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a b s t r a c t

The acyclic disconnection,−→ω (D), of a digraphD is themaximumnumber of connected com-
ponents of the underlying graph of D − A(D∗), where D∗ is an acyclic subdigraph of D. We
prove that −→ω (D) ≥ g − 1 for every strongly connected digraph with girth g ≥ 4, and we
show that−→ω (D) = g −1 if and only if D ∼= Cg for g ≥ 5.We also characterize the digraphs
that satisfy −→ω (D) = g − 1, for g = 4 in certain classes of digraphs. Finally, we define a
family of bipartite tournaments based on projective planes and we prove that their acyclic
disconnection is equal to 3. Then, these bipartite tournaments are counterexamples of the
conjecture −→ω (T ) = 3 if and only if T ∼=

−→
C 4 posed for bipartite tournaments by Figueroa

et al. (2012).
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The acyclic disconnection of a digraph was defined by Neumann-Lara in [13] as the maximum number of connected
components of the underlying graph of D − A(D∗) where D∗ is an acyclic subdigraph of D. This definition is equivalent
to other definitions in terms of vertex colorings, cycle transversals or certain subdigraphs [13]. The acyclic disconnection
measure somehow the complexity of cyclic patterns of a digraph. Roughly speaking, a small value of−→ω (D) implies a complex
pattern of cycles in D.

The acyclic disconnection of a digraph has mainly been studied in different classes of digraphs: circulant tournaments
[9,10,12], bipartite tournaments [6] andother special tournaments [11]. In [13] upper boundswere established for the acyclic
disconnection in terms of invariants such as the dichromatic number (introduced by Neumann-Lara in 1982), themaximum
order of an acyclic subset of vertices,

−→
β (D), or the number of vertices of the digraph D. The aim of this paper is to study

the acyclic disconnection and its relation to the girth and the semigirth of the digraph. The directed girth is the length of a
shortest cycle. An important difference between the girth in graphs and the girth in digraphs is that, for any two vertices
u, v on a shortest cycle in a graph it follows that dist(u, v) ≤ g/2, but in a digraph there are vertices on a shortest cycle such
that dist(u, v) = g − 1. Fábrega and Fiol introduced in [5,7] the semigirth ℓ of a digraph. This parameter is related to the
path structure of the digraph and plays a role similar (and is tightly related) to the girth of a graph. The semigirth ℓ has been
widely used to study connectivity and some other structural properties of digraphs [1–3,5,7,8].
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In Section 3, we study the relation between the girth and the acyclic disconnection. We give a lower bound of −→ω (D) in
terms of the girth g and we characterize the digraphs that attain this lower bound for g ≥ 5. The case g = 4 is discussed in
Section 4. Under certain conditions on the digraph D, such as the order of acyclic subsets of vertices, the distance or struc-
tural conditions, we prove that −→ω (D) ≥ 4. Moreover, we show that the characterization for g ≥ 5 (Theorem 7) is also valid
for particular classes of digraphs with girth 4, but not in general. If a bipartite tournament has a cycle, clearly its girth is 4.
It was recently conjectured by Figueroa et al. [6] that a bipartite tournament T has acyclic disconnection equal to 3 if and
only if T is the cycle with 4 vertices. We show a family of digraphs based on projective planes that are counterexamples to
this conjecture.

2. Definitions and known results

For terminology and other general concepts, see [4]. In this paperwe consider only oriented simple graphs. IfD is bipartite
we will write V (D) = U0 ∪ U1, where U0 and U1 denote the partite vertex sets. For a set X ⊆ V (D), we denote by D[X] the
subdigraph ofD induced by X . We use d+(v) and d−(v) for the out-degree and the in-degree of v, respectively. A vertex v is a
source (resp. sink) of D if d−(v) = 0 (resp. d+(v) = 0). The sequence P = v1v2 · · · vn of vertices of D is a path if vivi+1 ∈ A(D)
for every 1 ≤ i ≤ n − 1 and vi ≠ vj for all i ≠ j. If the vertices v1, v2, . . . , vn−1 are distinct and v1 = vn, then P is a cycle.
Sometimes we denote the path P as a (v1, vn)-path. A k-cycle is a cycle of length k. The girth, denoted by g , is the length of
a cycle of minimum length. A digraph Dwithout cycles is an acyclic digraph. Every acyclic digraph has an acyclic ordering of
its vertices, where an acyclic ordering (v1, v2, . . . , vn) of V (D) means that for every arc vivj in D, we have i < j. An acyclic
digraph has at least one sink and at least one source. A tournament T is a digraph such that there is exactly one arc between
any two vertices u, v ∈ V (T ). An acyclic tournament (i.e. transitive tournament) on k vertices is denoted as TTk. It is well
known that an acyclic tournament has a unique acyclic ordering.

Let Γs denote the set of colors {c1, c2, . . . , cs}. Let D be a digraph and ϕ : V (D) → Γs a vertex coloring of D. The color cα is
a singular class ofϕ if there is u ∈ V (D) such thatϕ(u) = cα andϕ(v) ≠ cα for every v ∈ V (D)\{u}.We say that a subdigraph
H of D is proper colored if ϕ(u) ≠ ϕ(v) for any two vertices u, v ∈ V (H) such that uv ∈ A(D). So, a proper (colored) cycle is a
cycle such that any two consecutive vertices u, v on the cycle have different color. Using this terminology, the acyclic discon-
nection can be defined as themaximumnumber of colors of a vertex coloringwithout proper cycles. A subdigraphH is proper
colored if every arc of H is a bi-colored arc of the coloring ϕ, where the set of bi-colored arcs is {uv ∈ A(D) : ϕ(u) ≠ ϕ(v)}.

If D is not a strongly connected oriented graph, then the acyclic disconnection is the sum of the acyclic disconnection of
its strongly connected components. So, in this paper we consider only strongly connected oriented graphs.

In [13] some upper bounds were established in terms of the maximum order of an acyclic induced subdigraph of D de-
noted by

−→
β (D), the dichromatic number and other invariants.

Theorem 1 (Theorem 5.1, [13]). Let D be a digraph. Then −→ω (D) ≤
−→
β (D).

The bound of Theorem 1 is tight for oriented cycles.

3. Girth and acyclic disconnection

We study the relation between the girth and the acyclic disconnection and finally, we discuss the case −→ω (D) =
−→
β (D).

Theorem 2. Every digraph D with girth g ≥ 4 that contains a subdigraph isomorphic to an acyclic tournament of order k has
−→ω (D) ≥ k + g − 3.

Proof. Note that k ≥ 2. Let (v1, v2, . . . , vk) be the ordering of the vertices of an acyclic sub tournament TTk of D. Since the
girth is g and D is strongly connected, the digraph contains a vertex set U = {v1, v2, . . . , vk+g−4} such that vkvk+1 · · · vk+g−4
is a path of length g − 4. Observe that D[U] is acyclic because {v1, v2, . . . , vk} induces a TTk and the girth is g . Clearly,
V (D) \ U ≠ ∅. Let ϕ : V (D) → Γk+g−3 be the vertex coloring defined by

ϕ(x) =


ci if x = vi ∈ U;

c if x ∉ U .

That is, every vi ∈ U is a singular class of color ci and V (D)\U is monochromatic of color c. In order to prove that−→ω (D) ≥

k+g −3, we suppose for a contradiction, that there exists a proper colored cycle C by ϕ. Since g ≥ 4, the cycle C has at least
two vertices with color different from the color c. Therefore, |U∩V (C)| ≥ 2. Letµ be the greatest integer such that vµ ∈ U∩

V (C). Let x, y ∈ V (C) be such that vµx, xy ∈ A(C). Then x ∉ U by the choice ofµ and the fact thatD[U] is acyclic. So,ϕ(x) = c
and ϕ(y) ≠ ϕ(x) = c yielding that y = vα for some α such that 1 ≤ α ≤ µ − 1, because cµ is a singular chromatic class.
Hence, C ′

= vα · · · vµxvα is a cycle of D. If µ ≤ k, then vαvµ is an arc of TTk and C ′ is a triangle, which is a contradiction
because g ≥ 4. So µ ≥ k + 1. If α ≥ k then C ′ has length at most µ − α + 2 ≤ k + g − 4 − k + 2 = g − 2, which is a
contradiction. Thus, α ≤ k−1 and C ′

= vαvk · · · vµxvα has length at most g −3+2 = g −1, which is again a contradiction.
Hence, −→ω (D) ≥ k + g − 3. �

Corollary 3. Every digraph D with girth g ≥ 4 has −→ω (D) ≥ g − 1.
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IfD has acyclic triangles, then the order of an acyclic subtournament ofD is k ≥ 3. Hence, from Theorem 2, the next result
follows.

Corollary 4. Every digraph D with girth g ≥ 4 that contains a TT3 has −→ω (D) ≥ g.

The following corollary is an immediate consequence of Theorems 1 and 2.

Corollary 5. Let D be a strongly connected graph with girth g ≥ 4. If D has a subdigraph isomorphic to an acyclic tournament
of order k, then k + g − 3 ≤

−→ω (D) ≤
−→
β (D).

The family of cycles Cn with n ≥ 4, satisfies k = 2, g = n−1 and
−→
β (Cn) = n−1. So, both bounds are tight in this family.

In Theorem 7 we characterize the digraphs D that satisfy −→ω (D) = g − 1 for g ≥ 5. The case g = 4 will be discussed in
Section 4. The distance from u to a vertex set S, dist(u, S), is mins∈S{dist(u, S)}. The distance from S to u is analogous.

Proposition 6. Let D be a digraphwith girth g ≥ 5 and C a cycle of length g. If there is a vertex u such that dist(u, C) = dist(C, u)
= 1, then −→ω (D) ≥ g.

Proof. Let C = v1v2 · · · vgv1 be a cycle of length g . Since dist(u, C) = dist(C, u) = 1 it follows that there exist vk, vl ∈ V (C)

such that vku, uvl ∈ A(D). Then dist(vk, vl) ≤ 2. By Corollary 4, −→ω (D) ≥ g if dist(vk, vl) = 1. Thus, dist(vk, vl) = 2 and
without loss of generality we may assume that v2u, uv4 ∈ A(D). Let ϕ : V (D) → Γg be the vertex coloring defined by:

ϕ(x) =

ci if x = vi and i < g;
cg if x = u;
c1 otherwise.

If {u, v3} is not independent, then we are done by Corollary 4. Furthermore, since C ′
= v1v2uv4 · · · vgv1 is also a shortest

cycle, {u, vi} is independent for i ≠ 2, 4.We suppose, for a contradiction, that there is proper colored cycle C ′′. Observe that
both closed neighborhood N+

[vg ] and N−
[v1] are monochromatic, so

{v1, vg} ∩ V (C ′′) = ∅. (1)

Suppose that v2 ∈ V (C ′′) and let x, y ∈ V (C ′′) be such that xy, yv2 ∈ A(C ′′). In this case ϕ(y) ≠ ϕ(v2). Clearly y ≠ u and
y ∉ V (C) by (1), so ϕ(y) = c1 and ϕ(x) ≠ ϕ(y) = c1, which implies that x ∈ {u, v3, . . . , vg−1}. If x = u, then v2uyv2 is a
triangle, if x = vj with 3 ≤ j ≤ g − 1, then vjyv2v3 · · · vj is a cycle of length j < g , which contradicts that g is the girth.
Hence, v2 ∉ V (C ′′).

Since g ≥ 5, the cycle C ′′ has at least three vertices with color different from the color c1. Therefore, |V (C) ∩ V (C ′′)| ≥ 2.
Letµ be the greatest integer such that vµ ∈ V (C)∩V (C ′′). Thus, 4 ≤ µ ≤ g−1. Let x, y ∈ V (C ′′) be such that vµx, xy ∈ A(C ′′).
Then x ∉ V (C) ∪ {u} and so, ϕ(x) = c1 and ϕ(y) ≠ ϕ(x) = c1, which implies that y ∈ V (C) ∪ {u}. By the choice of µ it
follows that y ∈ {u, v3, . . . , vµ−1}. If y = vj with 3 ≤ j ≤ µ − 1, then vµxvjvj+1 · · · vµ is a cycle of length less than the girth,
which is a contradiction. The case y = u is analogous. Thus, ϕ is a vertex coloring without proper cycles and −→ω (D) ≥ g . �

Theorem 7. Let D be a digraph with girth g ≥ 5. Then −→ω (D) = g − 1 iff D ∼= Cg .

Proof. Clearly −→ω (Cg) = g − 1. Let D be a digraph with girth g and −→ω (D) = g − 1. Suppose, for a contradiction, that the
order of D is at least g + 1.

Let C = v1v2 · · · vgv1 be a cycle of length g . Let ϕ : V (D) → Γg be the vertex coloring defined by:

ϕ(x) =

ci if x = vi and i < g;
c1 if x = vg;

c otherwise.

Since −→ω (D) = g − 1 and ϕ is a coloring of g colors, there exists a proper colored cycle C ′. Furthermore, there exists a vertex
y ∈ V (C ′) such that ϕ(y) = c . Let xy, yz ∈ A(C ′). Then ϕ(x) ≠ c ≠ ϕ(z) and x, z ∈ V (C) because the vertices of the cycle C
are the only vertices of Dwith color different from c . By Proposition 6, −→ω (D) = g , which is a contradiction. �

The following results give sufficient conditions on acyclic subdigraphs to guarantee that −→ω (D) =
−→
β (D).

Theorem 8. Let D be a digraph and H an acyclic subdigraph of D such that if dist(v,H) = 1 [resp. dist(H, v) = 1], then
dist(H, v) > 1 [resp. dist(v,H) > 1]. Then −→ω (D) ≥ |V (H)| + 1.

Proof. Let {cv : v ∈ V (H)} ∪ {c} be a set of |V (H)| + 1 colors and let ϕ : V (D) → Γ|V (D)|+1 be the vertex coloring defined by

ϕ(v) =


cv if v ∈ V (H);
c if v ∈ V (D) \ V (H).

Let us show that ϕ does not produce proper colored cycles.
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Let C be a cycle of D. Note that there must exist v ∉ V (H) such v ∈ V (C), because by hypothesis H is acyclic. Then, there
exists a path xvz of length two contained in C . Either z ∉ V (H) and clearly ϕ(v) = ϕ(z) = c or on the contrary z ∈ V (H).
By hypothesis it follows that x ∉ V (H), so that ϕ(x) = ϕ(v) = c.

Hence, −→ω (D) ≥ |V (H)| + 1. �

Corollary 9. Let D be a digraph and H an acyclic subdigraph of D such that |V (H)| =
−→
β (D) − 1 and if dist(v,H) = 1 [resp.

dist(H, v) = 1], then dist(H, v) > 1 [resp. dist(v,H) > 1]. Then −→ω (D) =
−→
β (D).

4. The acyclic disconnection of digraphs with girth 4

LetD be a digraphwith girth 4. IfD has a transitive sub tournament of order kwith k ≥ 3, then by Theorem2,−→ω (D) ≥ 4+

k − 3 ≥ 4. In this section we show conditions on digraphs with girth 4 in order to guarantee that −→ω (D) ≥ 4. For some
particular classes of digraphs with girth 4 we will prove that −→ω (D) = 3 iff D ∼= C4.

Lemma 10. Let D be a trianglefree digraph with girth g = 4. Then −→ω (D) ≥ 4 if one of the following is fulfilled.

(i) There are two in-neighbors (or out-neighbors) v1, v2 of some vertex of D such v1, v2 are not contained in any 4-cycle of D.
(ii) There is a path of length two not contained in a cycle of length four.
(iii) There is a 4-cycle C and a vertex u ∈ V (D) \ V (C) such that dist(C, u) ≥ 3 or dist(u, C) ≥ 3.

Proof. For (i) and (ii), let ϕ : V (D) → Γ4 be the vertex coloring defined by

ϕ(x) =


ci if x = vi and i ≤ 3;
c4 if x ∉ V (C).

In both cases, it is easy to see that, the vertex coloring ϕ has no proper colored cycles.
Let C = v1v2v3v4v1 be a cycle in D. For (iii), let u ∈ V (D) \ V (C) such that dist(C, u) ≥ 3 (resp. dist(u, C) ≥ 3). Let ϕ :

V (D) → Γ4 be the vertex coloring defined by

ϕ(x) =

ci if x = vi and i ≤ 3;
c if x = u;
c1 otherwise.

It is easy to see that the vertex coloring ϕ has no proper colored cycles. �

Theorem 11. Let D be a digraph with girth g = 4 having a C4 = v1v2v3v4v1 such that |N−(v1) ∩ N+(v3)| = 1 and |N−(v2) ∩

N+(v4)| = 1. Then −→ω (D) = 3 iff D = C4.

Proof. Clearly−→ω (C4) = 3. Suppose, for a contradiction, that the order ofD is at least 5. Observe that ifD has acyclic triangles,
then −→ω (D) ≥ 4, by Corollary 4. Thus, we must assume that D has no triangle. Let ϕ : V (D) → Γ4 be the vertex coloring
defined by

ϕ(x) =

ci if x = vi and i < 4;
c1 if x = v4;

c if x ∉ V (C).

Since −→ω (D) = 3 and ϕ is a coloring of 4 colors, we can consider a proper colored cycle C ′. Note that |V (C) ∩ V (C ′)| ≥ 2
because V (D) \ V (C) is monochromatic. If v4 ∈ V (C ′), then there exist two vertices x, y ∈ V (C ′) such that v4x, xy ∈ A(C ′).
It follows that x ∉ V (C), so, ϕ(x) = c and ϕ(y) ≠ ϕ(x) = c , then y ∈ V (C). The girth is 4, so y ≠ v3, D has no triangle,
so y ≠ v1 and if y = v2 then |N−(v2) ∩ N+(v4)| ≥ 2, which is a contradiction with the hypothesis. Using the hypothesis
|N−(v1) ∩ N+(v3)| = 1 we obtain v1 ∉ V (C ′). Therefore, V (C) ∩ V (C ′) = {v2, v3}. Furthermore, there are two vertices
x, y ∈ V (C ′) such that C ′

= xv2yv3x, yielding that C ′ contains the TT3 induced by {v2, y, v3}, which is a contradiction. �

Corollary 12. Let D be a digraph with girth g = 4 such that there exists a 4-cycle C with the property that dist(C, u) ≥ 2 or
dist(u, C) ≥ 2 for all u ∈ V (D) \ V (C). Then −→ω (D) ≥ 4.

Definition 13. Let D be a digraph with diameter diam(D). The semigirth ℓ = ℓ(D), 1 ≤ ℓ ≤ diam(D), is defined as the
greatest integer so that, for any two vertices u, v,

(a) if dist(u, v) < ℓ, the shortest (u, v)-path is unique and there are no (u, v)-paths of length dist(u, v) + 1;
(b) if dist(u, v) = ℓ, there is only one shortest (u, v)-path.

As a consequence of Theorem 11, we obtain the following corollary.

Corollary 14. Every digraph D different from C4 with girth g = 4 and semigirth ℓ ≥ 2 has −→ω (D) ≥ 4.
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In the line digraph L(D) of a digraph D, each vertex represents an arc of G, that is, V (L(D)) = {uv : (u, v) ∈ A(D)}; and a
vertex uv is adjacent to a vertex wz if and only if v = w (i.e., when the arc (u, v) is adjacent to the arc (w, z) in D).

Corollary 15. Let D be a digraph with minimum degree δ ≥ 2 and girth 4. Then −→ω (L(D)) ≥ 4.

Proof. Since δ ≥ 2, the digraph D is not a directed cycle. Moreover, from [5], we know that ℓ(L(D)) = ℓ(D)+ 1 ≥ 2. Hence,
by Corollary 14 we deduce −→ω (L(D)) ≥ 4. �

Lemma10, Corollaries 12, 14 and 15 and Theorem11 lead to necessary conditions for a digraphwith girth 4 having acyclic
disconnection equal to three.

Corollary 16. Let D be a digraph such that −→ω (D) = 3 and D �
−→
C 4. Then D must fulfill all the following conditions.

(i) g = 4, ℓ(D) = 1 and D has no triangles (directed or acyclic).
(ii) There are v1, v2, v3, v4 ∈ V (D) such that v1v2v4 and v1v3v4 are induced paths in D and v2, v3 are independent because D

has no triangles.
(iii) For all two in-neighbors and any two out-neighbors of some vertex of D are contained in a 4-cycle of D.
(iv) Every arc and every path of length two is contained in a 4-cycle.
(v) For every 4-cycle C and every vertex u ∈ V (D) \ V (C) we have dist(C, u) ≤ 2 and dist(u, C) ≤ 2.
(vi) For every 4-cycle C = v1v2v3v4v1 there are two vertices u, w ∈ V (D) \ V (C) such that v1uv3wv1 is a 4-cycle.

4.1. Bipartite tournaments

Strongly connected bipartite tournaments are digraphs with girth 4. The acyclic disconnection of bipartite tournaments
was studied in [6].

Lemma 17 (Proposition 12 [6]). Every bipartite tournament T of order n ≥ 3 has −→ω (T ) ≥ 3.

We show a family of bipartite tournaments, and prove that the acyclic disconnection of every digraph of this family is
equal to three. Thus, we will obtain a counterexample to the following conjecture posed in [6].

Conjecture 18 ([6]). Let T be a bipartite tournament. Then −→ω (T ) = 3 if and only if T ∼=
−→
C 4.

Moreover, this counterexample shows that the characterization in Theorem 7 does not hold for g = 4. To do that, we
need to recall the notion of a projective plane. A projective plane (P, L) consists of a finite set P of elements called points,
and a finite family L of subsets of P called lines, which satisfy the following conditions:

(i) Any two lines intersect at a single point.
(ii) Any two points belong to a single line.
(iii) There are four points, of which no three belong to the same line.

Definition 19. Let Π = (P, L) be a projective plane of order k. We define the bipartite tournament Dk(Π) with partite sets
P and L. And the arcs are defined as follows: For all p ∈ P and for all L ∈ L, p ∈ N+(L) iff p belongs to L; L ∈ N+(p) iff p
does not belong to L.

In a projective plane Π = (P, L) of order k we have |P| = |L| = k2 + k + 1, every p ∈ P belongs to exactly k + 1 lines
and every L ∈ L contains exactly k + 1 points. Then every p ∈ P has out-degree in Dk(Π) equal to |L| − (k + 1) = k2 and
every L ∈ L has out degree equal to k + 1.

Remark 20. LetΠ = (P, L) be a projective plane of order k andDk(Π) the bipartite tournament given in Definition 19. Any
two vertices u, v ∈ P are contained in a 4-cycle ofDk(Π) because by the properties ofΠ there exist L, L′ such that u ∈ N+(L),
v ∉ N+(L), v ∈ N+(L′), and u ∉ N+(L′). Analogously, any two vertices u, v ∈ L are contained in a 4-cycle of Dk(Π).

Next, we prove that the acyclic disconnection of Dk(Π) is equal to 3, that is, Dk(Π) is a counterexample to Conjecture 18.
We need the following lemma.

Lemma 21. Let T be a bipartite tournament with partite sets U and V such that for every pair u ≠ v ∈ U (resp. u ≠ v ∈ V),
there exists a 4-cycle containing u and v. Let −→ω (T ) ≥ s and ϕ : V (T ) → Γs be a vertex coloring of T without proper colored
cycles. Then |ϕ(U)|, |ϕ(V )| ≥ s − 1. Moreover, each element ci of ϕ(U) \ ϕ(V ) is a singular class of ϕ.

Proof. Suppose, for a contradiction, that |ϕ(V )| < s − 1. Then there exist u, v ∈ V (U) such that ϕ(u), ϕ(v) ∉ ϕ(V ). By
hypothesis, there is a 4-cycle containing the vertices u, v and this cycle is a proper cycle, a contradiction. Analogously each
element ci of ϕ(U) \ ϕ(V ) is a singular class of ϕ. �

Following the notation of [6], Hϕ(D) denotes the spanning subdigraph of D induced by the bi-colored arcs of ϕ. Clearly,
the digraph induced by the bi-colored arcs is acyclic. Hence, the digraph Hϕ(D) has a source and a sink.
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Theorem 22. The bipartite tournament of a projective plane has acyclic disconnection equal to 3.

Proof. LetΠ be a projective plane andD = Dk(Π). By Remark 20, every two vertices u, v ∈ P or u, v ∈ L are in a 4-cycle. By
Lemma 17,−→ω (D) ≥ 3. Suppose, for a contradiction, that−→ω (D) ≥ 4, then from Lemma 21 it follows that |ϕ(P)|, |ϕ(L)| ≥ 3
for every vertex coloring ϕ without proper colored cycles. Let ϕ : V (D) → Γ4 be a vertex coloring without proper colored
cycles, that is Hϕ(D) is acyclic.

Suppose that there is a sink p0 ∈ P , that is N+
[p0] is monochromatic. Then, we can assume ϕ(N+

[p0]) = c1. So, every
line not containing p0 has color c1. Since |ϕ(P)| ≥ 3, let p, p′ be such that ϕ(p) ≠ c1 ≠ ϕ(p′). Let L, L′

∈ N+
[p0] be such that

p ∈ N+(L) and p′
∈ N+(L′). If p′

∉ N+(L), then LpL′p′L is a proper cycle, which is a contradiction. Hence, p′
∈ N+(L). Let L′′

∈

N+
[p0] − L be such that p ∈ N+(L′′), so p′

∉ N+(L′′). Then, L′′pL′p′L′′ is a proper cycle, which is again a contradiction. Hence,
Hϕ(D) has no sink in the set P , which yields that the sinks of Hϕ(D) are in L.

Let L0 be a sink ofHϕ(D). In this caseN+
[L0] ismonochromatic. Suppose thatϕ(N+

[L0]) = c1. There are at least two differ-
ent lines L, L′

∈ L such thatϕ(L) ≠ c1 ≠ ϕ(L′). IfN+(L)∩N+(L′)∩N+(L0) = ∅, then LpL′p′L is a proper cycle for p ∈ N+(L0)∩
N+(L) and p′

∈ N+(L′

0) ∩ N+(L), which is a contradiction. So, N+(L) ∩ N+(L′) ∩ N+(L0) ≠ ∅. Let {p0} = N+(L) ∩ N+(L′) ∩

N+(L0). Hence, if ϕ(L1) ≠ c1 then p0 ∈ N+(L1). Therefore, N+
[p0] is monochromatic, that is, p0 is a sink of Hϕ(D), a contra-

diction.
Since in either case there is a contradiction, −→ω (D) = 3. �
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