Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Characterization of asymmetric CKI- and KP-digraphs with covering number at most 3^{*}

Hortensia Galeana-Sánchez^a, Mika Olsen^{b,*}

^a Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México DF, Mexico ^b Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana - Cuajimalpa, Calle Artificios 40, col Hidalgo, 01120 México DF, Mexico

ARTICLE INFO

Article history: Received 30 June 2011 Received in revised form 6 March 2013 Accepted 8 March 2013 Available online 29 March 2013

Keywords: Digraphs Kernel Covering number

ABSTRACT

A set $N \subseteq V(D)$ is said to be a kernel if N is an independent set and for every vertex $x \in (V(D) \setminus N)$ there is a vertex $y \in N$ such that $xy \in A(D)$. Let D be a digraph such that every proper induced subdigraph of D has a kernel. D is said to be *kernel perfect digraph* (KP-digraph) if the digraph D has a kernel and *critical kernel imperfect digraph* (CKI-digraph) if the digraph D does not have a kernel. In this paper we characterize the asymmetric CKI-digraphs with covering number at most 3 are: \vec{C}_3 , \vec{C}_5 and $\vec{C}_7(1, 2)$. Several interesting consequences are obtained.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For general concepts we refer the reader to [2,3]. The topic of domination in graphs has been widely studied by several authors, a very complete study of this topic is presented in [17,18]. The absorption in digraphs is the dual concept of domination, and it is defined as follows: Let *D* be a digraph, a set of vertices $S \subseteq V(D)$ is an absorbing set if for every vertex $w \in V(D) \setminus S$ there is an arc $wv \in A(D)$ with $v \in S$. Absorbing independent sets in digraphs (kernels in digraphs) have found many applications in different topics of mathematics (for instance [19,20,12,13,23]) and they have been studied by several authors, interesting surveys of kernels in digraphs can be found in [8,13].

Let *D* be a digraph such that every proper induced subdigraph of *D* has a kernel. *D* is said to be *kernel perfect digraph* (KP-digraph) if the digraph *D* has a kernel and *critical kernel imperfect digraph* (CKI-digraph) if the digraph *D* does not have a kernel.

The perfect graphs were introduced by the Strong Perfect Conjecture stated by C. Berge in 1960. A graph G is called a *perfect graph* if, for each induced subgraph H of G, the chromatic number of H is equal to the maximum number of pairwise adjacent vertices in H. This conjecture states that a graph G is perfect if and only if G contains neither C_{2n+1} nor the complement of C_{2n+1} , $n \ge 2$, as an induced subgraph and it was proved by M. Chudnovsky et al. (2006) [10]. Many authors have contributed to obtain nice properties and interesting characterizations of Perfect Graphs [4,22]. In 1986 C. Berge and P. Duchet conjectured that a graph G is perfect if and only if any orientation by sinks of G is a kernel perfect digraph. (If G is a graph, an orientation \overrightarrow{G} of G is a digraph obtained from G by directing each edge of G in at least one of the two possible directions. An orientation \overrightarrow{G} of G is called an *orientation by sinks* (or normal) if every semicomplete subgraph H of G has

^{*} Research supported by CONACyT-México under project 83917.

^{*} Corresponding author. *E-mail addresses:* olsen@correo.cua.uam.mx, olsen.mika@gmail.com (M. Olsen).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.disc.2013.03.008

an absorbing vertex in $\overrightarrow{G}[V(H)]$). This Conjecture was proved in [5,9] and it constructs an important bridge between two topics in graph theory: namely colorings and kernels.

Let *D* be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of *D* respectively. An arc $uv \in A(D)$ is called asymmetric if $vu \notin A(D)$. The asymmetric part of *D*, denoted by Asym(D), is the subdigraph of *D*, with vertex set V(D) and whose arcs are the asymmetric arcs of *D*. A semicomplete digraph is a digraph *D* such that there is at least one arc between any two vertices of V(D).

The covering number of a digraph D, denoted $\sigma(D)$, is the minimum number of semicomplete digraphs of D that partition V(D). Digraphs with a small covering number are a nice class of nearly tournament digraphs. The existence of kernels in the digraphs with covering number at most 3 has been studied by several authors, in particular by Berge [5], Maffray [21] and others [6,7,14,15].

In this paper, we study the CKI-digraphs D with covering number of D or Asym(D) at most 3. For the case when the covering number of D or Asym(D) is at most two, we use the connection between perfect graphs and it turns out, that the only CKI-digraphs with covering number at most two are orientations of perfect graphs. Hence, they are not orientations by sinks. In contrast, when the covering number is three, CKI-digraphs are not necessarily orientations of a perfect graph. Therefore, when the covering number of D or Asym(D) is 3, we cannot use the connection between perfect graphs and the kernels. Also, we characterize the CKI-digraphs and the KP-digraphs that satisfy that the covering number of (the asymmetric part of) any strongly connected component is at most 2.

2. Definitions and preliminaries

Let *D* be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of *D* respectively. We denote the arc (u, v) by uv. For any $v \in V(D)$, we denote by $N^+(v)$ and $N^-(v)$ the *out*- and *in-neighborhood* of v in *D* respectively. All the paths, cycles and walks considered in this paper will be directed paths, cycles or walks of the digraph *D*. Let *U*, *V* be two disjoint subsets of V(D), we denote by $(U, V) = \{uv \in A(D) : u \in U, v \in V\}$. If $U = \{u\}$ (resp. $V = \{v\}$), then (u, V) (resp. (U, v)) denotes the set of arcs (U, V).

A tournament *T* is a digraph such that there is exactly one arc between any two vertices of *T*. An *acyclic digraph* is a digraph without directed cycles. An acyclic tournament is called a *transitive tournament*. A vertex $v \in V(D)$ absorbs the vertex set $S \subset V(D)$ if $sv \in A(D)$ for every $s \in S$. A vertex $v \in V(D)$ is a *sink* of *D* if *v* absorbs the vertex-set $V(D) \setminus \{v\}$. A *sink ordering* of the vertex-set V(D) is a sequence (u_1, u_2, \ldots, u_n) , where $|V(D)| = n, u_1$ is a sink of *D* and u_i is a sink of $D \setminus \{u_1, u_2, \ldots, u_{i-1}\}$ for every 1 < i < n (in case that such an ordering can be defined). A tournament with a sink ordering is a transitive tournament and in this case the sink ordering is unique, but this is not necessarily true for a semicomplete digraph with a sink ordering. Let *U* be a subset of V(D). We denote by D[U] the subdigraph of *D* induced by *U*. We say that a digraph *D* is *H*-free if *D* has no induced subdigraph isomorphic to *H*.

Let *G* be a graph. Following the notation of Berge and Duchet [5] an *orientation* \overline{G} of *G* is the digraph obtained by changing each edge with an asymmetric arc or symmetric arc. Let *D* be a digraph. The *underlying graph* G_D of *D* is the graph obtained by changing each asymmetric arc by an edge and each pair of symmetric arcs by an edge. The underlying graph of a digraph is a simple graph. Let *G* be a graph, the graph \overline{G} is the graph defined on the vertex-set V(G) and $E(\overline{G}) = \{\{u, v\} : \{u, v\} \notin E(G)\}$.

We will need the following results.

Proposition 1 ([16]). If D is not KP, then D has an induced CKI-subdigraph.

Remark 1. If *D* is a CKI-digraph (or a KP-digraph), then *D* has no proper induced CKI-subdigraph. In particular Asym(*D*) has no proper subdigraph isomorphic to \overrightarrow{C}_3 .

Theorem 1 ([11,16]). Let D be a CKI-digraph. Then Asym(D) is strongly connected.

Theorem 2 ([2]). If the tournament T is strongly connected, then T is pancyclic.

A graph *G* is called a *perfect graph* if, for each subgraph *H* of *G* the chromatic number of *H* is equal to the maximum number of pairwise adjacent vertices in *H*.

The following theorem is well known. We use Theorem 3 throughout this paper without mention it.

Theorem 3 ([3]). A graph G is perfect if and only if \overline{G} is a perfect graph.

The following Theorem is a direct consequence of the results in [5,9].

Theorem 4 ([5,9]). A graph G is perfect if and only if any orientation by sinks of G is a KP-digraph.

The covering number of a digraph D, denoted $\sigma(D)$, is the minimum number of semicomplete subdigraphs of D that partition V(D). Let D be a digraph with covering number σ . Then there is a partition of V(D) into σ semicomplete subdigraphs of D, we call such a partition a covering set of D.

Remark 2. If *D* is a CKI-digraph with covering number σ , then the order of a kernel of D - x is at most σ for every $x \in V(D)$.

Let \mathbb{Z}_m be the cyclic group of integers modulo $m(m \ge 1)$ and J a nonempty subset of $\mathbb{Z}_m \setminus \{0\}$. A *circulant* (or *rotational*) *digraph* $\overrightarrow{C}_m(J)$ is defined by $V(\overrightarrow{C}_m(J)) = \mathbb{Z}_m$ and

 $A(\overrightarrow{C}_m(J)) = \{(i,j) : i, j \in \mathbb{Z}_m, j-i \in J\}.$

Recall that the circulant digraphs are regular and they are vertex transitive.

3. CKI-digraphs with covering number at most 2

In this section we characterize the asymmetric CKI-digraphs with covering number at most 2 and the CKI-digraphs (resp. KP-digraphs) for which Asym(D) has covering number at most 2. As a consequence, we characterize the KP-digraphs with the property that each strongly connected component W satisfies that Asym(W) has covering number at most 2.

Let *D* be a digraph with covering number 2. A covering set of *D* induces a partition of V(D) into two semicomplete digraphs. If $\sigma(Asym(D)) = 2$, then a covering set of Asym(D) induces a partition of V(D) into two tournaments and the set of symmetric arcs of *D* is a subset of the arcs of [U, V]. Therefore Sym(D) is a bipartite digraph.

As a consequence of the Proposition 1, we have the following.

Lemma 1. Let D be an asymmetric CKI-digraph with covering number at least two. If $U \subset V(D)$ such that D[U] is a tournament, then D[U] is a transitive tournament.

By Lemma 1, a covering set of Asym(D) induces a partition into transitive tournaments.

Theorem 5 ([3]). A semicomplete digraph D is kernel perfect if and only if each directed cycle has at least one symmetric arc.

As a consequence of Theorem 5 and the fact that $\overrightarrow{C}_m(1, \pm 2, \pm 3, \dots, \pm \lfloor \frac{m}{2} \rfloor)$ are CKI-digraphs [16], we have the following.

Theorem 6. The only CKI-digraphs with covering number 1 are the circulant digraphs

 $\overrightarrow{C}_{m}\left(1,\pm 2,\pm 3,\ldots,\pm \lfloor \frac{m}{2} \rfloor\right).$

The following result is a consequence of Theorems 3 and 4.

Proposition 2. Let *D* be a digraph with $\sigma(D) \leq 2$. Then *D* is a KP-digraph if and only if *D* is a \overrightarrow{C}_3 -free digraph.

Proof. If *D* is a KP-digraph, then *D* is \overrightarrow{C}_3 -free, by Remark 1. Let *D* be a \overrightarrow{C}_3 -free digraph with covering number two. In order to prove that *D* is a KP-digraph, we prove that *D* is oriented by sinks and that the underlying graph of *D* is a perfect graph. So, the result follows from Theorem 4.

Every semicomplete subdigraph of *D* has a sink, because *D* is \overrightarrow{C}_3 -free, hence *D* is oriented by sinks. Let G_D be the underlying graph of *D*, clearly $\overline{G_D}$ is a bipartite graph or $\overline{K_p}$ (the complement of the complete graph on *p* vertices), and so $\overline{G_D}$ is perfect. So, G_D is a perfect graph and *D* is an orientation by sinks of G_D , and then, by Theorem 4, *D* is a KP-digraph.

Corollary 1. There are no CKI-digraphs with covering number 2. Moreover, \overrightarrow{C}_3 -free digraphs with covering number 2 are kernel perfect.

Corollary 2. Let *D* be a digraph with $\sigma(Asym(D)) \leq 2$. Then

(i) D is a CKI-digraph if and only if $D \cong \overrightarrow{C}_3$ or $D \cong \overrightarrow{C}_4(1, 2)$.

(i) D is a KP-digraph if and only if D has no induced subdigraph isomorphic to \overrightarrow{C}_3 nor isomorphic to $\overrightarrow{C}_4(1, 2)$.

Proof. If *D* is a digraph with $\sigma(Asym(D)) \leq 2$, then $\sigma(D) \leq 2$.

(i) By Theorem 6, \overrightarrow{C}_3 and $\overrightarrow{C}_4(1, 2)$ are CKI-digraphs. Let *D* be a CKI-digraph with $\sigma(Asym(D)) \leq 2$. By Corollary 1, $\sigma(D) = 1$ and by Theorem 6, it follows that $D \cong \overrightarrow{C}_m(1, \pm 2, \pm 3, \dots, \pm \lfloor \frac{m}{2} \rfloor)$, since $\sigma(Asym(D)) \leq 2$, m < 5 and we are done. (ii) Since $\sigma(Asym(D)) \leq 2$, an induced subdigraph of *D* has covering number at most 2. If *D* has no induced subdigraph

(ii) Since $\sigma(Asym(D)) \leq 2$, an induced subdigraph of *D* has covering number at most 2. If *D* has no induced subdigraph isomorphic to \overrightarrow{C}_3 nor isomorphic to $\overrightarrow{C}_4(1, 2)$, then by (i), *D* has no induced CKI-digraphs and *D* is a KP-digraph by Proposition 1. If *D* is a KP-digraph, then by Proposition 1, *D* has no induced subdigraph isomorphic to \overrightarrow{C}_3 nor isomorphic to $\overrightarrow{C}_4(1, 2)$. \Box

Corollary 3. Let D be a digraph such that the covering number of the asymmetric part of every strongly connected component is at most 2. Then

(i) *D* is a CKI-digraph if and only if $D \cong \overrightarrow{C}_3$ or $D \cong \overrightarrow{C}_4(1, 2)$.

(ii) D is a KP-digraph if and only if D has no induced subdigraph isomorphic to \overrightarrow{C}_3 nor isomorphic to $\overrightarrow{C}_4(1, 2)$.

Proof. Let *D* be a digraph such that the covering number of the asymmetric part of every strongly connected component is at most 2. $\rightarrow \rightarrow$

(i) The circulant digraphs \vec{C}_3 and $\vec{C}_4(1, 2)$ are both CKI-digraphs by Theorem 6. Let *D* be a CKI-digraph. By Theorem 1, *D* is strongly connected, thus $\sigma(Asym(D)) \leq 2$ and by Corollary 2, we are done.

(ii) Let *D* be a digraph as in the hypothesis without induced subdigraphs isomorphic to \overrightarrow{C}_3 nor isomorphic to $\overrightarrow{C}_4(1, 2)$. Suppose, for a contradiction, that *D* is not KP. By Theorem 1, *D* has an induced CKI-subdigraph *H* and *H* has covering number at least 2 because *D* is \overrightarrow{C}_3 -free. By Theorem 1, *Asym*(*H*) is strongly connected, so *H* is a subdigraph of a strongly connected component *W* of *D*. Thus, $\sigma(Asym(H)) = 2$ and $H \cong \overrightarrow{C}_3$ or $H \cong \overrightarrow{C}_4(1, 2)$ by Corollary 2 which contradicts the hypothesis.

As a summary for CKI-digraphs with covering number of asymmetric part at most two it was proved that there are exactly two CKI digraph with covering number at most two: \overrightarrow{C}_3 and $\overrightarrow{C}_4(1, 2)$. These two digraphs shows that \overrightarrow{C}_3 is the only asymmetric digraph with covering number at most two.

4. Asymmetric CKI-digraphs with covering number 3

In this section we prove that the only two asymmetric CKI-digraphs with covering number 3 are \vec{c}_5 and $\vec{c}_7(1, 2)$. It is easy to see that both \vec{c}_5 and $\vec{c}_7(1, 2)$ are asymmetric digraphs with covering number 3 and that \vec{c}_5 is a CKI-digraph. It was proved by Duchet [11] that $\vec{c}_7(1, 2)$ is a CKI-digraph.

Throughout this paper we use the following notations for asymmetric CKI-digraphs *D* with covering number three. Let U, V, W be a covering set of *D* since *D* is asymmetric, by Lemma 1, D[U], D[V] and D[W] are transitive tournaments. Let $(u_n, u_{n-1}, \ldots, u_1), (v_m, v_{m-1}, \ldots, v_1)$ and $(w_l, w_{l-1}, \ldots, w_1)$ be the sink orderings of *U*, *V* and *W* respectively (notice that u_1, v_1 and w_1 are the sinks of D[U], D[V] and D[W] respectively).

In order to prove our main theorem, we analyze all the possibilities for $D[\{u_1, v_1, w_1\}]$. In Propositions 3 and 4 we analyze the possibilities for the case when $D[\{u_1, v_1, w_1\}]$ has at least two arcs and a sink or a source, in Proposition 5 we analyze the case when $D[\{u_1, v_1, w_1\}]$ is a path of length two and in Proposition 6, when $D[\{u_1, v_1, w_1\}]$ has exactly one arc.

The following remark is a consequence of Theorem 1. We use Remark 3 throughout this paper without mentioning it.

Remark 3. Let *D* be an asymmetric CKI-digraph with covering number three, and let *U*, *V*, *W* be a covering set of *D* into transitive tournaments, with u_1 , v_1 and w_1 the sinks of *U*, *V* and *W* respectively. Then $d^+(u_1) \neq 0$, $d^+(v_1) \neq 0$ and $d^+(w_1) \neq 0$.

Since *D* is \overrightarrow{C}_3 -free, we have the following.

Lemma 2 ([1]). Let D be a CKI-digraph and let K be a kernel of $D - \{v\}$ where v is a vertex of D. Then there is no arc from v to K and there is some arc from K to v.

Lemma 3. Let *D* be an asymmetric CKI-digraph with covering number three, and let U, V, W be a covering set of *D*. Let u_i, v_j be an independent set that absorbs the vertices of $U \setminus u_i \cup V \setminus v_j$ and suppose that $w_1u_i \in A(D)$. If α is the smallest integer such that $w_{\alpha}u_i \notin A(D)$, then $v_jw_{\alpha} \in A(D)$.

Proof. Let *D* be a digraph that satisfies the conditions of the Lemma, and $u_i, v_j \in V(D)$ such that u_i, v_j absorbs the vertices of $U \setminus u_i \cup V \setminus v_j$. If $wu_i \in A(D)$ for every $w \in W$, then $\{u_i, v_j\}$ is a kernel of *D*, which is a contradiction. Let α be the smallest integer such that $w_{\alpha}u_i \notin A(D)$. Then $\{u_i, w_{\alpha}\}$ is an independent set, by the path (w_{α}, w_1, u_i) . If $\{v_j, w_{\alpha}\}$ is an independent set, then $K = \{u_i, v_j, w_{\alpha}\}$ is a kernel of *D*, so $\{v_j, w_{\alpha}\}$ is not an independent set.

In order to prove that $v_j w_\alpha \in A(D)$, we suppose, for a contradiction, that $w_\alpha v_j \in A(D)$. Then $K_1 = \{u_i, v_j\}$ absorbs the vertices of $U \setminus u_i \cup V \setminus v_i \cup \{w_1, w_2, \dots, w_\alpha\}$. Moreover, since *D* is \overrightarrow{C}_3 -free, $w_1 u_i \in A(D)$ and $w_\alpha v_i \in A(D)$, then

$$u_i w_k, v_i w_k \notin A(D)$$
 for $\alpha < k < l$.

(1)

If there is a vertex $w \in W$ such that $\{u_i, v_j, w\}$ is an independent set, then let β be the smallest integer such that $\{u_i, v_j, w_\beta\}$ is an independent set. By the choice of α we have that $\beta > \alpha$, and by the choice of β and by (1), there is an (w_k, K_1) -arc for every $k, \alpha < k \leq \beta$, which lead us to the contradiction that K_1 is a kernel of D. Then for every $k, \alpha < k \leq n$, there is an arc between w_k and some vertex in K_1 and by (1), this arc must be an (w_k, K_1) -arc. Thus K_1 is a kernel of D, which is a contradiction, so $w_\alpha v_i \notin A(D)$, and since $\{v_i, w_\alpha\}$ is not an independent set, then $v_i w_\alpha \in A(D)$. \Box

Proposition 3. Let D be an asymmetric CKI-digraph with covering number three. If $|A(D[\{u_1, v_1, w_1\}])| \ge 2$, then $D[\{u_1, v_1, w_1\}]$ has no sink.

Proof. Let *D* be an asymmetric CKI-digraph with covering number three, and let *U*, *V*, *W* be a covering set of *D* in tournaments, with u_1 , v_1 and w_1 the sinks of *U*, *V* and *W* respectively. Suppose, for a contradiction, that $D[\{u_1, v_1, w_1\}]$ has a sink. Without loss of generality we assume that $\{u_1v_1, w_1v_1\} \subseteq A(D)$. If $u_iv_1, w_iv_1 \in A(D)$ for $1 < i \leq l$ and $1 < j \leq n$,

then $K = \{v_1\}$ is kernel of D which contradicts that D is a CKI-digraph. By symmetry, we may assume that there is a vertex $u \in U$ such that $uv_1 \notin A(D)$, let α be the smallest integer such that $u_\alpha v_1 \notin A(D)$. Then, $\{u_\alpha, v_1\}$ is an independent set, by the path (u_α, u_1, v_1) . Let $K_1 = \{u_\alpha, v_1\}$; K_1 absorbs the vertices of $U \setminus u_\alpha \cup V \setminus v_1$. If $w_j v_1 \in A(D)$ for $1 < j \leq n$, then K_1 is kernel of D. Otherwise, let β be the smallest integer such that $w_\beta v_1 \notin A(D)$. Then $\{v_1, w_\beta\}$ is an independent set, by the path (w_β, w_1, v_1) . By Lemma 3, $u_\alpha w_\beta \in A(D)$. Analogously if we consider $K_2 = \{w_\beta, v_1\}$, then K_2 absorbs the vertices of $V \setminus v_1 \cup W \setminus w_\beta$ and by Lemma 3, $w_\beta u_\alpha \in A(D)$, which contradicts that D is asymmetric. So, $D[\{u_1, v_1, w_1\}]$ has no sink. \Box

Proposition 4. Let D be an asymmetric CKI-digraph with covering number three. If $|A(D[\{u_1, v_1, w_1\}])| \ge 2$, then $D[\{u_1, v_1, w_1\}]$ has no source.

Proof. Let *D* be an asymmetric CKI-digraph with covering number three, and let U, V, W be a covering set of *D* in tournaments, with u_1, v_1 and w_1 the sinks of *U*, *V* and *W* respectively.

Suppose, for a contradiction, that $D[\{u_1, v_1, w_1\}]$ has a source. Without loss of generality we assume that $\{v_1u_1, v_1w_1\} \subseteq A(D)$, if $\{u_1, w_1\}$ is not independent, then by Proposition 3 we are done. Therefore $A(D[u_1, v_1, w_1]) = \{v_1u_1, v_1w_1\}$. Since D is asymmetric and \overrightarrow{C}_3 -free, then

$$u_1v_i, w_1v_i \notin A(D) \quad \text{for } 1 \le i \le m.$$

Let $K_1 = \{u_1, w_1\}$. K_1 absorbs the vertices of $U \setminus u_1 \cup W \setminus w_1 \cup \{v_1\}$. If there is a vertex $v \in V$ such that $\{u_1, v, w_1\}$ is an independent set, then let α be the smallest integer such that $\{u_1, v_\alpha, w_1\}$ is an independent set. In this case K_1 absorbs the vertex set $(U \setminus u_1) \cup (W \setminus w_1) \cup \{v_1, v_2, \dots, v_{\alpha-1}\}$, and $\{u_1, v_\alpha, w_1\}$ is a kernel of D, which is a contradiction. So for every vertex $v_i \in V$ there is an arc between v_i and some vertex in K_1 . By (2) it must be an (v_i, K_1) -arc and K_1 is a kernel of D, which is a contradiction. So, $D[\{u_1, v_1, w_1\}]$ has no source. \Box

Lemma 4. Let *D* be an asymmetric CKI-digraph with covering number three, with |U| = n, |V| = m and |W| = l. If $D[\{u_1, v_1, w_1\}]$ is a path of length 2, then there exists a covering set of *D* in tournaments U', V', W' with $|U'|, |V'|, |W'| \ge 2$.

Proof. By Remark 3, the CKI-digraph *D* satisfies that $d^+(w_1) > 0$. If n = 1, then $d^+(w_1) = 0$ because $(w_1, \{u_1\} \cup V \cup W) = \emptyset$, so n > 1. If m = 1, then $\{u_1, w_1\}$ is kernel of *D*, so m > 1.

Suppose for a contradiction that |W| = 1. We will construct a covering set with the required properties. Let N_w be the kernel of $D - \{w_1\}$. Since $(v_1, U \cup V) = \emptyset$, then $v_1 \in N_w$. Let α be the minimum integer such that $w_1u_\alpha \in A(D)$ (such an α does exist because $d^+(w_1) > 0$). By the 4-cycle $(u_1, v_1, w_1, u_\alpha, u_1)$, it follows that $\{u_\alpha, v_1\}$ is independent. Moreover, $u_iv_1 \in A(D)$ for $i < \alpha$, so $N_w = \{u_\alpha, v_1\}$, which is a contradiction because in this case N_w is a kernel of D. \Box

Proposition 5. Let *D* be an asymmetric CKI-digraph with covering number three. If $D[\{u_1, v_1, w_1\}]$ is a path of length 2, then $D \cong \overrightarrow{C}_5$ or $D \cong \overrightarrow{C}_7(1, 2)$.

Proof. Let *D* be an asymmetric CKI-digraph with covering number three, and let *U*, *V*, *W* be a covering set of *D* in tournaments, with u_1 , v_1 and w_1 the sinks of *U*, *V* and *W* respectively and without loss of generality we assume that $A(D[\{u_1, v_1, w_1\}]) = \{u_1v_1, v_1w_1\}$ (notice that the vertex set $\{u_1, w_1\}$ is an independent set). By Lemma 4, we may assume that |U| = n, |V| = m, |W| = l and n, m, $l \ge 2$. By the paths (u_i, u_1, v_1) and (v_i, v_1, w_1) ,

(a)
$$v_1 u_i \notin A(D)$$
 for every $1 \le i < n$, (b) $w_1 v_i \notin A(D)$ for every $1 \le i < m$. (3)

Since *D* is a CKI-digraph, the digraph $D - \{w_l\}$ does have a kernel. Let N_w be a kernel of $D - \{w_l\}$. By Lemma 2, $w_i \notin N_w$. By (3)(a) and the fact that v_1 is sink of D[V], $v_1 \in N_w$.

Since |W| > 1, $w_1 \notin N_w$ and then by the arc v_1w_1 , there is a vertex $u_\alpha \in N_w \cap U$ such that $w_1u_\alpha \in A(D)$ and $\alpha > 1$. Then $N_w = \{u_\alpha, v_1\}$ and by the definition of N_w , Lemma 1 and the arc v_1w_1 , we have that $u_iv_1 \in A(D)$ for every $i < \alpha$ and $w_1u_\alpha \in A(D)$. Since N_w is a kernel of $D - \{w_l\}$, the path (w_l, w_1, u_α) and Lemma 2, it follows that

(a)
$$\{u_{\alpha}, w_l\}$$
 is independent, (b) $u_i v_1 \in A(D)$ for $1 \le i < \alpha$, (c) $v_1 w_l \in A(D)$. (4)

By the path (v_1, w_l, w_i) and the definition of N_w , it follows that

$$w_i u_\alpha \in A(D) \quad \text{for } i < l.$$
 (5)

Consider the digraph $D - \{v_1\}$. Since D is a CKI-digraph, the digraph $D - \{v_1\}$ does have a kernel. Let N_v be a kernel of $D - \{v_1\}$. By assumption, (4)(c) and the definition of N_v ,

$$w_1, w_l \notin N_v. \tag{6}$$

By (3)(b), w_1 must be absorbed by some $u_i \in U$, i > 1. Let $u_\beta = N_v \cap U$ and $w_1 u_\beta \in A(D)$. By (4)(c), for $i < \alpha$, the path (u_i, v_1, w_1) , leads to $\beta \ge \alpha > 1$. Note that $N_v \ne \{u_\beta\}$, because $\beta > 1$ and $u_1 u_\beta \notin A(D)$.

By the path $(w_i, u_\alpha, u_1), u_1w_i \notin A(D)$ for every i < l and so, by (6), $N_v \cap V \neq \emptyset$, else $(u_1, N_v) = \emptyset$. Let $N_v \cap V = \{v_\gamma\}$. By the choice of $N_v, \gamma > 1$. By the definition of N_v and the path (v_γ, v_1, w_l) ,

(a)
$$u_1 v_{\gamma} \in A(D)$$
, (b) $w_l v_{\gamma} \notin A(D)$. (7)

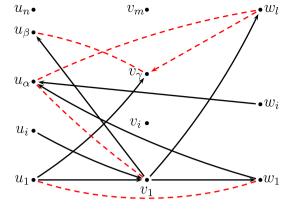


Fig. 1. Proposition 5.

If $\alpha = \beta$, then w_l is not absorbed by the vertex set $\{u_\beta, v_\gamma\}$. By (6), w_l must be absorbed by N_v , so $N_v \cap W \neq \emptyset$. Let $N_v \cap W = \{w_\delta\}$, notice that $1 < \delta < l$, by (6). In this case, $N_v = \{u_\beta, v_\gamma, w_\delta\}$ which contradicts (5). We may assume that $\alpha < \beta$.

By the 4-cycle $(u_i, v_1, w_1, u_\beta, u_i)$, for $i < \alpha$, the set $\{u_\beta, v_1\}$ is independent and

 $\{u_i, w_1\}$ is independent, for $i < \alpha$.

Claim 1. If $N_v = \{u_\beta, v_\gamma\}$, then $D \cong \overrightarrow{C}_5$ or $D \cong \overrightarrow{C}_7(1, 2)$.

Let $N_v = \{u_\beta, v_\gamma\}$. By (7)(b), $w_l u_\beta \in A(D)$, $u_i v_\gamma \in A(D)$, for every $i < \beta$; and from the 4-cycle $(u_\alpha, v_\gamma, v_1, w_1, u_\alpha)$ it follows that $\{v_\gamma, w_1\}$ is independent. If $v_\gamma w_l \notin A(D)$, then $\{v_\gamma, w_l\}$ is independent by the path (v_γ, v_1, w_l) . In this case $(u_\beta, u_\alpha, v_\gamma, v_1, w_l, u_\beta)$ is an induced 5-cycle and by Remark 1, $D \cong \overrightarrow{C}_5$.

So, we may assume that $v_{\gamma} w_l \in A(D)$. By the 4-cycle $(w_l, u_{\beta}, u_1, v_1, w_l)$ it follows that $\{u_1, w_l\}$ is independent. In this case $(u_{\beta}, u_{\alpha}, u_1, v_{\gamma}, v_1, w_l, w_1, u_{\beta})$ induces a $\overrightarrow{C}_7(1, 2)$ and by Remark 1, $D \cong \overrightarrow{C}_7(1, 2)$. And Claim 1 is true. \Box

We may assume that $N_v \cap W \neq \emptyset$. Let $N_v = \{u_\beta, v_\gamma, w_\delta\}$. By (6), $1 < \delta < l$ and hence $w_\delta u_\alpha \in A(D)$. By the path (v_1, w_l, w_δ) and the definition of N_v , $\{v_1, w_\delta\}$ is independent. Hence, by definition of N_v and the arc $w_\delta u_\alpha$,

(a)
$$u_1 v_{\gamma} \in A(D)$$
, (b) $u_{\alpha} v_{\gamma} \in A(D)$

By the 4-cycle $(u_{\alpha}, v_{\gamma}, v_1, w_1, u_{\alpha})$, $\{v_{\gamma}, w_1\}$ is independent.

If $v_{\gamma}w_l \notin A(D)$, then $\{v_{\gamma}, w_l\}$ is independent by the path (v_{γ}, v_1, w_l) . In this case, $(u_{\alpha}, v_{\gamma}, v_1, w_l, w_{\delta}, u_{\alpha})$ is an induced 5-cycle and by Remark 1, $D \cong \overrightarrow{C}_5$. We may assume that $v_{\gamma}w_l \in A(D)$.

If $w_l u_\beta \in A(D)$, then $(u_1, v_1, w_l, u_\beta, u_1)$ is a 4-cycle and $\{u_1, w_l\}$ is independent. In this case, by (9)(a), $(u_\beta, u_\alpha, u_1, v_\gamma, v_1, w_l, w_l, u_\beta)$ induces a $\overrightarrow{C}_7(1, 2)$ and by Remark 1, $D \cong \overrightarrow{C}_7(1, 2)$. We may assume that $w_l u_\beta \notin A(D)$. By the path $(w_l, w_1, u_\beta), \{u_\beta, w_l\}$ is independent.

If $u_1w_l \notin A(D)$, then $\{u_1, w_l\}$ is independent by the path (u_1, v_1, w_l) . In this case, by (9)(a), $(u_\beta, u_1, v_\gamma, w_l, w_1, u_\beta)$ is an induced 5-cycle and by Remark 1, $D \cong \overrightarrow{C}_5$. We may assume that

$$u_1 w_l \in A(D). \tag{10}$$

By the 4-cycle $(u_1, w_l, w_i, u_\alpha, u_1)$, $\{u_1, w_i\}$ is independent for i < l.

Consider the digraph $D - \{u_1\}$. Since D is a CKI-digraph, the digraph $D - \{u_1\}$ does have a kernel. Let N_u be a kernel of $D - \{u_1\}$.

By assumption, (9)(b) and (10),

$$v_1, v_{\gamma}, w_l \not\in N_u.$$

By (3)(a) and the fact that v_1 is sink of V it follows that $(v_1, \{U \cup V\}) = \emptyset$, in this case, $N_u \cap W \neq \emptyset$ by (11). Let $w_{\epsilon} \in N_u$ for some $\epsilon < l$ and $v_1w_{\epsilon} \in A(D)$. By (7)(a) and the paths $(w_{\epsilon}, u_{\alpha}, v_{\gamma})$ and (u_i, u_1, v_{γ}) , it follows that $(v_{\gamma}, \{U \cup \{w_{\epsilon}\}\}) = \emptyset$. Then $N_u \cap V \neq \emptyset$, by (11) and $v_{\zeta} \in N_u$ for some $\zeta < \gamma$.

By (5), $w_{\epsilon}u_{\alpha} \in A(D)$, so $u_{\alpha} \notin N_{u}$ and then, (u_{α}, N_{u}) must be non empty. If $u_{\alpha}v_{\zeta} \in A(D)$, then by the paths $(w_{\delta}, u_{\alpha}, v_{\zeta})$ and $(u_{\beta}, u_{\alpha}, v_{\zeta})$, it follows that $(v_{\zeta}, \{u_{\beta}, w_{\delta}\}) = \emptyset$, which contradicts that N_{v} is a kernel of $D - \{v_{1}\}$, because $\zeta > 1$ by (11). So $u_{\alpha}v_{\zeta} \notin A(D)$. By (4)(a) and (5), it follows that $(u_{\alpha}, \{v_{\zeta}, w_{\epsilon}\}) = \emptyset$. So, $N_{u} \cap U \neq \emptyset$ and let $u_{\eta} \in N_{u}$ for some $\eta < \alpha$. Hence $N_{u} = \{u_{\eta}, v_{\zeta}, w_{\epsilon}\}$.

(8)

(9)

(11)

If $\epsilon > 1$, then by (3)(b) and (8)(b), it follows that $(w_1, N_u) = \emptyset$, which is a contradiction, so $\epsilon = 1$ and $N_u = \{u_\eta, v_\zeta, w_1\}$. We will prove that $N = \{u_1, v_\zeta, w_1\}$ is kernel of *D*. By the definition of the kernel N_u of $D - \{u_1\}$ and the path (u_1, v_γ, v_ζ) it follows that $N = \{u_1, v_\zeta, w_1\}$ is independent. Moreover, *N* absorbs $U \cup \{v_i : i > \zeta\} \cup W$. In order to prove that *N* absorbs the vertices $v_i, 1 \le i < \zeta$, we prove that $v_i w_1 \in A(D)$ for every $1 \le i < \zeta$. By definition of N_v (kernel of $D - \{v_1\}$) and the fact that $w_\delta u_\alpha \in A(D)$, it follows that $u_i v_\gamma \in A(D)$ for every $i < \alpha$ and so, by the path (u_η, v_γ, v_i) for $i < \zeta$, we have that $v_i u_\eta \notin A(D)$. By the definition of N_u , it follows that $v_i w_1 \in A(D)$ for every $1 \le i < \zeta$. Hence $N = \{u_1, v_\zeta, w_1\}$ is a kernel of D, which contradicts that D is a CKI-digraph.

So, we are done. \Box

Lemma 5. Let D be an asymmetric CKI-digraph with covering number three, with |U| = n, |V| = m and |W| = l. If $|A(D[\{u_1, v_1, w_1\}])| = 1$, then $D \cong \overrightarrow{C}_5$ or $D \cong \overrightarrow{C}_7(1, 2)$ or there exists a covering set of D in tournaments U', V', W' with |U'|, |V'|, $|W'| \ge 2$.

Proof. Without loss of generality, we assume that $A(D[\{u_1, v_1, w_1\}]) = \{u_1v_1\}$. If $v_1u_i \in A(D)$, then (v_1, u_i, u_1, v_1) is a C_3 , moreover $N^+(v_1) \subset W$ because v_1 is a sink of *V*. Since $v_1w_1 \notin A(D)$ and $d^+(v_1) > 0$, then l > 1.

If n = 1, then $\{v_1, w_1\}$ is a kernel of D. So n > 1.

Suppose by contradiction that m = 1.

Claim 2. If n = 2, then $D \cong \overrightarrow{C}_5$.

The set $\{u_2, v_1\}$ is independent, else the covering number of *D* is two. Since $\{u_1, w_1\}$ and $\{v_1, w_1\}$ are independent sets and $d^+(w_1) > 0$, then $w_1u_2 \in A(D)$.

Let N_1 be the kernel of $D - \{u_1\}$. In this case $v_1 \notin N_1$, so, v_1 must be absorbed by N_1 , and then $N_1 \cap W = \emptyset$. Let $w_\alpha \in N_1$. Since $\{v_1, w_1\}$ is independent, $\alpha > 1$. In this case w_1 must be absorbed by N_1 and $N_1 \cap U \neq \emptyset$. Since $\{u_1, w_1\}$ is independent, $u_2 \in N_1$ and $N_1 = \{u_2, w_\alpha\}$. By the definition of N_1 , $\{u_2, w_\alpha\}$ is an independent set. By Lemma 2 and the path (u_1, v_1, w_α) , $\{u_1, w_\alpha\}$ is an independent set. In this case $(u_2, u_1, v_1, w_\alpha, w_1, u_2)$ is a induced 5-cycle and by Remark 1, $D \cong C_5$. \Box

Thus, we assume that n > 2.

If $u_i v_1 \in A(D)$ for every $i \leq n$, then the covering number of D is two, which is a contradiction. Let β be the smallest integer such that $u_\beta v_1 \notin A(D)$, then $\{u_\beta, v_1\}$ is independent. If $\beta < n$, then $U' = \{w_1, w_2, \dots, w_l\}$, $V' = \{u_\beta, \dots, u_n\}$, $W' = \{v_1, u_1, u_2, \dots, w_{\beta-1}\}$ is a covering set with |U'| > 1, |V'| > 1 and |W'| > 1 and $A(D[u'_1, v'_1, w'_1]) = (u'_1, v'_1)$.

Thus we may assume that $\beta = n$.

Let N_w be kernel of $D - \{w_l\}$, then $N_w \cap W = \emptyset$. In this case $v_1 \in N_w$. Since $w_1v_1 \notin A(D)$, $N_w \cap U \neq \emptyset$ and $N_w = \{u_n, v_1\}$ because $u_iv_1 \in A(D)$ for every i < n. Furthermore, $w_1u_n \in A(D)$. By Lemma 2 and the path (w_l, w_1, u_n) , $\{u_n, w_l\}$ is an independent set and $v_1w_l \in A(D)$. By the path (v_1, w_l, w_i) , $w_iv_1 \notin A(D)$ for i < l. By the definition of N_w , it follows that $w_iu_n \in A(D)$ for i < l. If $u_1w_l \notin A(D)$, then $(u_n, u_1, v_1, w_l, w_1, u_n)$ is an induced \overrightarrow{C}_5 and by Remark 1, $D \cong \overrightarrow{C}_5$. So $u_1w_l \in A(D)$ and $U' = \{v_1, u_2, \ldots, u_{n-1}\}$, $V' = \{w_l, u_1\}$, $W' = \{u_n, w_1, w_2, \ldots, w_{l-1}\}$ is a covering set with the property that $|U'|, |V'|, |W'| \ge 2$ and $A(D[u'_1, v'_1, w'_1]) = (u'_1, v'_1)$. \Box

Proposition 6. Let *D* be an asymmetric CKI-digraph with covering number three. If $|A(D[\{u_1, v_1, w_1\}])| = 1$, then $D \cong \overrightarrow{C}_5$ or $D \cong \overrightarrow{C}_7(1, 2)$.

Proof. Let *D* be an asymmetric CKI-digraph with covering number three, and let *U*, *V*, *W* be a covering set of *D* in tournaments, with u_1 , v_1 and w_1 the sinks of *U*, *V* and *W* respectively, in view of Lemma 5, we will assume that |U|, |V|, |W| > 1. Let $A(D[\{u_1, v_1, w_1\}]) = \{u_1v_1\}$. Do note that $\{u_1, w_1\}$ and $\{v_1, w_1\}$ are independent sets. By the path (u_k, u_1, v_1) ,

(12)

$$(v_1, U) = \emptyset$$

Let N_w be a kernel of $D - \{w_l\}$.

Claim 3. $N_w = \{u_\alpha, v_1\}$ for some $\alpha > 1$.

By Lemma 2, $w_i \notin N_w$, thus by Remark 2, $|N_w| < 3$. If $|N_w| = 1$, then $N_w = \{v_1\}$, by (12) and the fact that v_1 is sink of *V*. In this case $(w_1, N_w) = \emptyset$ and N_w is not a kernel of $D - \{w_l\}$ (by Lemma 5, l > 1), which is a contradiction, so $|N_w| = 2$. By Lemma 2 and (12), it follows that $N_w = \{u_\alpha, v_1\}$ for some $\alpha > 1$, which proves Claim 3. \Box

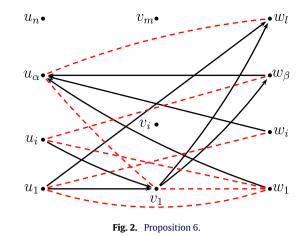
By definition of N_w , $\{u_\alpha, v_1\}$ is independent. So,

(a)
$$u_i v_1 \in A(D)$$
 for any $1 \le i < \alpha$, (b) $w_1 u_\alpha \in A(D)$. (13)

By Lemmas 2 and 5 and the path (w_l, w_1, u_α) ,

(a) $\{u_{\alpha}, w_l\}$ is independent, (b) $v_1 w_l \in A(D)$. (14)

H. Galeana-Sánchez, M. Olsen / Discrete Mathematics 313 (2013) 1464-1474



By the path (v_1, w_l, w_i) , it follows that $w_i v_1 \notin A(D)$. Then, by Lemma 5 and Claim 3,

$$w_i u_{\alpha} \in A(D)$$
 for any $1 \le i < l.$ (15)

If $u_1w_l \notin A(D)$, then by the path (u_1, v_1, w_l) , $\{w_l, u_1\}$ is independent. In this case $(u_1, v_1, w_l, w_1, u_\alpha, u_1)$ is an induced \overrightarrow{C}_5 and by Remark 1, $D \cong \overrightarrow{C}_5$.

Thus, we assume that

$$u_1 w_l \in A(D). \tag{16}$$

By the 4-cycle $(u_1, w_l, w_i, u_\alpha, u_1)$ and the paths (u_i, u_1, w_l) and (v_i, v_1, w_l) ,

(a) $\{u_1, w_i\}$ is independent for i < l (b) $(w_l, U \cup V) = \emptyset$. (17)

Let N_1 be a kernel of $D - \{u_1\}$. By definition of N_1 ,

$$v_1, w_l \notin N_1. \tag{18}$$

By (12), (17)(b) and (18) there exists an integer β such that,

(a)
$$w_{\beta} \in N_1$$
 for some $1 < \beta < l$, (b) $v_1 w_{\beta} \in A(D)$. (19)

By (15)(b) and the definition of N_1 ,

(a)
$$w_{\beta}u_{\alpha} \in A(D)$$
, (b) $u_{\alpha} \notin N_1$. (20)

By the 4-cycle $(u_i, v_1, w_\beta, u_\alpha, u_i)$,

 $\{u_i, w_\beta\}$ is independent for $1 \le i < \alpha$.

Let $i < \alpha$. If $w_1u_i \in A(D)$, then $\{u_i, w_l\}$ is independent by the 4-cycle $(w_l, w_1, u_i, v_1, w_l)$. In this case $(u_{\alpha}, u_i, u_1, v_1, w_l, w_{\beta}, w_1, u_{\alpha})$ induces a $\overrightarrow{C}_7(1, 2)$ and by Remark 1, $D \cong \overrightarrow{C}_7(1, 2)$.

Hence, we may assume that for every $i < \alpha$, $w_1 u_i \notin A(D)$, and by the path (w_1, u_α, u_i) ,

$$\{u_i, w_1\}$$
 is independent for $i < \alpha$.

In Fig. 2, we show the arcs that must be in the digraph *D*. With dashed lines we indicate the independent sets as well as the arcs that are not in *D*.

We will analyze separately the two cases: $\alpha < n$ or $\alpha = n$.

Case I $\alpha < n$.

Let N_u be a kernel of $D - \{u_n\}$. Then $U \cap N_u = \emptyset$. By (14)(a) and (15), $(u_\alpha, W) = \emptyset$, so there is a vertex $v_\gamma \in V \cap N_u$ such that $u_\alpha v_\gamma \in A(D)$. By definition of $N_w = \{u_\alpha, v_1\}, \gamma > 1$.

By the path $(u_n, u_\alpha, v_\gamma)$ and the definition of N_u , by the paths (v_γ, v_1, w_l) and (v_γ, v_1, w_β) ,

(a)
$$\{u_n, v_\gamma\}$$
 is independent, (b) $w_l v_\gamma, w_\beta v_\gamma \notin A(D)$. (23)

Since $\gamma > 1$ and $v_1v_{\gamma} \notin A(D)$, by (12), there is a vertex $w_{\delta} \in W \cap N_u$ such that $v_1w_{\delta} \in A(D)$. So $\delta > 1$, and $N_u = \{v_{\gamma}, w_{\delta}\}$. By the definition of N_u , $\{v_{\gamma}, w_{\delta}\}$ is independent. Moreover, $v_iw_{\delta} \in A(D)$ for $1 \le i < \gamma$ and

$$w_i v_{\gamma} \in A(D) \quad \text{for } 1 \le i < \delta.$$
 (24)

By Lemma 2, (23)(a) and (17)(b),

(a) $w_{\delta}u_n \in A(D)$, (b) $1 < \delta < l$.

(21)

(22)

By definition of N_u and the path $(u_i, u_\alpha, v_\gamma)$, $v_\gamma u_i \notin A(D)$ for $i > \alpha$, and so, by the path (w_δ, u_n, u_i) , with i < n, we have that $(U, w_\delta) = \emptyset$. Since N_u is kernel of $D - \{u_n\}$,

(a)
$$u_i v_\gamma \in A(D)$$
, for $1 \le i < n$, (b) $v_i u_1 \notin A(D)$ for $i < \gamma$. (25)

By (23)(b) and the 4-cycle $(v_1, w_\beta, u_\alpha, v_\gamma, v_1)$, $\{v_\gamma, w_\beta\}$ is independent and by (24), $\delta \leq \beta$. By (25)(a), we have that $v_\gamma \notin N_1$ and so, by (24) and the definition of N_u , $(v_\gamma, U \cup W) = \emptyset$.

So, there is a vertex $v_{\varepsilon} \in V \cap N_1$ such that $1 < \varepsilon < \gamma$ by (19)(a) and (19)(b). By (25)(b), $\{u_1, v_{\varepsilon}\}$ is independent. By the definition of N_1 and Lemma 2, $N_1 \cap U \neq \emptyset$. Otherwise, by the fact that $\{u_1, v_{\varepsilon}\}$ is independent and (17)(a), it follows that $N' = \{u_1, v_{\varepsilon}, w_{\beta}\}$ independent. Moreover, N' is a kernel of D, which is a contradiction.

Let $N_1 = \{u_{\chi}, v_{\varepsilon}, w_{\beta}\}$. By the 4-cycles $(u_1, w_l, w_{\delta}, u_n, u_1)$, $(u_{\alpha}, v_{\gamma}, v_{\varepsilon}, w_{\delta}, u_{\alpha})$ and $(u_i, v_1, w_{\delta}, u_{\alpha}, u_l)$, it follows that $\{u_n, w_l\}, \{u_{\alpha}, v_{\varepsilon}\}$ and $\{u_i, w_{\delta}\}$ are independent sets for $i < \alpha$. Then $\{u_n, v_1\}$ is independent by the 4-cycle $(u_1, v_1, w_{\delta}, u_n, u_1)$. By (20)(a), (20)(b) and the independent set $\{u_{\alpha}, v_{\varepsilon}\}$, it follows that $\chi < \alpha$. By (22) and the path $(v_{\varepsilon}, w_{\delta}, w_1), (w_1, N_1) = \emptyset$

which contradicts that N_1 is a kernel of $D - \{u_1\}$.

So, the case $\alpha < n$ leads to a contradiction.

Case 2 $\alpha = n$.

In this case, by Claim 3 and (14)(a), we obtain that $\{u_n, v_1\}$ and $\{u_n, w_l\}$ are independent sets, $N_w = \{u_n, v_1\}$, by (20) $u_n \notin N_1$ and by (15)(b),

$$w_i u_n \in A(D)$$
 for every $1 \le i < l.$ (26)

Since $(w_1, U \setminus \{u_n\} \cup \{w_\beta\}) = \emptyset$, there is a vertex $v_\gamma \in N_1 w_1 v_\gamma \in A(D)$. By (19)(b), $1 < \gamma$. By the 4-cycles $(w_1, v_\gamma, v_1, w_\beta, w_1)$ and $(w_1, v_\gamma, v_1, w_l, w_1)$ the following sets are independent,

(a)
$$\{v_{\gamma}, w_{\beta}\},$$
 (b) $\{v_{\gamma}, w_{l}\}.$ (27)

Claim 4. If $u_n v_{\gamma}$, $v_{\gamma} u_1 \in A(D)$, then $D \cong \overrightarrow{C}_7(1, 2)$.

Let $u_n v_\gamma \in A(D)$, $v_\gamma u_1 \in A(D)$, then $(u_n, v_\gamma, u_1, v_1, w_l, w_\beta, w_1, u_n)$ induces a $\overrightarrow{C}_7(1, 2)$ and by Remark 1, $D \cong \overrightarrow{C}_7(1, 2)$. \Box

If $N_1 = \{v_{\gamma}, w_{\beta}\}$, then $u_n v_{\gamma} \in A(D)$ by the definition of N_1 and by Lemma 2, $v_{\gamma} u_1 \in A(D)$ and $D \cong \overrightarrow{C}_7(1, 2)$ by Claim 4. So,

$$N_1 \cap (U \setminus \{u_1\}) \neq \emptyset. \tag{28}$$

Let N_v be a kernel of $D - \{v_m\}$. Then $N_v \cap V = \emptyset$.

Since m > 1 and $(v_1, U) = \emptyset$, then $w_\rho \in N_v$ for some $\rho > 1$ and $v_1 w_\rho \in A(D)$. Then $w_1 \notin N_v$ and since $(w_1, U \setminus \{u_n\}) = \emptyset$, then $u_n \in N_v$. Hence, by (15), $\rho = l$ and $N_v = \{u_n, w_l\}$. By Lemma 2 and the path (v_m, v_1, w_l) it follows that $\{v_m, w_l\}$ is independent and $u_n v_m \in A(D)$. By the path (u_n, v_m, v_l) and the definition of N_v , it follows that $v_i w_l \in A(D)$ for all i < m.

If $\gamma < m$, then by the path (u_n, v_m, v_γ) and by (27)(b) it follows that $(v_\gamma, N_v) = \emptyset$, which contradicts that N_v is a kernel of $D - \{v_m\}$. Then $\gamma = m$.

By definition of N_v , $u_i w_l \in A(D)$, for i < n, then by and Lemma 2, $\{v_m, w_l\}$ is independent and,

$$u_n v_m \in A(D).$$

(29)

(31)

By Claim 4 and the definition of N_1 , we may assume that $\{u_1, v_m\}$ is independent. By the path (u_n, v_m, v_i) , it follows that $v_i u_n \notin A(D)$. By the definition of N_v , it follows that $v_i w_l \in A(D)$. By the 4-cycle $(u_i, w_l, w_j, u_n, u_i)$,

 $\{u_i, w_i\}$ is independent for i < n and j < l. (30)

By (28) and (29),

 $N_1 = \{u_{\chi}, v_m, w_{\beta}\}$ for some $1 < \chi < n$.

Hence, there exists $u_2 \neq u_n$. Let N_2 be a kernel of $D - \{u_2\}$. Then $u_1, v_1, w_l \notin N_2$.

In this case, $v_y \in N_2$ for some 1 < y < m, else $(u_1, N_2) = \emptyset$. Notice that, $v_m \notin N_2$ and then, $w_z \in N_2$ for some 1 < z < l, else $(v_1, N_2) = \emptyset$. Also, $w_1 \notin N_2$ and then, $u_n \in N_2$, else $(w_1, N_2) = \emptyset$. Hence, $N_2 = \{u_n, v_y, w_z\}$. By (26), for i < l, $w_i u_n \in A(D)$ and since $w_l \notin N_2$, then $N_2 \cap W = \emptyset$, which contradicts that $N_2 = \{u_n, v_y, w_z\}$.

So Case 2, is settled. \Box

As a summary of Propositions 3-6, we have the following.

Theorem 7. Let *D* be an asymmetric CKI-digraph with covering number 3. Then $D \cong \overrightarrow{C}_5$ or $D \cong \overrightarrow{C}_7(1, 2)$.

Proof. We analyze all the possibilities for $D[\{u_1, v_1, w_1\}]$. If $D[\{u_1, v_1, w_1\}]$ has no arcs, then $\{u_1, v_1, w_1\}$ is a kernel of D, which is a contradiction. If $D[\{u_1, v_1, w_1\}]$ has exactly one arc, then by Proposition 6, $D \cong \overrightarrow{C}_5$ or $D \cong \overrightarrow{C}_7(1, 2)$. By Propositions 3 and 4, if $D[\{u_1, v_1, w_1\}]$ has at least two arcs, then $D[\{u_1, v_1, w_1\}]$ is a path of length two and hence, by Proposition 5, $D \cong \overrightarrow{C}_5$ or $D \cong \overrightarrow{C}_7(1, 2)$. \Box

As a summary of Corollaries 1 and 2(i) and Theorems 6 and 7, we have the following.

Proposition 7. Let D be a CKI-digraph with covering number at most three.

- (i) The covering number of Asym(D) is one if and only if $D \cong \overrightarrow{C}_3$.
- (ii) The covering number of *D* is one if and only if $D \cong \overrightarrow{C}_m(1, \pm 2, \pm 3, \dots, \pm \lfloor \frac{m}{2} \rfloor)$.
- (iii) The covering number of Asym(D) is two if and only if $D \cong \overrightarrow{C}_4(1, 2)$.
- (iv) The covering number of D is not equal to two.
- (v) If D is an asymmetric digraph, then the covering number of D is three if and only if $D \cong \overrightarrow{C}_5$ or $D \cong \overrightarrow{C}_7(1, 2)$.

Proposition 8. Let *D* be a KP-digraph with covering number at most three.

- (i) The covering number of D is at most two if and only if D is \overrightarrow{C}_{3} -free.
- (ii) The covering number of Asym(D) is two if and only if D has no induced subdigraph isomorphic to \overrightarrow{C}_3 nor to $\overrightarrow{C}_4(1, 2)$. (iii) Let D be asymmetric and $\sigma(asym(D)) = 3$. Then D is a KP-digraph if and only if D has no induced subdigraph isomorphic to \overrightarrow{C}_3 , $\overrightarrow{C}_4(1,2)$, \overrightarrow{C}_5 nor $\overrightarrow{C}_7(1,2)$.

5. Consequences of the results

In this section we review some previous results that can be obtained with our results in case that $\sigma(D) < 2$, $\sigma(Asym(D)) < 2$ and in case that the asymmetric digraph D has covering number three.

Theorem 8 (Theorem 1.4 [15]). If D is a digraph with $\sigma(D) < 2$ such that each directed cycle of length 3 has two symmetrical arcs. then D is a KP-digraph.

Proof. Since each directed cycle of length 3 has two symmetrical arcs, then *D* has no induced \vec{C}_3 nor an induced $\vec{C}_4(1,2)$ because (0, 1, 2, 0) is directed cycle of length 3 with exactly one symmetrical arc, So, by Theorem 8(i), D is a KP-digraph.

Hence Theorem 1.4 [15] is a consequence of Theorem 8.

Theorem 9 (Theorem 2.3 [15]). Let D be a digraph with $\sigma(D) < 3$ such that each directed cycle of length 3 is symmetrical. If every directed cycle of length 5 has two diagonals, then D is a KP-digraph.

Proof. Since each directed cycle of length 3 is symmetrical, *D* has no induced cycles of length 3 and hence by Theorem 8(i), *D* is a KP-digraph in case $\sigma(D) \leq 2$. Let *D* be asymmetric with $\sigma(D) = 3$. Every directed cycle of length 5 has two diagonals, so D has no induced cycle of length 5. Moreover, D has no induced $\overrightarrow{C}_7(1,2)$ because the 5-cycle (0, 1, 2, 4, 5, 0) has only one diagonal, namely the arc (0, 2). By Theorem 8(ii), D is a KP-digraph.

Theorem 10 (Theorem 2.4 [15]). Let D be a digraph with $\sigma(D) \leq 3$, but without directed cycles of length 3. If every directed cycle of length 5 has two diagonals, then D is a KP-digraph.

Proof. Analogously to the proof of Theorem 9.

Hence, Theorems 2.3 and 2.4 [15] are both consequences of Theorem 8.

Theorem 11 (Theorem 2.1 [14]). Let D be a digraph such that every directed triangle has two symmetric arcs and $\sigma(D) < 3$. If each directed cycle C of length 5 in D satisfies at least one of the following properties: (a) C has two diagonals, (b) C has three symmetrical arcs, then D is a KP-digraph.

Proof. Analogously to the proof of Theorem 9.

Hence, Theorem 2.1 [14] is a consequence of Theorem 8.

Acknowledgments

The authors want to thank the anonymous referees for their kind help and valuable suggestions which led to an improvement of this paper.

References

- [1] C. Balbuena, M. Guevara, M. Olsen, Structural properties of CKI-digraphs (submitted for publication).
- [2] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2001.
- [3] C. Berge, Graphs, North-Holland, Amsterdam, 1985.

- [4] C. Berge, V. Chvátal (Eds.), Topics on perfect graphs, in: Ann Discrete Math. Vol. 21, North-Holland Mathematics Studies, 1984.
- [5] C. Berge, P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27–31.
- [6] M. Blidia, P. Duchet, F. Maffray, On kernels in perfect graphs, Combinatorica 13 (2) (1993) 231–233.
- [7] M. Blidia, P. Duchet, F. Maffray, On the orientation of Meyniel graphs, J. Graph Theory 18 (7) (1994) 705–711.
- [8] E. Boros, V. Gurvich, Perfect graphs, kernels and cores of cooperative games, Discrete Math. 306 (2006) 2336–2354.
- [9] E. Boros, V. Gurvich, Perfect graphs are kernel solvable, Discrete Math. 159 (1996) 35–55.
- [10] M. Chudnovsky, N. Robertson, P. Seymour, P. Thomas, The strong perfect graph theorem, Ann. Math 164 (2) (2006) 51–229. No 1.
- [11] P. Duchet, Representation: noyaux en théorie des graphes et hypergraphes, Thèse, Paris, 1979.
- [12] A.S. Fraenkel, Combinatorial game theory foundations applied to digraph kernels, The Electronic Journal of Combinatorics 4 (1997) 17.
- [13] A.S. Fraenkel, Combinatorial games: selected bibliography with a succinct gourmet introduction, The Electronic Journal of Combinatorics 14 (2007) DS2.
- [14] H. Galeana-Sánchez, Kernels in digraphs with covering number at most 3, Discrete Math. 259 (2002) 121-135.
- [15] H. Galeana-Sánchez, Xueliang Li, Kernels in a special class of digraphs, Discrete Math. 178 (1998) 73-80.
- [16] H. Galeana-Sánchez, V. Neumann-Lara, On Kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257–265.
- [17] J. Ghoshal, R. Laskar, D. Pillone, Topics on domination in directed graphs, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs, Vol. 209, Marcel Dekker, New York, 1998, pp. 401–437.
 [18] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, in: Monographs and Textbooks in Pure and Applied Mathematics,
- vol. 208, Marcel Dekker, Inc, New York, 1998.
- [19] J.M. Le Bars, Counterexample of the 0-1 law for fragments of existential second-order logic; an overview, Bull. Symbolic Logic 9 (2000) 67-82.
- [20] J.M. Le Bars, The 0-1 law fails for frame satisfiability of propositional model logic, Proceedings of the 17th Symposium on Logic in Computer Science, 2002, 225-234.
- [21] F. Maffray, Sur l existence de noyaux dans les geaphes parfaits, Thèse de 3-éme cycle, Univ. P. et M Curie, Paris.
- [22] J.L. Ramírez, B. Reed, Perfect Graphs, John Wiley & Sons. Ltd, 2001.
- [23] J. von Leeuwen, Having a Grundy numbering is NP-complete, Report 207 Computer Science Department, Pennsylvania State University. University . Park, PA, 1976.