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Universitat Politècnica de Catalunya
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Abstract

A kernel of a digraph is a set of vertices which is both independent and absorbant. Let
D be a digraph such that every proper induced subdigraph has a kernel. If D has a kernel,
then D is kernel perfect, otherwise D is critical kernel-imperfect (for short CKI-digraph).
In this work we prove that if a CKI-digraph D is not 2-arc connected, then D − a is kernel
perfect for any bridge a of D. If D has no kernel but for all vertex x, D − x has a kernel,
then D is called kernel critical. We give conditions on a kernel critical digraph D so that for
all x ∈ V (D) the kernel of D− x has at least two vertices. Concerning asymmetric digraphs,
we show that every vertex u of an asymmetric CKI-digraph D on n ≥ 5 vertices satisfies
d+(u) + d−(u) ≤ n− 3 and d+(u), d−(u) ≤ n− 5. As a consequence, we establish that there
are exactly four asymmetric CKI-digraphs on n ≤ 7 vertices. Furthermore, we study the
maximum order of a subtournament contained in a not necessarily asymmetric CKI-digraph.
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1. Introduction

A kernel of D is a subset K ⊂ V (D) which is independent and absorbant [18]. For
undirected graphs the corresponding concept is known as independent dominating set.
This notion of domination in graphs has received extensive attention, see [18, 19]. In terms
of applications, some important questions of Facility Location, Assignment Problems, etc,
are very much related to the idea of domination or independent domination on digraphs.
Furthermore, the notion of kernels (or independent dominating set) has many applications
and several relations to other areas, most notably to game theory [3, 12, 13, 21] and logic
[8, 20]. An interesting survey of kernels in digraphs can be found in [10] and also see
chapter 15 pages 401-437 of [18].

Let D be a digraph such that every proper induced subdigraph has a kernel. Then D is
kernel perfect if D has a kernel, otherwise D is critical kernel imperfect (for short CKI or
CKI-digraph). For instance, a directed cycle of odd length has no kernel, but a directed
cycle of even length is kernel perfect. Kernel perfect digraphs have been extensively
studied because their relationship with perfect graphs [1, 5, 6, 9]. Recently Galeana-
Sánchez [14] has given a new characterization of perfect graphs using asymmetric kernel
perfect digraphs. However, CKI-digraphs have been less studied. There are operations on
digraphs that preserve the property of being kernel perfect or CKI. Duchet and Meyniel
[11] prove that splitting a vertex of a digraph D and then subdividing the resulting arc,
these properties are preserved. Moreover, they give another operation that respect these
properties, which roughly speaking consists of replacing an arc a by a directed path of
length 3, whenever D−a has a kernel or be kernel perfect, respectively. Also these authors
point out that changing the directions of every arc of D is not such an operation.

Berge and Duchet [6] proved that a CKI-digraph is strongly connected. A digraph D is
said to be strongly connected (or connected) if for any pair of vertices x, y ∈ V (D) there
exists a path from x to y. An arc cut of D is a subset of arcs S such that D − S is not
strongly connected. The arc connectivity, λ(D), is the smallest cardinality of an arc cut.
It is well known [17] that for any digraph D, λ(D) ≤ δ(D). In this paper, we prove that if
D is a CKI-digraph and λ(D) = 1, then D − a is a kernel perfect digraph for any bridge
a of D.

A digraph D with no kernel is kernel critical if D− x has a kernel for every x ∈ V (D).
Note that a CKI-digraph is a kernel critical digraph but there are kernel critical digraphs
that are not CKI [18]. We find sufficient conditions on kernel critical digraphs such that
for every x ∈ V (D) the kernel of D − x has at least two vertices. Then we focus on
asymmetric CKI-digraphs. We show that every vertex u of an asymmetric CKI-digraph
D on n ≥ 5 vertices satisfies d+(u) + d−(u) ≤ n − 3 which clearly implies that if D is
d-regular, then d ≤ (n−3)/2. Moreover, we state that d+(u), d−(u) ≤ n−5. These results
allow us to establish that every asymmetric CKI-digraph is a ~C3, a ~C5, a ~C7, a ~C7(1, 2) or
has n ≥ 8 vertices. More characterization results of asymmetric CKI can be founded in
[16]. Finally, for CKI-digraphs D not necessarily asymmetric on n ≥ 4 vertices we study
the maximum order of a subtournament contained in D. We establish that if we remove
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one or two vertices from a CKI-digraph, or any independent set of vertices, the resulting
digraph is not a tournament.

1.1. Notation and known results

For general terminology and definitions see [2, 4].

A digraph is a finite nonempty set of vertices V (D) and a set A(D) of ordered pairs
of distinct vertices (x, y) called arcs. The set N+(x) = {y ∈ V (D) : (x, y) ∈ A(D)}
(resp. N−(x) = {y ∈ V (D) : (y, x) ∈ A(D)}) is called the out-neighborhood (resp. in-
neighborhood) of x. The out-degree of x is d+(x) = |N+(x)| and the in-degree of x is
d−(x) = |N−(x)|. The maximum out-degree is denoted by ∆+(D) and the maximum in-
degree is denoted by ∆−(D). Given a subset S ⊂ V (D) we denote by D[S] the subdigraph
of D induced by S.

An arc (u, v) ∈ A(D) is called asymmetric (resp. symmetric) if (v, u) /∈ A(D) (resp.
(v, u) ∈ A(D)). A digraph is asymmetric, (resp. symmetric) if for every arc (u, v) ∈ A(D),
then (v, u) /∈ A(D) (resp. (v, u) ∈ A(D)). The spanning subdigraph induced by the set
of asymmetric (symmetric) arcs of D is denoted by Asym(D) (Sym(D)). A digraph is
transitive if (u, v), (v, w) ∈ A(D), then (u,w) ∈ A(D). Clearly, a transitive oriented graph
is acyclic. A tournament is an asymmetric digraph where every pair of distinct vertices are
adjacent. A tournament is transitive if and only if it is acyclic. We denote a tournament
on k vertices as Tk. Let n be a positive integer and A = {a1, a2, . . . , ad} ⊂ Zn − 0. The
circulant digraph ~Cn(A) has set of vertices the integers modulo n, and vertex u is adjacent
to the vertices u+A = {u+ ai (mod n) : ai ∈ A}.

A set S ⊂ V (D) is independent if for all x, y ∈ S, (x, y) 6∈ A(D). A set S ⊂ V (D) is
absorbant if for every vertex x ∈ V (D)\S there is a vertex y ∈ S such that (x, y) ∈ A(D).
Let U1, U2 be two subsets of vertices of D. An U1U2-arc is an arc (u1, u2) of D such that
u1 ∈ U1 and u2 ∈ U2. If U1 consists of a single vertex {u1}, we simply write an u1U2-arc,
and analogously if U2 = {u2} we write an U1u2-arc.

In order to prove our results we need the following known results.

Theorem 1.1. [6] A CKI-digraph is strongly connected.

Theorem 1.2. [15] If D is a CKI-digraph, then Asym(D) is strongly connected.

Theorem 1.3. [15] A digraph D is kernel perfect if and only if for every strong component
α of Asym(D), D[V (α)] is kernel perfect.

Theorem 1.4. [22] Every digraph with no odd cycle is kernel perfect.
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2. Main results

Applying the above mentioned theorems we obtain the following result.

Theorem 2.1. Let D be a CKI-digraph and a ∈ A(D) a bridge. Then D − a is kernel
perfect.

Proof. By Theorem 1.1, the digraph D is strongly connected. Suppose that a is a bridge
of D and V −, V + is a partition of V (D) such that the unique V −V +-arc is the bridge
a. Moreover, by Theorem 1.2, Asym(D) is strongly connected yielding that a must be
an asymmetric arc. Thus a is also a bridge in Asym(D). Let α be a strongly connected
component of Asym(D−a), thus α ⊂ V − or α ⊂ V +. Therefore D[V (α)] is kernel perfect
because D is CKI. By Theorem 1.3, D − a is kernel perfect, so the theorem holds.

Figure 1 shows a CKI-digraph D different from an odd cycle with λ(D) = 1. We can
check that D− (0, 1), D− (8, 0), D− (7, 8) are kernel perfect digraphs. This CKI-digraph
has the property that changing the direction of its arcs the resulting digraph is kernel-
perfect. It was given by Duchet and Meyniel [11] in order to disprove a conjecture of
Chvátal and Berge claiming that D is kernel-perfect if and only if its reverse D−1 is kernel
perfect.

0

1

2

3

45

6

7

8

Figure 1: A CKI-digraph.

As we said in the Introduction, a digraph D with no kernel is kernel critical if D − v
has a kernel for every v ∈ V (D). Let Kv be a kernel of D−v for a given vertex v. Clearly,
there is no vKv-arc, because otherwise Kv would be a kernel of D. Also there is a Kvv-arc,
because otherwise Kv ∪ {v} would be a kernel of D. Therefore we can write the following
lemma.

Lemma 2.2. Let D be kernel critical and let v ∈ V (D). Let Kv be a kernel of D − v.
Then there is no vKv-arc and there is a Kvv-arc.

Let D be a kernel critical digraph and x ∈ V (D). The following theorem provides
conditions on D so that the cardinality of a kernel of D − x is at least two.
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Theorem 2.3. Let D be a kernel critical digraph. Then any kernel of D − x for all
x ∈ V (D) has at least two vertices if one of the following assertions holds:

(i) Any directed triangle of D has at least two symmetric arcs.

(ii) The digraph D is free of directed triangles.

Proof. The unique kernel critical digraph on at most three vertices is D ∼= ~C3. But ~C3

does not satisfy the requirements of the theorem. So, we assume that |V (D)| ≥ 4. We
reason by contradiction supposing that there exists a vertex x∗ ∈ V (D) such that D − x∗

has a kernel {v}. From Lemma 2.2, it follows that (v, x∗) ∈ A(Asym(D)). Let us consider
a kernel Kv of D − v. By Lemma 2.2, x∗ 6∈ Kv. Let h ∈ Kv be such that (x∗, h) ∈ A(D).
Again by Lemma 2.2, (v, h) /∈ A(D). As {v} is a kernel of D − x∗ and h 6= x∗, then
(h, v) ∈ A(Asym(D)). Therefore, the directed triangle (v, x∗, h, v) in D has at most one
symmetric arc. This is a contradiction to item (i) and clearly to item (ii).

Figure 2: The CKI-digraph ~C4(1, 2).

The hypothesis of Theorem 2.3 can not be eliminated as shown by the CKI-digraph
~C4(1, 2) depicted in Figure 2. This digraph has directed triangles with only one symmetric
arc and we can check that for all vertex x of ~C4(1, 2), ~C4(1, 2)− x has a kernel of just one
vertex.

2.1. Results for asymmetric CKI-digraphs

Next, we deal with asymmetric CKI-digraphs. The following result holds for every
strongly connected asymmetric digraph.

Lemma 2.4. Let D be an strongly connected asymmetric ~C3-free digraph on n ≥ 5 vertices.
Then d−(u) + d+(u) ≤ n− 2 for every vertex u.

Proof. Suppose that there is a vertex u ∈ V (D) such that d−(u) + d+(u) = n − 1. Since
D is strongly connected, both N+(u) and N−(u) are non-empty. Moreover, there exists
an arc (x, y) with x ∈ N+(u) and y ∈ N−(u) because D is asymmetric and strongly
connected. Then (u, x, y, u) is an induced ~C3 contradicting that D is ~C3-free. Therefore
d−(u) + d+(u) ≤ n− 2 for all vertex u ∈ V (D).
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Theorem 2.5. Let D be an asymmetric CKI-digraph on n ≥ 5 vertices. The following
assertions hold:

(i) For all vertex u, d−(u) + d+(u) ≤ n− 3.

(ii) The number of arcs of D is at most n(n− 3)/2.

(iii) Let Tn be a tournament on n vertices and let M be a set of arcs of Tn. If D is
isomorphic to Tn −M then |M | ≥ n.

Proof. (i) Note that D is ~C3-free because it is CKI. By Lemma 2.4, d−(u)+d+(u) ≤ n−2
for all u ∈ V (D). Thus, we reason by contradiction supposing that there exists u ∈ V (D)
such that d−(u) + d+(u) = n − 2. Then there exists a unique z ∈ V (D) such that {u, z}
is an independent set and N+(u) ∪ N−(u) = V (D) \ {u, z}. Since D is ~C3-free, there
is no N+(u)N−(u)-arc. Denote by X = N+(u) ∩ N−(z) and observe that X is non-
empty because D is strongly connected. Note also that X 6= N+(u) because otherwise
N+(u) ⊆ N−(z) and {u, z} is a kernel of D, which is a contradiction. Then N+(u)\X 6= ∅.
Observe that there is w0 ∈ N+(u) \X such that N+(w0) ∩X 6= ∅, otherwise there is no
path from N+(u) \ X to X. Hence, {w0, z} is an independent set because otherwise
for x ∈ N+(w0) ∩ X, (z, w0, x, z) is a ~C3 in D which is a contradiction. Let Ku be a
kernel of D − u. By Lemma 2.2, Ku ∩ N+(u) = ∅ and there is some Kuu-arc. Hence,
Ku ⊂ N−(u)∪{z}. Since {w0, z} is an independent set it follows that there exists a vertex
y ∈ N−(u) ∩ Ku such that (w0, y) ∈ A(D). This is a contradiction because there is no
N+(u)N−(u)-arc as D is ~C3-free. Therefore d−(u) + d+(u) ≤ n− 3 for all u ∈ V (D).

(ii) This results is clear because 2|A(D)| =
∑

u∈V (D)(d
−(u) + d+(u)) ≤ n(n− 3).

(iii) Suppose that a CKI-digraph D is isomorphic to Tn −M where M is a set of arcs.
Then |A(D)| =

(

n
2

)

− |M | ≤ n(n− 3)/2. Therefore |M | ≥ n.

Remark 2.6. The upper bound on the number of arcs given in Theorem 2.5, is attained
for n = 5 and ~C5 is the extremal graph. Also it is attained for n = 7 and the circulant
digraph ~C7(1, 2) of Figure 3, is an extremal graph.

Figure 3: An asymmetric CKI-digraph on 7 vertices and 14 arcs.
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Corollary 2.7. Let D be an asymmetric d-regular CKI-digraph on n ≥ 5 vertices. Then
d ≤ (n− 3)/2.

Proof. By Theorem 2.5 (ii) we have |A(D)| =
∑

u∈V (D) d
+(u) = nd ≤ n(n − 3)/2. Then

d ≤ (n− 3)/2.

Lemma 2.8. Let D be an asymmetric CKI-digraph and x ∈ V (D) such that N+(x) = {y}.
Then {w, y} is an independent set of D for all w ∈ N−(x).

Proof. Since D is ~C3-free, there is no yN−(x)-arc in D. If (w, y) ∈ A(D) for some
w ∈ N−(x), then any kernel Kw of D − w satisfies that Kw ∩N+(w) = ∅, so x, y 6∈ Kw.
Hence x is not absorbed for any element of Kw which is a contradiction. Therefore {w, y}
is an independent set for all w ∈ N−(x).

Theorem 2.9. For every asymmetric CKI-digraph D on n ≥ 6 vertices the maximum
out-degree is ∆+ ≤ n− 5 and the maximum in-degree is ∆− ≤ n− 5.

Proof. Let D be a CKI-digraph. By Theorem 2.5 (i), d−(v) + d+(v) ≤ n − 3, and by
Theorem 1.1, d−(v), d+(v) ≥ 1 for all v ∈ V (D). Therefore it follows that d+(v), d−(v) ≤
n − 4 for all v ∈ V (D). First let us see that the maximum in-degree is at most n − 5.
We reason by contradiction supposing that there is a vertex v such that d−(v) = n − 4,
so N+(v) = {w}. Hence {a, b} = V (D) \ (N−(v) ∪ {v, w}). Since D is CKI it follows
that D is ~C3-free. Therefore N+(w) ⊆ {a, b}. W.l.g. suppose that a ∈ N+(w). We have
(b, a) 6∈ A(D), because otherwise {v, a} would be a kernel of D; and (a, b) ∈ A(D), because
otherwise {v, a, b} would be a kernel of D. Then, (b, w) 6∈ A(D) because D is ~C3-free, and
(w, b) 6∈ A(D) because {v, b} is not a kernel of D. Then {w, b} is an independent set
and N+(b) ⊆ N−(v). Let v′ ∈ N−(v) ∩ N+(b). Then D contains the directed 5-cycle
C = (v′, v, w, a, b, v′) which can not be induced because D is CKI and n ≥ 6. By Lemma
2.8, {v′, w} is an independent set for all v′ ∈ N−(v). Then the only possible arc in D
is (a, v′). Thus assume (a, v′) ∈ A(D). Let Ka be a kernel of D − a. By Lemma 2.2,
N+(a) ∩Ka = ∅. To absorb b there must exist some vertex v′′ ∈ Ka ∩ N−(v) such that
(b, v′′) ∈ A(D). By Lemma 2.8, {v′′, w} is independent, and since D is ~C3-free, {v

′′, a}
is also independent. Then (v, w, a, b, v′′, v) is an induced 5-cycle which is a contradiction.
Therefore d−(v) ≤ n− 5 for all v ∈ V (D).

Finally, let us see that the maximum out-degree is at most n − 5. We reason by
contradiction supposing that there is a vertex v such that d+(v) = n− 4 so that N−(v) =
{w}. Hence {a, b} = V (D) \ (N+(v) ∪ {v, w}). Since D is ~C3-free, N

−(w) ⊆ {a, b}, say
(a, w) ∈ A(D). LetKv be a kernel of D−v. By Lemma 2.2, it follows that N+(v)∩Kv = ∅,
yielding Kv ⊆ {w, a, b}. Thus, |Kv| = 2 by Theorem 2.3. By Lemma 2.2, Kv 6= {a, b}
because {v, a} and {v, b} are independent. ThenKv = {w, b}. SinceD is ~C3-free, N

+(v) ⊆
N−(b), yielding d−(b) = n − 4 which is a contradiction. Therefore d+(v) ≤ n − 5 for all
v ∈ V (D).
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Corollary 2.10. Let D be an asymmetric CKI-digraph on n ≥ 6 vertices. Then the
maximum tournament contained in D has at most n− 4 vertices.

Remark 2.11. The circulant digraph ~C7(1, 2) depicted in Figure 3, shows that Theorem
2.9 and Corollary 2.24 are best possible at least for 7 vertices.

In what follows we apply the above results on asymmetric CKI-digraphs of order at
most 9.

Remark 2.12. [7] The unique 2-regular digraph of girth 4 is the circulant digraph ~C7(1, 2)
depicted in Figure 3.

Theorem 2.13. Every asymmetric CKI-digraph on 7 vertices is ~C7 or the circulant di-
graph ~C7(1, 2).

Proof. By Theorem 2.9, ∆−,∆+ ≤ 2. Hence, if d+(u) = 2 for every vertex u, then D
is 2-regular and it is ~C7(1, 2) by Remark 2.12. We assume that there exists a vertex
x such that N+(x) = {y}. Let us show that d+(y) = 1 in which case D = ~C7 and
the theorem holds. We reason by contradiction supposing that N+(y) = {y1, y2}. By
Lemma 2.8, {x′, y} is an independent set for all x′ ∈ N−(x), and {x, yi}, i = 1, 2, is
an independent set because d+(x) = 1 and D is ~C3-free. Also note that x ∈ Ky for
all kernel Ky of D − y, N+(y) ∩ Ky = ∅ and by Theorem 2.3 there exists a vertex
z ∈ V (D) \ (N−(x) ∪N+(y) ∪ {x, y}) such that {x, z} ⊆ Ky.

If N−(x) = {x1, x2}, then {z} = V (D) \ (N−(x) ∪ N+(y) ∪ {x, y}), Ky = {x, z} and
(yi, z) ∈ A(D) for i = 1, 2. Then {y, z} is an independent set because d+(y) = 2 and D is
~C3-free. Hence, N+(z) ⊆ N−(x), say (z, x2) ∈ A(D). Thus, (x, y, yi, z, x2, x) is a ~C5 for
i = 1, 2. Since D is CKI, these cycles are not induced, so (y1, x2), (y2, x2) ∈ A(D) yielding
d−(x2) ≥ 3 which is a contradiction.

Therefore N−(x) = {x1} and {z1, z2} = V (D) \ (N−(x) ∪ N+(y) ∪ {x, y}). It follows
that Ky = {x, z1, z2} because if Ky = {x, zi} for some i ∈ {1, 2}, then d−(zi) ≥ 3, which is
a contradiction. Moreover, if N−(zi) = {y1, y2} for some i ∈ {1, 2}, then N+(zi) = {x1}
(because z1 and z2 are independent). By Lemma 2.8, {x1, yj}, j = 1, 2 is independent,

yielding (x, y, yj , zi, x1, x) is an induced ~C5 for j = 1, 2, which is a contradiction. Therefore,
we may assume that (y1, z1), (y2, z2) ∈ A(D). Then, {y, zi}, i = 1, 2 is an independent set.

Let Kx be a kernel of D − x. By Lemma 2.2, x1 ∈ Kx and y 6∈ Kx, yielding {y1, y2} ∩
Kx 6= ∅. Without loss of generality, suppose y1 ∈ Kx. Then z1 6∈ Kx and clearly (z1, x1) 6∈
A(D) because otherwise (x, y, y1, z1, x1, x) is an induced ~C5 which is a contradiction. Hence
N+(z1) = {y2} and y2 ∈ Kx to absorb z1, that is Kx = {x1, y1, y2}. Therefore N−(x1) =
{z2} and (x, y, y2, z2, x1, x) is an induced ~C5 which is a contradiction.

In the following corollary we establish that there are exactly four asymmetric CKI-
digraphs on n ≤ 7 vertices.
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Corollary 2.14. Every asymmetric CKI-digraph is a ~C3, a ~C5, a ~C7, a ~C7(1, 2) or has
n ≥ 8 vertices.

Proof. Let D be an asymmetric CKI-digraph on n vertices. By Theorem 1.4, D has an
odd cycle. If D contains a directed triangle, then D = ~C3 and we are done. Suppose that
D contains a cycle of length 5, say ~C5 = (x0, x1, x2, x3, x4, x0). For n = 5, by Theorem 2.5,
d−(xi) + d+(xi) ≤ 2. Then by Theorem 1.1, d−(xi) = d+(xi) = 1 yielding D = ~C5 and we
are done. For n = 6, d−(xi) ≥ 2 for some xi. However, from Theorem 2.9, it follows that
d−(xi), d

+(xi) ≤ 1 which is a contradiction. For n = 7 the result follows from Theorem
2.13. Then n ≥ 8.

Corollary 2.15. Every arc (u, v) of an asymmetric CKI-digraph on 8 vertices satisfies
d−(u) + d+(v) ≤ 5.

Proof. By Theorem 2.9, ∆+,∆− ≤ 3. Hence, the result holds if ∆+ ≤ 2. So, assume that
there is a vertex v ∈ V (D) such that N+(v) = {v1, v2, v3} and let us show that every
vertex u ∈ N−(v) has d−(u) ≤ 2. So assume that |N−(u)| = 3 for some (u, v) ∈ A(D).
Then V (D) = N−(u) ∪ N+(v) ∪ {u, v} and d+(u) ≥ 2 because if not, every kernel Kv

of D − v must be Kv = {u} contradicting Theorem 2.3. Thus, we may assume that
N+(u) = {v, v1}, by Theorem 2.5. Since D is ~C3-free, there is no v1N

−(u)-arc. Hence
N+(v1) ⊆ {v2, v3}. If {v2, v3} is independent, then {u, v2, v3} is a kernel of D because both
{u, v2} and {u, v3} are independent sets, which is a contradiction. We can assume that
(v2, v3) ∈ A(D). If v3 ∈ N+(v1), then {u, v3} is a kernel of D which is a contradiction.
Therefore N+(v1) = {v2} and by Lemma 2.8, {v, v2} must be independent which is a
contradiction. Therefore every vertex u ∈ N−(v) has d−(u) ≤ 2.

Corollary 2.16. Every asymmetric CKI-digraph on 8 vertices has a vertex u such that
d−(u) + d+(u) ≤ 4.

Proof. By Theorem 2.5, d−(u) + d+(u) ≤ 5 for all u ∈ V (D). Suppose that there is an
asymmetric CKI-digraph D on 8 vertices such that d−(u) + d+(u) = 5 for all u ∈ V (D).
By Theorem 2.9, ∆+,∆− ≤ 3. Then, by our assumption we have {d−(u), d+(u)} = {2, 3}.
Since

∑

u∈V (D) d
−(u) =

∑

u∈V (D) d
+(u) there are 4 vertices with out-degree 2, and 4

vertices with out-degree 3. Let (u, v) ∈ A(D) be such that d+(u) = 2 and d+(v) = 3. Since
D is ~C3-free, N

−(u) ∩N+(v) = ∅. Let {v1, v2, v3} = N+(v) and assume {v1} = N+(u) ∩
N+(v). Note that, since D is ~C3-free, there is no v1N

−(u)-arc. Hence N+(v1) = {v2, v3}.
If {v2, v3} is independent, then {u, v2, v3} is a kernel of D because both {u, v2} and {u, v3}
are independent sets, which is a contradiction. We can assume that (v2, v3) ∈ A(D) which
yields {u, v3} is a kernel of D which is a contradiction. Hence, D does not exist.

Corollary 2.17. If D is a d-regular asymmetric CKI-digraph on 9 vertices, then d ≤ 2.
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Proof. By Corollary 2.7, d ≤ 3. Suppose that there is an asymmetric CKI-digraph D on 9
vertices such that d−(u) = d+(u) = 3 for all u ∈ V (D). Let (u, v) ∈ A(D). Since D is ~C3-
free, N−(u)∩N+(v) = ∅. Let {w} = V (D)\(N−(u)∪N+(v)∪{u, v}), N+(v) = {v1, v2, v3},
N−(u) = {u1, u2, u3}. Since N+(u) − v ⊂ {w, v1, v2, v3} and d+(u) = 3, we may assume
v1 ∈ N+(u)∩N+(v). Then there is no v1N

−(u)-arc because D is ~C3-free. Hence N
+(v1) =

{v2, v3, w} and {v, w} is an independent set. W.l.g. let N−(v) = {u, u1, u2}, then there
is no N+(v){u1, u2}-arc. Reasoning as above we have N−(u1) = {u2, u3, w}. It follows
that N−(u2) ⊆ {u3, w} which is a contradiction because we are assuming that d−(u2) = 3.
Therefore there is no 3-regular asymmetric CKI-digraph on 9 vertices.

The digraph D depicted in Figure 1, shows that there are CKI-digraphs on 9 vertices
which are not regular.

2.2. Results for not necessarily asymmetric CKI-digraphs

In this subsection we deal with not necessarily asymmetric CKI-digraphs. In this case,
there are infinite families of CKI-digraphs of any order n ≥ 4. Galeana-Sánchez and
Neumann-Lara [15] proved that ~Cn(1,±2, . . . ,±(s + 1)), where s ≥ 1 and s + 2 does not
divide n, is a CKI-digraph, and clearly it is not asymmetric. Then the results of the
above subsection do not hold in general, and particularly we emphasize that Corollary
2.14 does not work.

Concerning the maximum order of a tournament contained in a not necessarily asym-
metric CKI-digraph of order n, Corollary 2.24 does not apply for the general case. Thus,
in the following results we establish that if we remove one or two vertices from a CKI-
digraph, or any independent set of vertices, the resulting digraph is not a tournament.
With this aim we recall that a maximal path is a directed path that cannot be extended to
a longer directed path from either beginning or ending. First, we show that if we remove
a vertex x from a CKI-digraph D, then D − x is not a tournament.

Lemma 2.18. Let D be a CKI-digraph on at least 4 vertices and x ∈ V (D). Then D− x
is not an asymmetric digraph having maximal paths of length one.

Proof. We reason by contradiction assuming that there exists a vertex x such that D−x is
an asymmetric digraph containing maximal paths of length one. Let (x1, xs) be a maximal
path of length one of D−x, i.e., then d−D−x(x1) = 0 and d+D−x(xs) = 0. Furthermore, as D
is CKI, Asym(D) is strongly connected by Theorem 1.2. Hence, the arcs (x, x1), (xs, x) ∈
A(Asym(D)) and thus (x, x1, xs, x) form an induced ~C3 of D. This contradicts that D is
a CKI-digraph. Thus, the theorem is proved.

Proposition 2.19. Let D be a CKI-digraph on at least 4 vertices and x ∈ V (D). Then
D − x is not a tournament.



C. Balbuena, M. Guevara and M. Olsen 77

Proof. Suppose that there exists a vertex x such that D − x is a tournament which must
be transitive because D − x is kernel perfect. Thus D − x has maximal paths of length
one which is a contradiction to Lemma 2.18. Thus the result holds.

Let D be a digraph with vertex set {v1, v2, . . . , vn}, and let G1, G2, . . . , Gn be digraphs
which are pairwise vertex-disjoint. The composition D[G1, G2, . . . , Gn] is the digraph with
vertex set V (G1) ∪ V (G2) ∪ · · · ∪ V (Gn) and arc set ∪n

i=1A(Gi) ∪ {gigj : gi ∈ V (Gi), gj ∈
V (Gj), vivj ∈ A(D)}.

The following theorem generalizes Proposition 2.19.

Theorem 2.20. Let D be a CKI-digraph on at least 4 vertices and H an independent
set of vertices of D. Then D −H is not a composition Tk[G1, G2, . . . , Gk], where Tk is a
tournament and G1, G2, . . . , Gk are pairwise vertex-disjoint digraphs.

Proof. From Theorem 1.1, D is strongly connected, and so |V (D) \H| ≥ 2. We assume
by contradiction that D − H = Tk[G1, G2, . . . , Gk], where Tk is a transitive tournament
having the hamiltonian path (v1, . . . , vk). Note also that Gi are kernel perfect, because
D − H is kernel perfect. As a transitive tournament is disconnected, the composition
Tk[G1, G2, . . . , Gk] is disconnected too. Thus H must be a cut set of D and also a cut set
of Asym(D) (recall that by Theorem 1.2, Asym(D) is strongly connected). As every vertex
gk ∈ V (Gk) is disconnected from every vertex g1 ∈ V (G1), there exist h ∈ H, x ∈ V (Gj)
and y ∈ V (Gi) with i < j such that (gk, . . . , x, h, y, . . . , g1) is a path in Asym(D). Since
D −H is a composition and i < j, it follows that (x, h, y, x) is an induced ~C3, which is a
contradiction because D is CKI.

As a direct consequence of Theorem 2.20, we obtain the following corollary.

Corollary 2.21. Let D be a CKI-digraph and Tk a tournament. Let Tk[G1, G2, . . . , Gk] be
a composition of the same order as D, and U an induced subdigraph of Tk[G1, G2, . . . , Gk].
Then D 6∼= Tk[G1, G2, . . . , Gk]−A(U).

Note that if Gi is a single vertex for every i = 1, . . . , k, then Tk[G1, G2, . . . , Gk] is a
tournament. In this case Theorem 2.20 and Corollary 2.21 can be written in the following
way.

Corollary 2.22. Let D be a CKI-digraph on at least 4 vertices and H an independent set
of vertices, then D − H is not a tournament. Moreover, D 6∼= Tk − A(U) where U is an
induced subdigraph of a tournament Tk.

Theorem 2.23. Let D be a CKI-digraph on at least 5 vertices. Then D− {x, y} is not a
tournament for every two vertices x, y ∈ V (D).

Proof. From Theorem 1.1 and Theorem 1.2, both D and Asym(D) are strongly connected.
We assume by contradiction that there exist x, y ∈ V (D) such that D−{x, y} is a tourna-
ment which must be transitive. Therefore from Corollary 2.22, it follows that {x, y} is not
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an independent set of D. Also {x, y} is a cut set because D−{x, y} is a transitive tourna-
ment. Let (v1, . . . , vn−2) be the hamiltonian path in D− {x, y}. Since {x, y} is also a cut
set in Asym(D), it follows that D has at least an asymmetric vn−2{x, y}-arc and an asym-
metric {x, y}v1-arc. Without loss of generality suppose that (vn−2, y) ∈ A(Asym(D)).
Then (x, v1) ∈ A(Asym(D)), because otherwise (y, v1) ∈ A(Asym(D)) implying that D
contains the induced triangle (y, v1, vn−2, y), which is a contradiction. Moreover, there
must be a vertex z ∈ V (D) such that (y, z) ∈ A(Asym(D)). If z = vi, then the induced
triangle (y, vi, vn−2, y), produces a contradiction, so z = x and (y, x) ∈ A(Asym(D)).

Let K1 be a kernel of D − v1. Since (v1, vi) ∈ A(Asym(D)) for all i ∈ {2, . . . , n− 2},
vi /∈ K1 by Lemma 2.2. Thus, K1 ⊆ {x, y} and since (y, x) ∈ A(Asym(D)), the kernel
of D − v1 is K1 = {x}. Then (vj , x) ∈ A(D) for all j with 1 < j ≤ n− 2. This implies
that (x, vj) ∈ A(Sym(D)) for all j with 1 < j ≤ n− 2 because otherwise (x, v1, vj , x) is

an induced ~C3 and D is CKI, see Figure 4.

x

v1 v2 vj vn−3 vn−2

y

Figure 4: Case K1 = {x}.

Let Kx be a kernel of D − x. By Lemma 2.2, vj 6∈ Kx for all j with 1 ≤ j ≤ n − 2,
hence it is forced that Kx = {y}. Then (vj , y) ∈ A(D), for all j with 1 ≤ j ≤ n − 2
and by Lemma 2.2, (y, x) ∈ A(Asym(D)). Moreover, (v1, y) ∈ A(Sym(D)), otherwise an
induced triangle ~C3 is formed in D by (v1, y, v, v1), see Figure 4. Since D has at least
5 vertices and (vn−2, y) ∈ Asym(D), the set {v1, vn−2, x, y} induces a proper subdigraph
of D isomorphic to ~C4(1, 2) (the digraph of Figure 2) which is a contradiction because
~C4(1, 2) has no kernel.

Thus, D − {x, y} is not a transitive tournament and the theorem is proved.

Corollary 2.24. Let D be a CKI-digraph on n ≥ 4 vertices. Then the maximum tourna-
ment contained in D has at most n− 3 vertices.
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