥ λ(k)(G)+ |V (H)|. (1)

First observe that if |V (H)| ≥ δ(G) then from (1) we have λ(k)(Gπ ) ≥ λ(k)(G) + δ(G), and the result holds. Therefore we
assume k+ 1 ≤ |V (H)| ≤ δ(G)− 1. Let |V (H)| = r ≥ k+ 1, then by Lemma 1 we have

|W1| ≥ ξ(r)(G) ≥ ξ(k)(G)+ (r − k)(δ(G)− r − k+ 1).

If r ≤ δ(G)−k+1, then (r−k)(δ(G)−r−k+1) ≥ 0. Therefore |W | = |W1|+|WM | ≥ ξ(k)(G)+|V (H)| ≥ ξ(k)(G)+k+1 >
ξ(k)(Gπ ) by Lemma 2. Thus, we may suppose |V (H)| = r ≥ δ(G)− k+ 2, which implies k = 3 and r = |V (H)| = δ(G)− 1.
In this case we have

|W1| ≥ ξ(3)(G)+ (r − 3)(δ(G)− (δ(G)− 1)− 2) = ξ(3)(G)− |V (H)| + 3.

Then, taking into account Lemma 2,

|W | = |W1| + |V (H)| ≥ ξ(3)(G)− |V (H)| + 3+ |V (H)| ≥ ξ(3)(Gπ ),

and the theorem holds. �

Corollary 1. Let G be a λ(2)-optimal graph with δ(G) ≥ 3. Then

λ(2)(Gπ ) = min{|V (G)|, ξ(Gπ )}

for every permutation π of V (G).

Proof. Since the graph is λ(2)-optimal we have λ(2)(G) = ξ(G) ≥ 2δ(G)− 2 > δ(G). Then

2λ(2)(G) > λ(2)(G)+ δ(G) = ξ(G)+ δ(G) ≥ ξ(G)+ 3 > ξ(Gπ ),

having used Lemma 2 for the last inequality. Then, as a consequence of Theorem 3.1 we have

λ(2)(Gπ ) ≥ min{|V (G)|, ξ(Gπ )}.

To end the proof it suffices to notice that λ(2)(Gπ ) ≤ |V (G)|, because the set of cross edges of Gπ is a 2-restricted edge cut
of Gπ as |V (G)| ≥ 4, and also that λ(2)(Gπ ) ≤ ξ(Gπ ) follows from δ(Gπ ) ≥ 4, because δ(Gπ ) ≥ 4 clearly implies that Gπ
cannot be a star and has at least 4 vertices. �

Taking into account that |V (G)| ≥ ξ(G)+2 implies |V (G)| ≥ ξ(Gπ ) bymeans of Lemma 2, we obtain the following result
as a consequence of Corollary 1.

Corollary 2. Let G be a λ(2)-optimal graph of order |V (G)| ≥ ξ(G) + 2 and minimum degree δ(G) ≥ 3. Then, for every
permutation π of V (G), the graph Gπ is λ(2)-optimal.

Corollary 3. Let G be a λ(3)-connected graph of minimum degree δ(G) ≥ 4. Then the following assertions hold for any
permutation graph Gπ .

(i) If |V (G)| ≥ ξ(G)+ 2 and λ(3)(G) ≥ ξ(G)− δ(G)+ 2, then λ(3)(Gπ ) ≥ ξ(Gπ ).
(ii) If |V (G)| ≥ ξ(G)+ 3 and λ(3)(G) ≥ ξ(G)− δ(G)+ 3, then Gπ is super restricted edge connected.
(iii) If |V (G)| ≥ ξ(3)(G)+ 3 and λ(3)(G) ≥ ξ(3)(G)− δ(G)+ 3, then λ(3)(Gπ ) = ξ(3)(Gπ ).

Proof. We prove (ii) because (i) and (iii) are similar. By Theorem 3.1 we have

λ(3)(Gπ ) ≥ min{|V (G)|, 2λ(3)(G), λ(3)(G)+ δ(G), ξ(3)(Gπ )},

and by Lemma 2,

ξ(3)(Gπ ) ≥ min{δ(G)+ ξ(G)+ 1, ξ(3)(G)+ 3}.
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Using Lemma 1 we have

ξ(3)(G)+ 3 ≥ ξ(G)+ δ(G)− 1.

Thus

ξ(3)(Gπ ) ≥ ξ(G)+ δ(G)− 1.

The hypotheses imply

2λ(3)(G) = λ(3)(G)+ λ(3)(G)
≥ λ(3)(G)+ ξ(G)− δ(G)+ 3
≥ λ(3)(G)+ 2δ(G)− 2− δ(G)+ 3
= λ(3)(G)+ δ(G)+ 1,

since ξ(G) ≥ 2δ(G)− 2. Applying again the hypotheses,

λ(3)(G)+ δ(G)+ 1 ≥ ξ(G)− δ(G)+ 3+ δ(G)+ 1 = ξ(G)+ 4 > ξ(G)+ 3.

Therefore

λ(3)(Gπ ) ≥ min{|V (G)|, 2λ(3)(G), λ(3)(G)+ δ(G), ξ(3)(Gπ )}
≥ min{ξ(G)+ 3, ξ(G)+ δ(G)− 1}
≥ ξ(G)+ 3 > ξ(Gπ ),

because δ(G) ≥ 4. Hence by Theorem 2.3 Gπ is super restricted edge connected. �
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