Characterization of asymmetric CKI- and KP-digraphs with covering number at most 3

Hortensia Galeana-Sánchez ${ }^{\text {a }}$, Mika Olsen ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México DF, Mexico
${ }^{\text {b }}$ Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana - Cuajimalpa, Calle Artificios 40, col Hidalgo, 01120 México DF, Mexico

A R T I C L E I N F O

Article history:

Received 30 June 2011
Received in revised form 6 March 2013
Accepted 8 March 2013
Available online 29 March 2013

Keywords:

Digraphs
Kernel
Covering number

Abstract

A set $N \subseteq V(D)$ is said to be a kernel if N is an independent set and for every vertex $x \in(V(D) \backslash N)$ there is a vertex $y \in N$ such that $x y \in A(D)$. Let D be a digraph such that every proper induced subdigraph of D has a kernel. D is said to be kernel perfect digraph (KP-digraph) if the digraph D has a kernel and critical kernel imperfect digraph (CKI-digraph) if the digraph D does not have a kernel. In this paper we characterize the asymmetric CKI-digraphs with covering number at most 3 . Moreover, we prove that the only asymmetric CKI-digraphs with covering number at most 3 are: \vec{C}_{3}, \vec{C}_{5} and $\vec{C}_{7}(1,2)$. Several interesting consequences are obtained.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For general concepts we refer the reader to $[2,3]$. The topic of domination in graphs has been widely studied by several authors, a very complete study of this topic is presented in [17,18]. The absorption in digraphs is the dual concept of domination, and it is defined as follows: Let D be a digraph, a set of vertices $S \subseteq V(D)$ is an absorbing set if for every vertex $w \in V(D) \backslash S$ there is an arc $w v \in A(D)$ with $v \in S$. Absorbing independent sets in digraphs (kernels in digraphs) have found many applications in different topics of mathematics (for instance [19,20,12,13,23]) and they have been studied by several authors, interesting surveys of kernels in digraphs can be found in $[8,13]$.

Let D be a digraph such that every proper induced subdigraph of D has a kernel. D is said to be kernel perfect digraph (KP-digraph) if the digraph D has a kernel and critical kernel imperfect digraph (CKI-digraph) if the digraph D does not have a kernel.

The perfect graphs were introduced by the Strong Perfect Conjecture stated by C. Berge in 1960. A graph G is called a perfect graph if, for each induced subgraph H of G, the chromatic number of H is equal to the maximum number of pairwise adjacent vertices in H. This conjecture states that a graph G is perfect if and only if G contains neither $C_{2 n+1}$ nor the complement of $C_{2 n+1}, n \geq 2$, as an induced subgraph and it was proved by M. Chudnovsky et al. (2006) [10]. Many authors have contributed to obtain nice properties and interesting characterizations of Perfect Graphs [4,22]. In 1986 C. Berge and P. Duchet conjectured that a graph G is perfect if and only if any orientation by sinks of G is a kernel perfect digraph. (If G is a graph, an orientation \vec{G} of G is a digraph obtained from G by directing each edge of G in at least one of the two possible directions. An orientation \vec{G} of G is called an orientation by sinks (or normal) if every semicomplete subgraph H of G has

[^0]an absorbing vertex in $\vec{G}[V(H)])$. This Conjecture was proved in $[5,9]$ and it constructs an important bridge between two topics in graph theory: namely colorings and kernels.

Let D be a digraph, $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D respectively. An arc $u v \in A(D)$ is called asymmetric if $v u \notin A(D)$. The asymmetric part of D, denoted by $\operatorname{Asym}(D)$, is the subdigraph of D, with vertex set $V(D)$ and whose arcs are the asymmetric arcs of D. A semicomplete digraph is a digraph D such that there is at least one arc between any two vertices of $V(D)$.

The covering number of a digraph D, denoted $\sigma(D)$, is the minimum number of semicomplete digraphs of D that partition $V(D)$. Digraphs with a small covering number are a nice class of nearly tournament digraphs. The existence of kernels in the digraphs with covering number at most 3 has been studied by several authors, in particular by Berge [5], Maffray [21] and others [6,7,14,15].

In this paper, we study the CKI-digraphs D with covering number of D or $\operatorname{Asym}(D)$ at most 3 . For the case when the covering number of D or $\operatorname{Asym}(D)$ is at most two, we use the connection between perfect graphs and it turns out, that the only CKI-digraphs with covering number at most two are orientations of perfect graphs. Hence, they are not orientations by sinks. In contrast, when the covering number is three, CKI-digraphs are not necessarily orientations of a perfect graph. Therefore, when the covering number of D or $\operatorname{Asym}(D)$ is 3 , we cannot use the connection between perfect graphs and the kernels. Also, we characterize the CKI-digraphs and the KP-digraphs that satisfy that the covering number of (the asymmetric part of) any strongly connected component is at most 2.

2. Definitions and preliminaries

Let D be a digraph, $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D respectively. We denote the arc (u, v) by $u v$. For any $v \in V(D)$, we denote by $N^{+}(v)$ and $N^{-}(v)$ the out- and in-neighborhood of v in D respectively. All the paths, cycles and walks considered in this paper will be directed paths, cycles or walks of the digraph D. Let U, V be two disjoint subsets of $V(D)$, we denote by $(U, V)=\{u v \in A(D): u \in U, v \in V\}$. If $U=\{u\}$ (resp. $V=\{v\})$, then $(u, V)(r e s p .(U, v))$ denotes the set of arcs (U, V).

A tournament T is a digraph such that there is exactly one arc between any two vertices of T. An acyclic digraph is a digraph without directed cycles. An acyclic tournament is called a transitive tournament. A vertex $v \in V(D)$ absorbs the vertex set $S \subset V(D)$ if $s v \in A(D)$ for every $s \in S$. A vertex $v \in V(D)$ is a sink of D if v absorbs the vertex-set $V(D) \backslash\{v\}$. A sink ordering of the vertex-set $V(D)$ is a sequence $\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, where $|V(D)|=n, u_{1}$ is a sink of D and u_{i} is a sink of $D \backslash\left\{u_{1}, u_{2}, \ldots, u_{i-1}\right\}$ for every $1<i<n$ (in case that such an ordering can be defined). A tournament with a sink ordering is a transitive tournament and in this case the sink ordering is unique, but this is not necessarily true for a semicomplete digraph with a sink ordering. Let U be a subset of $V(D)$. We denote by $D[U]$ the subdigraph of D induced by U. We say that a digraph D is H-free if D has no induced subdigraph isomorphic to H.

Let G be a graph. Following the notation of Berge and Duchet [5] an orientation \vec{G} of G is the digraph obtained by changing each edge with an asymmetric arc or symmetric arc. Let D be digraph. The underlying graph G_{D} of D is the graph obtained by changing each asymmetric arc by an edge and each pair of symmetric arcs by an edge. The underlying graph of a digraph is a simple graph. Let G be a graph, the graph \bar{G} is the graph defined on the vertex-set $V(G)$ and $E(\bar{G})=\{\{u, v\}:\{u, v\} \notin E(G)\}$. We will need the following results.

Proposition 1 ([16]). If D is not KP, then D has an induced CKI-subdigraph.
Remark 1. If D is a CKI-digraph (or a KP-digraph), then D has no proper induced CKI-subdigraph. In particular Asym (D) has no proper subdigraph isomorphic to \vec{C}_{3}.

Theorem 1 ([11,16]). Let D be a CKI-digraph. Then Asym (D) is strongly connected.
Theorem 2 ([2]). If the tournament T is strongly connected, then T is pancyclic.
A graph G is called a perfect graph if, for each subgraph H of G the chromatic number of H is equal to the maximum number of pairwise adjacent vertices in H.

The following theorem is well known. We use Theorem 3 throughout this paper without mention it.
Theorem 3 ([3]). A graph G is perfect if and only if \bar{G} is a perfect graph.
The following Theorem is a direct consequence of the results in $[5,9]$.
Theorem 4 ([5,9]). A graph G is perfect if and only if any orientation by sinks of G is a KP-digraph.
The covering number of a digraph D, denoted $\sigma(D)$, is the minimum number of semicomplete subdigraphs of D that partition $V(D)$. Let D be a digraph with covering number σ. Then there is a partition of $V(D)$ into σ semicomplete subdigraphs of D, we call such a partition a covering set of D.

Remark 2. If D is a CKI-digraph with covering number σ, then the order of a kernel of $D-x$ is at most σ for every $x \in V(D)$.
Let \mathbb{Z}_{m} be the cyclic group of integers modulo $m(m \geq 1)$ and J a nonempty subset of $\mathbb{Z}_{m} \backslash\{0\}$. A circulant (or rotational) digraph $\vec{C}_{m}(J)$ is defined by $V\left(\vec{C}_{m}(J)\right)=\mathbb{Z}_{m}$ and

$$
A\left(\vec{C}_{m}(J)\right)=\left\{(i, j): i, j \in \mathbb{Z}_{m}, j-i \in J\right\}
$$

Recall that the circulant digraphs are regular and they are vertex transitive.

3. CKI-digraphs with covering number at most 2

In this section we characterize the asymmetric CKI-digraphs with covering number at most 2 and the CKI-digraphs (resp. KP-digraphs) for which $\operatorname{Asym}(D)$ has covering number at most 2. As a consequence, we characterize the KP-digraphs with the property that each strongly connected component W satisfies that Asym (W) has covering number at most 2.

Let D be a digraph with covering number 2 . A covering set of D induces a partition of $V(D)$ into two semicomplete digraphs. If $\sigma(\operatorname{Asym}(D))=2$, then a covering set of $\operatorname{Asym}(D)$ induces a partition of $V(D)$ into two tournaments and the set of symmetric arcs of D is a subset of the arcs of $[U, V]$. Therefore $\operatorname{Sym}(D)$ is a bipartite digraph.

As a consequence of the Proposition 1, we have the following.
Lemma 1. Let D be an asymmetric CKI-digraph with covering number at least two. If $U \subset V(D)$ such that $D[U]$ is a tournament, then $D[U]$ is a transitive tournament.

By Lemma 1, a covering set of $\operatorname{Asym}(D)$ induces a partition into transitive tournaments.
Theorem 5 ([3]). A semicomplete digraph D is kernel perfect if and only if each directed cycle has at least one symmetric arc.
As a consequence of Theorem 5 and the fact that $\vec{C}_{m}\left(1, \pm 2, \pm 3, \ldots, \pm\left\lfloor\frac{m}{2}\right\rfloor\right)$ are CKI-digraphs [16], we have the following.

Theorem 6. The only CKI-digraphs with covering number 1 are the circulant digraphs

$$
\vec{C}_{m}\left(1, \pm 2, \pm 3, \ldots, \pm\left\lfloor\frac{m}{2}\right\rfloor\right)
$$

The following result is a consequence of Theorems 3 and 4.
Proposition 2. Let D be a digraph with $\sigma(D) \leq 2$. Then D is a KP-digraph if and only if D is a \vec{C}_{3}-free digraph.
Proof. If D is a KP-digraph, then D is \vec{C}_{3}-free, by Remark 1. Let D be a \vec{C}_{3}-free digraph with covering number two. In order to prove that D is a KP-digraph, we prove that D is oriented by sinks and that the underlying graph of D is a perfect graph. So, the result follows from Theorem 4.

Every semicomplete subdigraph of D has a sink, because D is \vec{C}_{3}-free, hence D is oriented by sinks. Let G_{D} be the underlying graph of D, clearly $\overline{G_{D}}$ is a bipartite graph or $\overline{K_{p}}$ (the complement of the complete graph on p vertices), and so $\overline{G_{D}}$ is perfect. So, G_{D} is a perfect graph and D is an orientation by sinks of G_{D}, and then, by Theorem $4, D$ is a KP-digraph.
Corollary 1. There are no CKI-digraphs with covering number 2. Moreover, \vec{C}_{3}-free digraphs with covering number 2 are kernel perfect.

Corollary 2. Let D be a digraph with $\sigma(\operatorname{Asym}(D)) \leq 2$. Then
(i) D is a CKI-digraph if and only if $D \cong \vec{C}_{3}$ or $D \cong \vec{C}_{4}(1,2)$.
(ii) D is a KP-digraph if and only if D has no induced subdigraph isomorphic to \vec{C}_{3} nor isomorphic to $\vec{C}_{4}(1,2)$.

Proof. If D is a digraph with $\sigma(\operatorname{Asym}(D)) \leq 2$, then $\sigma(D) \leq 2$.
(i) By Theorem $6, \vec{C}_{3}$ and $\vec{C}_{4}(1,2)$ are CKI-digraphs. Let D be a CKI-digraph with $\sigma(\operatorname{Asym}(D)) \leq 2$. By Corollary $1, \sigma(D)=$ 1 and by Theorem 6 , it follows that $D \cong \vec{C}_{m}\left(1, \pm 2, \pm 3, \ldots, \pm\left\lfloor\frac{m}{2}\right\rfloor\right)$, since $\sigma(\operatorname{Asym}(D)) \leq 2, m<5$ and we are done.
(ii) Since $\sigma(\operatorname{Asym}(D)) \leq 2$, an induced subdigraph of D has covering number at most 2 . If D has no induced subdigraph isomorphic to \vec{C}_{3} nor isomorphic to $\vec{C}_{4}(1,2)$, then by (i), D has no induced CKI-digraphs and D is a KP-digraph by Proposition 1. If D is a KP-digraph, then by Proposition $1, D$ has no induced subdigraph isomorphic to \vec{C}_{3} nor isomorphic to $\vec{C}_{4}(1,2)$.

Corollary 3. Let D be a digraph such that the covering number of the asymmetric part of every strongly connected component is at most 2. Then
(i) D is a CKI-digraph if and only if $D \cong \vec{C}_{3}$ or $D \cong \vec{C}_{4}(1,2)$.
(ii) D is a KP-digraph if and only if D has no induced subdigraph isomorphic to \vec{C}_{3} nor isomorphic to $\vec{C}_{4}(1,2)$.

Proof. Let D be a digraph such that the covering number of the asymmetric part of every strongly connected component is at most 2.
(i) The circulant digraphs \vec{C}_{3} and $\vec{C}_{4}(1,2)$ are both CKI-digraphs by Theorem 6 . Let D be a CKI-digraph. By Theorem 1 , D is strongly connected, thus $\sigma(\operatorname{Asym}(D)) \leq 2$ and by Corollary 2, we are done.
(ii) Let D be a digraph as in the hypothesis without induced subdigraphs isomorphic to \vec{C}_{3} nor isomorphic to $\vec{C}_{4}(1,2)$. Suppose, for a contradiction, that D is not KP. By Theorem 1, D has an induced CKI-subdigraph H and H has covering number at least 2 because D is \vec{C}_{3}-free. By Theorem $1, \operatorname{Asym}(H)$ is strongly connected, so H is a subdigraph of a strongly connected component W of D. Thus, $\sigma(\operatorname{Asym}(H))=2$ and $H \cong \vec{C}_{3}$ or $H \cong \vec{C}_{4}(1,2)$ by Corollary 2 which contradicts the hypothesis.

As a summary for CKI-digraphs with covering number of asymmetric part at most two it was proved that there are exactly two CKI digraph with covering number at most two: \vec{C}_{3} and $\vec{C}_{4}(1,2)$. These two digraphs shows that \vec{C}_{3} is the only asymmetric digraph with covering number at most two.

4. Asymmetric CKI-digraphs with covering number 3

In this section we prove that the only two asymmetric CKI-digraphs with covering number 3 are \vec{C}_{5} and $\vec{C}_{7}(1,2)$. It is easy to see that both \vec{C}_{5} and $\vec{C}_{7}(1,2)$ are asymmetric digraphs with covering number 3 and that \vec{C}_{5} is a CKI-digraph. It was proved by Duchet [11] that $\vec{C}_{7}(1,2)$ is a CKI-digraph.

Throughout this paper we use the following notations for asymmetric CKI-digraphs D with covering number three. Let U, V, W be a covering set of D since D is asymmetric, by Lemma $1, D[U], D[V]$ and $D[W]$ are transitive tournaments. Let $\left(u_{n}, u_{n-1}, \ldots, u_{1}\right),\left(v_{m}, v_{m-1}, \ldots, v_{1}\right)$ and $\left(w_{l}, w_{l-1}, \ldots, w_{1}\right)$ be the sink orderings of U, V and W respectively (notice that u_{1}, v_{1} and w_{1} are the sinks of $D[U], D[V]$ and $D[W]$ respectively).

In order to prove our main theorem, we analyze all the possibilities for $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$. In Propositions 3 and 4 we analyze the possibilities for the case when $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has at least two arcs and a sink or a source, in Proposition 5 we analyze the case when $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ is a path of length two and in Proposition 6, when $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has exactly one arc.

The following remark is a consequence of Theorem 1 . We use Remark 3 throughout this paper without mentioning it.
Remark 3. Let D be an asymmetric CKI-digraph with covering number three, and let U, V, W be a covering set of D into transitive tournaments, with u_{1}, v_{1} and w_{1} the sinks of U, V and W respectively. Then $d^{+}\left(u_{1}\right) \neq 0, d^{+}\left(v_{1}\right) \neq 0$ and $d^{+}\left(w_{1}\right) \neq 0$.

Since D is \vec{C}_{3}-free, we have the following.
Lemma 2 ([1]). Let D be a CKI-digraph and let K be a kernel of $D-\{v\}$ where v is a vertex of D. Then there is no arc from v to K and there is some arc from K to v.

Lemma 3. Let D be an asymmetric CKI-digraph with covering number three, and let U, V, W be a covering set of D. Let u_{i}, v_{j} be an independent set that absorbs the vertices of $U \backslash u_{i} \cup V \backslash v_{j}$ and suppose that $w_{1} u_{i} \in A(D)$. If α is the smallest integer such that $w_{\alpha} u_{i} \notin A(D)$, then $v_{j} w_{\alpha} \in A(D)$.
Proof. Let D be a digraph that satisfies the conditions of the Lemma, and $u_{i}, v_{j} \in V(D)$ such that u_{i}, v_{j} absorbs the vertices of $U \backslash u_{i} \cup V \backslash v_{j}$. If $w u_{i} \in A(D)$ for every $w \in W$, then $\left\{u_{i}, v_{j}\right\}$ is a kernel of D, which is a contradiction. Let α be the smallest integer such that $w_{\alpha} u_{i} \notin A(D)$. Then $\left\{u_{i}, w_{\alpha}\right\}$ is an independent set, by the path (w_{α}, w_{1}, u_{i}). If $\left\{v_{j}, w_{\alpha}\right\}$ is an independent set, then $K=\left\{u_{i}, v_{j}, w_{\alpha}\right\}$ is a kernel of D, so $\left\{v_{j}, w_{\alpha}\right\}$ is not an independent set.

In order to prove that $v_{j} w_{\alpha} \in A(D)$, we suppose, for a contradiction, that $w_{\alpha} v_{j} \in A(D)$. Then $K_{1}=\left\{u_{i}, v_{j}\right\}$ absorbs the vertices of $U \backslash u_{i} \cup V \backslash v_{j} \cup\left\{w_{1}, w_{2}, \ldots, w_{\alpha}\right\}$. Moreover, since D is \vec{C}_{3}-free, $w_{1} u_{i} \in A(D)$ and $w_{\alpha} v_{j} \in A(D)$, then

$$
\begin{equation*}
u_{i} w_{k}, v_{j} w_{k} \notin A(D) \quad \text { for } \alpha<k \leq l . \tag{1}
\end{equation*}
$$

If there is a vertex $w \in W$ such that $\left\{u_{i}, v_{j}, w\right\}$ is an independent set, then let β be the smallest integer such that $\left\{u_{i}, v_{j}, w_{\beta}\right\}$ is an independent set. By the choice of α we have that $\beta>\alpha$, and by the choice of β and by (1), there is an $\left(w_{k}, K_{1}\right)$-arc for every $k, \alpha<k \leq \beta$, which lead us to the contradiction that K_{1} is a kernel of D. Then for every $k, \alpha<k \leq n$, there is an arc between w_{k} and some vertex in K_{1} and by (1), this arc must be an (w_{k}, K_{1})-arc. Thus K_{1} is a kernel of D, which is a contradiction, so $w_{\alpha} v_{j} \notin A(D)$, and since $\left\{v_{j}, w_{\alpha}\right\}$ is not an independent set, then $v_{j} w_{\alpha} \in A(D)$.

Proposition 3. Let D be an asymmetric CKI-digraph with covering number three. If $\left|A\left(D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]\right)\right| \geq 2$, then $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has no sink.

Proof. Let D be an asymmetric CKI-digraph with covering number three, and let U, V, W be a covering set of D in tournaments, with u_{1}, v_{1} and w_{1} the sinks of U, V and W respectively. Suppose, for a contradiction, that $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has a sink. Without loss of generality we assume that $\left\{u_{1} v_{1}, w_{1} v_{1}\right\} \subseteq A(D)$. If $u_{i} v_{1}, w_{j} v_{1} \in A(D)$ for $1<i \leq l$ and $1<j \leq n$,
then $K=\left\{v_{1}\right\}$ is kernel of D which contradicts that D is a CKI-digraph. By symmetry, we may assume that there is a vertex $u \in U$ such that $u v_{1} \notin A(D)$, let α be the smallest integer such that $u_{\alpha} v_{1} \notin A(D)$. Then, $\left\{u_{\alpha}, v_{1}\right\}$ is an independent set, by the path (u_{α}, u_{1}, v_{1}). Let $K_{1}=\left\{u_{\alpha}, v_{1}\right\}$; K_{1} absorbs the vertices of $U \backslash u_{\alpha} \cup V \backslash v_{1}$. If $w_{j} v_{1} \in A(D)$ for $1<j \leq n$, then K_{1} is kernel of D. Otherwise, let β be the smallest integer such that $w_{\beta} v_{1} \notin A(D)$. Then $\left\{v_{1}, w_{\beta}\right\}$ is an independent set, by the path $\left(w_{\beta}, w_{1}, v_{1}\right)$. By Lemma $3, u_{\alpha} w_{\beta} \in A(D)$. Analogously if we consider $K_{2}=\left\{w_{\beta}, v_{1}\right\}$, then K_{2} absorbs the vertices of $V \backslash v_{1} \cup W \backslash w_{\beta}$ and by Lemma $3, w_{\beta} u_{\alpha} \in A(D)$, which contradicts that D is asymmetric. So, $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has no sink.

Proposition 4. Let D be an asymmetric CKI-digraph with covering number three. If $\left|A\left(D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]\right)\right| \geq 2$, then $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has no source.
Proof. Let D be an asymmetric CKI-digraph with covering number three, and let U, V, W be a covering set of D in tournaments, with u_{1}, v_{1} and w_{1} the sinks of U, V and W respectively.

Suppose, for a contradiction, that $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has a source. Without loss of generality we assume that $\left\{v_{1} u_{1}, v_{1} w_{1}\right\} \subseteq$ $A(D)$, if $\left\{u_{1}, w_{1}\right\}$ is not independent, then by Proposition 3 we are done. Therefore $A\left(D\left[u_{1}, v_{1}, w_{1}\right]\right)=\left\{v_{1} u_{1}, v_{1} w_{1}\right\}$. Since D is asymmetric and \vec{C}_{3}-free, then

$$
\begin{equation*}
u_{1} v_{i}, w_{1} v_{i} \notin A(D) \quad \text { for } 1 \leq i \leq m \tag{2}
\end{equation*}
$$

Let $K_{1}=\left\{u_{1}, w_{1}\right\} . K_{1}$ absorbs the vertices of $U \backslash u_{1} \cup W \backslash w_{1} \cup\left\{v_{1}\right\}$. If there is a vertex $v \in V$ such that $\left\{u_{1}, v, w_{1}\right\}$ is an independent set, then let α be the smallest integer such that $\left\{u_{1}, v_{\alpha}, w_{1}\right\}$ is an independent set. In this case K_{1} absorbs the vertex set $\left(U \backslash u_{1}\right) \cup\left(W \backslash w_{1}\right) \cup\left\{v_{1}, v_{2}, \ldots, v_{\alpha-1}\right\}$, and $\left\{u_{1}, v_{\alpha}, w_{1}\right\}$ is a kernel of D, which is a contradiction. So for every vertex $v_{i} \in V$ there is an arc between v_{i} and some vertex in K_{1}. By (2) it must be an (v_{i}, K_{1}) -arc and K_{1} is a kernel of D, which is a contradiction. So, $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has no source.

Lemma 4. Let D be an asymmetric CKI-digraph with covering number three, with $|U|=n,|V|=m$ and $|W|=l$. If $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ is a path of length 2 , then there exists a covering set of D in tournaments $U^{\prime}, V^{\prime}, W^{\prime}$ with $\left|U^{\prime}\right|,\left|V^{\prime}\right|,\left|W^{\prime}\right| \geq 2$.

Proof. By Remark 3, the CKI-digraph D satisfies that $d^{+}\left(w_{1}\right)>0$. If $n=1$, then $d^{+}\left(w_{1}\right)=0$ because $\left(w_{1},\left\{u_{1}\right\} \cup V \cup W\right)=\emptyset$, so $n>1$. If $m=1$, then $\left\{u_{1}, w_{1}\right\}$ is kernel of D, so $m>1$.

Suppose for a contradiction that $|W|=1$. We will construct a covering set with the required properties. Let N_{w} be the kernel of $D-\left\{w_{1}\right\}$. Since $\left(v_{1}, U \cup V\right)=\emptyset$, then $v_{1} \in N_{w}$. Let α be the minimum integer such that $w_{1} u_{\alpha} \in A(D)$ (such an α does exist because $\left.d^{+}\left(w_{1}\right)>0\right)$. By the 4 -cycle ($u_{1}, v_{1}, w_{1}, u_{\alpha}, u_{1}$), it follows that $\left\{u_{\alpha}, v_{1}\right\}$ is independent. Moreover, $u_{i} v_{1} \in A(D)$ for $i<\alpha$, so $N_{w}=\left\{u_{\alpha}, v_{1}\right\}$, which is a contradiction because in this case N_{w} is a kernel of D.

Proposition 5. Let D be an asymmetric CKI-digraph with covering number three. If $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ is a path of length 2 , then $D \cong \vec{C}_{5}$ or $D \cong \vec{C}_{7}(1,2)$.
Proof. Let D be an asymmetric CKI-digraph with covering number three, and let U, V, W be a covering set of D in tournaments, with u_{1}, v_{1} and w_{1} the sinks of U, V and W respectively and without loss of generality we assume that $A\left(D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]\right)=\left\{u_{1} v_{1}, v_{1} w_{1}\right\}$ (notice that the vertex set $\left\{u_{1}, w_{1}\right\}$ is an independent set). By Lemma 4 , we may assume that $|U|=n,|V|=m,|W|=l$ and $n, m, l \geq 2$. By the paths $\left(u_{i}, u_{1}, v_{1}\right)$ and $\left(v_{i}, v_{1}, w_{1}\right)$,
(a) $v_{1} u_{i} \notin A(D)$ for every $1 \leq i<n$,
(b) $w_{1} v_{i} \notin A(D) \quad$ for every $1 \leq i<m$.

Since D is a CKI-digraph, the digraph $D-\left\{w_{l}\right\}$ does have a kernel. Let N_{w} be a kernel of $D-\left\{w_{l}\right\}$. By Lemma $2, w_{i} \notin N_{w}$. By (3)(a) and the fact that v_{1} is sink of $D[V], v_{1} \in N_{w}$.

Since $|W|>1, w_{1} \notin N_{w}$ and then by the arc $v_{1} w_{1}$, there is a vertex $u_{\alpha} \in N_{w} \cap U$ such that $w_{1} u_{\alpha} \in A(D)$ and $\alpha>1$. Then $N_{w}=\left\{u_{\alpha}, v_{1}\right\}$ and by the definition of N_{w}, Lemma 1 and the arc $v_{1} w_{1}$, we have that $u_{i} v_{1} \in A(D)$ for every $i<\alpha$ and $w_{1} u_{\alpha} \in A(D)$. Since N_{w} is a kernel of $D-\left\{w_{l}\right\}$, the path (w_{l}, w_{1}, u_{α}) and Lemma 2, it follows that
(a) $\left\{u_{\alpha}, w_{l}\right\}$ is independent,
(b) $u_{i} v_{1} \in A(D)$ for $1 \leq i<\alpha$,
(c) $\quad v_{1} w_{l} \in A(D)$.

By the path $\left(v_{1}, w_{l}, w_{i}\right)$ and the definition of N_{w}, it follows that

$$
\begin{equation*}
w_{i} u_{\alpha} \in A(D) \quad \text { for } i<l \tag{5}
\end{equation*}
$$

Consider the digraph $D-\left\{v_{1}\right\}$. Since D is a CKI-digraph, the digraph $D-\left\{v_{1}\right\}$ does have a kernel. Let N_{v} be a kernel of $D-\left\{v_{1}\right\}$. By assumption, (4)(c) and the definition of N_{v},

$$
\begin{equation*}
w_{1}, w_{l} \notin N_{v} \tag{6}
\end{equation*}
$$

By (3)(b), w_{1} must be absorbed by some $u_{i} \in U, i>1$. Let $u_{\beta}=N_{v} \cap U$ and $w_{1} u_{\beta} \in A(D)$. By (4)(c), for $i<\alpha$, the path (u_{i}, v_{1}, w_{1}), leads to $\beta \geq \alpha>1$. Note that $N_{v} \neq\left\{u_{\beta}\right\}$, because $\beta>1$ and $u_{1} u_{\beta} \notin A(D)$.

By the path $\left(w_{i}, u_{\alpha}, u_{1}\right), u_{1} w_{i} \notin A(D)$ for every $i<l$ and so, by $(6), N_{v} \cap V \neq \emptyset$, else $\left(u_{1}, N_{v}\right)=\emptyset$. Let $N_{v} \cap V=\left\{v_{\gamma}\right\}$. By the choice of $N_{v}, \gamma>1$. By the definition of N_{v} and the path $\left(v_{\gamma}, v_{1}, w_{l}\right)$,
(a) $u_{1} v_{\gamma} \in A(D)$,
(b) $w_{l} v_{\gamma} \notin A(D)$.

Fig. 1. Proposition 5.
If $\alpha=\beta$, then w_{l} is not absorbed by the vertex set $\left\{u_{\beta}, v_{\gamma}\right\}$. By (6), w_{l} must be absorbed by N_{v}, so $N_{v} \cap W \neq \emptyset$. Let $N_{v} \cap W=\left\{w_{\delta}\right\}$, notice that $1<\delta<l$, by (6). In this case, $N_{v}=\left\{u_{\beta}, v_{\gamma}, w_{\delta}\right\}$ which contradicts (5).

We may assume that $\alpha<\beta$.
By the 4-cycle $\left(u_{i}, v_{1}, w_{1}, u_{\beta}, u_{i}\right)$, for $i<\alpha$, the set $\left\{u_{\beta}, v_{1}\right\}$ is independent and

$$
\begin{equation*}
\left\{u_{i}, w_{1}\right\} \text { is independent, for } i<\alpha \tag{8}
\end{equation*}
$$

In Fig. 1, we show the arcs that must be in the digraph D. With dashed lines we indicate the independent sets as well as the arcs that are not arcs in D.

Claim 1. If $N_{v}=\left\{u_{\beta}, v_{\gamma}\right\}$, then $D \cong \vec{C}_{5}$ or $D \cong \vec{C}_{7}(1,2)$.
Let $N_{v}=\left\{u_{\beta}, v_{\gamma}\right\}$. By (7)(b), $w_{l} u_{\beta} \in A(D), u_{i} v_{\gamma} \in A(D)$, for every $i<\beta$; and from the 4-cycle $\left(u_{\alpha}, v_{\gamma}, v_{1}, w_{1}, u_{\alpha}\right)$ it follows that $\left\{v_{\gamma}, w_{1}\right\}$ is independent. If $v_{\gamma} w_{l} \notin A(D)$, then $\left\{v_{\gamma}, w_{l}\right\}$ is independent by the path $\left(v_{\gamma}, v_{1}, w_{l}\right)$. In this case $\left(u_{\beta}, u_{\alpha}, v_{\gamma}, v_{1}, w_{l}, u_{\beta}\right)$ is an induced 5-cycle and by Remark $1, D \cong \vec{C}_{5}$.

So, we may assume that $v_{\gamma} w_{l} \in A(D)$. By the 4 -cycle $\left(w_{l}, u_{\beta}, u_{1}, v_{1}, w_{l}\right)$ it follows that $\left\{u_{1}, w_{l}\right\}$ is independent. In this case $\left(u_{\beta}, u_{\alpha}, u_{1}, v_{\gamma}, v_{1}, w_{l}, w_{1}, u_{\beta}\right)$ induces a $\vec{C}_{7}(1,2)$ and by Remark $1, D \cong \vec{C}_{7}(1,2)$. And Claim 1 is true.

We may assume that $N_{v} \cap W \neq \emptyset$. Let $N_{v}=\left\{u_{\beta}, v_{\gamma}, w_{\delta}\right\}$. By (6), $1<\delta<l$ and hence $w_{\delta} u_{\alpha} \in A(D)$. By the path (v_{1}, w_{l}, w_{δ}) and the definition of $N_{v},\left\{v_{1}, w_{\delta}\right\}$ is independent. Hence, by definition of N_{v} and the arc $w_{\delta} u_{\alpha}$,
(a) $u_{1} v_{\gamma} \in A(D)$,
(b) $u_{\alpha} v_{\gamma} \in A(D)$.

By the 4-cycle $\left(u_{\alpha}, v_{\gamma}, v_{1}, w_{1}, u_{\alpha}\right),\left\{v_{\gamma}, w_{1}\right\}$ is independent.
If $v_{\gamma} w_{l} \notin A(D)$, then $\left\{v_{\gamma}, w_{l}\right\}$ is independent by the path $\left(v_{\gamma}, v_{1}, w_{l}\right)$. In this case, $\left(u_{\alpha}, v_{\gamma}, v_{1}, w_{l}, w_{\delta}, u_{\alpha}\right)$ is an induced 5 -cycle and by Remark $1, D \cong \vec{C}_{5}$. We may assume that $v_{\gamma} w_{l} \in A(D)$.

If $w_{l} u_{\beta} \in A(D)$, then $\left(u_{1}, v_{1}, w_{l}, u_{\beta}, u_{1}\right)$ is a 4-cycle and $\left\{u_{1}, w_{l}\right\}$ is independent. In this case, by (9)(a), $\left(u_{\beta}, u_{\alpha}, u_{1}, v_{\gamma}\right.$, $\left.v_{1}, w_{l}, w_{1}, u_{\beta}\right)$ induces a $\vec{C}_{7}(1,2)$ and by Remark $1, D \cong \vec{C}_{7}(1,2)$. We may assume that $w_{l} u_{\beta} \notin A(D)$. By the path $\left(w_{l}, w_{1}, u_{\beta}\right),\left\{u_{\beta}, w_{l}\right\}$ is independent.

If $u_{1} w_{l} \notin A(D)$, then $\left\{u_{1}, w_{l}\right\}$ is independent by the path $\left(u_{1}, v_{1}, w_{l}\right)$. In this case, by (9)(a), $\left(u_{\beta}, u_{1}, v_{\gamma}, w_{l}, w_{1}, u_{\beta}\right)$ is an induced 5-cycle and by Remark $1, D \cong \vec{C}_{5}$. We may assume that

$$
\begin{equation*}
u_{1} w_{l} \in A(D) \tag{10}
\end{equation*}
$$

By the 4-cycle $\left(u_{1}, w_{l}, w_{i}, u_{\alpha}, u_{1}\right),\left\{u_{1}, w_{i}\right\}$ is independent for $i<l$.
Consider the digraph $D-\left\{u_{1}\right\}$. Since D is a CKI-digraph, the digraph $D-\left\{u_{1}\right\}$ does have a kernel. Let N_{u} be a kernel of $D-\left\{u_{1}\right\}$.

By assumption, (9)(b) and (10),

$$
\begin{equation*}
v_{1}, v_{\gamma}, w_{l} \notin N_{u} \tag{11}
\end{equation*}
$$

By (3)(a) and the fact that v_{1} is sink of V it follows that $\left(v_{1},\{U \cup V\}\right)=\emptyset$, in this case, $N_{u} \cap W \neq \emptyset$ by (11). Let $w_{\epsilon} \in N_{u}$ for some $\epsilon<l$ and $v_{1} w_{\epsilon} \in A(D)$. By (7)(a) and the paths ($w_{\epsilon}, u_{\alpha}, v_{\gamma}$) and (u_{i}, u_{1}, v_{γ}), it follows that $\left(v_{\gamma},\left\{U \cup\left\{w_{\epsilon}\right\}\right\}\right)=\emptyset$. Then $N_{u} \cap V \neq \emptyset$, by (11) and $v_{\zeta} \in N_{u}$ for some $\zeta<\gamma$.

By (5), $w_{\epsilon} u_{\alpha} \in A(D)$, so $u_{\alpha} \notin N_{u}$ and then, $\left(u_{\alpha}, N_{u}\right)$ must be non empty. If $u_{\alpha} v_{\zeta} \in A(D)$, then by the paths ($\left.w_{\delta}, u_{\alpha}, v_{\zeta}\right)$ and $\left(u_{\beta}, u_{\alpha}, v_{\zeta}\right)$, it follows that $\left(v_{\zeta},\left\{u_{\beta}, w_{\delta}\right\}\right)=\emptyset$, which contradicts that N_{v} is a kernel of $D-\left\{v_{1}\right\}$, because $\zeta>1$ by (11). So $u_{\alpha} v_{\zeta} \notin A(D)$. By (4)(a) and (5), it follows that $\left(u_{\alpha},\left\{v_{\zeta}, w_{\epsilon}\right\}\right)=\emptyset$. So, $N_{u} \cap U \neq \emptyset$ and let $u_{\eta} \in N_{u}$ for some $\eta<\alpha$. Hence $N_{u}=\left\{u_{\eta}, v_{\zeta}, w_{\epsilon}\right\}$.

If $\epsilon>1$, then by (3)(b) and (8)(b), it follows that $\left(w_{1}, N_{u}\right)=\emptyset$, which is a contradiction, so $\epsilon=1$ and $N_{u}=\left\{u_{\eta}, v_{\zeta}, w_{1}\right\}$.
We will prove that $N=\left\{u_{1}, v_{\zeta}, w_{1}\right\}$ is kernel of D. By the definition of the kernel N_{u} of $D-\left\{u_{1}\right\}$ and the path $\left(u_{1}, v_{\gamma}, v_{\zeta}\right)$ it follows that $N=\left\{u_{1}, v_{\zeta}, w_{1}\right\}$ is independent. Moreover, N absorbs $U \cup\left\{v_{i}: i>\zeta\right\} \cup W$. In order to prove that N absorbs the vertices $v_{i}, 1 \leq i<\zeta$, we prove that $v_{i} w_{1} \in A(D)$ for every $1 \leq i<\zeta$. By definition of N_{v} (kernel of $D-\left\{v_{1}\right\}$) and the fact that $w_{\delta} u_{\alpha} \in A(D)$, it follows that $u_{i} v_{\gamma} \in A(D)$ for every $i<\alpha$ and so, by the path ($u_{\eta}, v_{\gamma}, v_{i}$) for $i<\zeta$, we have that $v_{i} u_{\eta} \notin A(D)$. By the definition of N_{u}, it follows that $v_{i} w_{1} \in A(D)$ for every $1 \leq i<\zeta$. Hence $N=\left\{u_{1}, v_{\zeta}, w_{1}\right\}$ is a kernel of D, which contradicts that D is a CKI-digraph.

So, we are done.
Lemma 5. Let D be an asymmetric CKI-digraph with covering number three, with $|U|=n,|V|=m$ and $|W|=l$. If $\left|A\left(D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]\right)\right|=1$, then $D \cong \vec{C}_{5}$ or $D \cong \vec{C}_{7}(1,2)$ or there exists a covering set of D in tournaments $U^{\prime}, V^{\prime}, W^{\prime}$ with $\left|U^{\prime}\right|,\left|V^{\prime}\right|,\left|W^{\prime}\right| \geq 2$.
Proof. Without loss of generality, we assume that $A\left(D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]\right)=\left\{u_{1} v_{1}\right\}$. If $v_{1} u_{i} \in A(D)$, then $\left(v_{1}, u_{i}, u_{1}, v_{1}\right)$ is a C_{3}, moreover $N^{+}\left(v_{1}\right) \subset W$ because v_{1} is a sink of V. Since $v_{1} w_{1} \notin A(D)$ and $d^{+}\left(v_{1}\right)>0$, then $l>1$.

If $n=1$, then $\left\{v_{1}, w_{1}\right\}$ is a kernel of D. So $n>1$.
Suppose by contradiction that $m=1$.
Claim 2. If $n=2$, then $D \cong \vec{C}_{5}$.
The set $\left\{u_{2}, v_{1}\right\}$ is independent, else the covering number of D is two. Since $\left\{u_{1}, w_{1}\right\}$ and $\left\{v_{1}, w_{1}\right\}$ are independent sets and $d^{+}\left(w_{1}\right)>0$, then $w_{1} u_{2} \in A(D)$.

Let N_{1} be the kernel of $D-\left\{u_{1}\right\}$. In this case $v_{1} \notin N_{1}$, so, v_{1} must be absorbed by N_{1}, and then $N_{1} \cap W=\emptyset$. Let $w_{\alpha} \in N_{1}$. Since $\left\{v_{1}, w_{1}\right\}$ is independent, $\alpha>1$. In this case w_{1} must be absorbed by N_{1} and $N_{1} \cap U \neq \emptyset$. Since $\left\{u_{1}, w_{1}\right\}$ is independent, $u_{2} \in N_{1}$ and $N_{1}=\left\{u_{2}, w_{\alpha}\right\}$. By the definition of $N_{1},\left\{u_{2}, w_{\alpha}\right\}$ is an independent set. By Lemma 2 and the path $\left(u_{1}, v_{1}, w_{\alpha}\right)$, $\left\{u_{1}, w_{\alpha}\right\}$ is an independent set. In this case $\left(u_{2}, u_{1}, v_{1}, w_{\alpha}, w_{1}, u_{2}\right)$ is a induced 5-cycle and by Remark $1, D \cong \vec{C}_{5}$.

Thus, we assume that $n>2$.
If $u_{i} v_{1} \in A(D)$ for every $i \leq n$, then the covering number of D is two, which is a contradiction. Let β be the smallest integer such that $u_{\beta} v_{1} \notin A(D)$, then $\left\{u_{\beta}, v_{1}\right\}$ is independent. If $\beta<n$, then $U^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{l}\right\}, V^{\prime}=\left\{u_{\beta}, \ldots, u_{n}\right\}$, $W^{\prime}=\left\{v_{1}, u_{1}, u_{2}, \ldots, w_{\beta-1}\right\}$ is a covering set with $\left|U^{\prime}\right|>1,\left|V^{\prime}\right|>1$ and $\left|W^{\prime}\right|>1$ and $A\left(D\left[u_{1}^{\prime}, v_{1}^{\prime}, w_{1}^{\prime}\right]\right)=\left(u_{1}^{\prime}, v_{1}^{\prime}\right)$.

Thus we may assume that $\beta=n$.
Let N_{w} be kernel of $D-\left\{w_{l}\right\}$, then $N_{w} \cap W=\emptyset$. In this case $v_{1} \in N_{w}$. Since $w_{1} v_{1} \notin A(D), N_{w} \cap U \neq \emptyset$ and $N_{w}=\left\{u_{n}, v_{1}\right\}$ because $u_{i} v_{1} \in A(D)$ for every $i<n$. Furthermore, $w_{1} u_{n} \in A(D)$. By Lemma 2 and the path $\left(w_{l}, w_{1}, u_{n}\right),\left\{u_{n}, w_{l}\right\}$ is an independent set and $v_{1} w_{l} \in A(D)$. By the path $\left(v_{1}, w_{l}, w_{i}\right), w_{i} v_{1} \notin A(D)$ for $i<l$. By the definition of N_{w}, it follows that $w_{i} u_{n} \in A(D)$ for $i<l$. If $u_{1} w_{l} \notin A(D)$, then $\left(u_{n}, u_{1}, v_{1}, w_{l}, w_{1}, u_{n}\right)$ is an induced \vec{C}_{5} and by Remark $1, D \cong \vec{C}_{5}$. So $u_{1} w_{l} \in A(D)$ and $U^{\prime}=\left\{v_{1}, u_{2}, \ldots, u_{n-1}\right\}, V^{\prime}=\left\{w_{l}, u_{1}\right\}, W^{\prime}=\left\{u_{n}, w_{1}, w_{2}, \ldots, w_{l-1}\right\}$ is a covering set with the property that $\left|U^{\prime}\right|,\left|V^{\prime}\right|,\left|W^{\prime}\right| \geq 2$ and $A\left(D\left[u_{1}^{\prime}, v_{1}^{\prime}, w_{1}^{\prime}\right]\right)=\left(u_{1}^{\prime}, v_{1}^{\prime}\right)$.

Proposition 6. Let D be an asymmetric CKI-digraph with covering number three. If $\left|A\left(D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]\right)\right|=1$, then $D \cong \vec{C}_{5}$ or $D \cong \vec{C}_{7}(1,2)$.

Proof. Let D be an asymmetric CKI-digraph with covering number three, and let U, V, W be a covering set of D in tournaments, with u_{1}, v_{1} and w_{1} the sinks of U, V and W respectively, in view of Lemma 5 , we will assume that $|U|,|V|,|W|>1$. Let $A\left(D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]\right)=\left\{u_{1} v_{1}\right\}$. Do note that $\left\{u_{1}, w_{1}\right\}$ and $\left\{v_{1}, w_{1}\right\}$ are independent sets. By the path $\left(u_{k}, u_{1}, v_{1}\right)$,

$$
\begin{equation*}
\left(v_{1}, U\right)=\emptyset \tag{12}
\end{equation*}
$$

Let N_{w} be a kernel of $D-\left\{w_{l}\right\}$.
Claim 3. $N_{w}=\left\{u_{\alpha}, v_{1}\right\}$ for some $\alpha>1$.
By Lemma $2, w_{i} \notin N_{w}$, thus by Remark $2,\left|N_{w}\right|<3$. If $\left|N_{w}\right|=1$, then $N_{w}=\left\{v_{1}\right\}$, by (12) and the fact that v_{1} is sink of V. In this case $\left(w_{1}, N_{w}\right)=\emptyset$ and N_{w} is not a kernel of $D-\left\{w_{l}\right\}$ (by Lemma $5, l>1$), which is a contradiction, so $\left|N_{w}\right|=2$.

By Lemma 2 and (12), it follows that $N_{w}=\left\{u_{\alpha}, v_{1}\right\}$ for some $\alpha>1$, which proves Claim 3.
By definition of $N_{w},\left\{u_{\alpha}, v_{1}\right\}$ is independent. So,
(a) $u_{i} v_{1} \in A(D) \quad$ for any $1 \leq i<\alpha$,
(b) $w_{1} u_{\alpha} \in A(D)$.

By Lemmas 2 and 5 and the path $\left(w_{l}, w_{1}, u_{\alpha}\right)$,
(a) $\left\{u_{\alpha}, w_{l}\right\}$ is independent,
(b) $v_{1} w_{l} \in A(D)$.

Fig. 2. Proposition 6.
By the path $\left(v_{1}, w_{l}, w_{i}\right)$, it follows that $w_{i} v_{1} \notin A(D)$. Then, by Lemma 5 and Claim 3,

$$
\begin{equation*}
w_{i} u_{\alpha} \in A(D) \quad \text { for any } 1 \leq i<l . \tag{15}
\end{equation*}
$$

If $u_{1} w_{l} \notin A(D)$, then by the path $\left(u_{1}, v_{1}, w_{l}\right),\left\{w_{l}, u_{1}\right\}$ is independent. In this case $\left(u_{1}, v_{1}, w_{l}, w_{1}, u_{\alpha}, u_{1}\right)$ is an induced \vec{C}_{5} and by Remark $1, D \cong \vec{C}_{5}$.

Thus, we assume that

$$
\begin{equation*}
u_{1} w_{l} \in A(D) \tag{16}
\end{equation*}
$$

By the 4-cycle ($u_{1}, w_{l}, w_{i}, u_{\alpha}, u_{1}$) and the paths (u_{i}, u_{1}, w_{l}) and (v_{i}, v_{1}, w_{l}),
(a) $\left\{u_{1}, w_{i}\right\}$ is independent for $i<l$
(b) $\left(w_{l}, U \cup V\right)=\emptyset$.

Let N_{1} be a kernel of $D-\left\{u_{1}\right\}$. By definition of N_{1},
$v_{1}, w_{l} \notin N_{1}$.
By (12), (17)(b) and (18) there exists an integer β such that,
(a) $w_{\beta} \in N_{1} \quad$ for some $1<\beta<l$,
(b) $v_{1} w_{\beta} \in A(D)$.

By (15)(b) and the definition of N_{1},
(a) $w_{\beta} u_{\alpha} \in A(D)$,
(b) $u_{\alpha} \notin N_{1}$.

By the 4 -cycle ($u_{i}, v_{1}, w_{\beta}, u_{\alpha}, u_{i}$),
$\left\{u_{i}, w_{\beta}\right\}$ is independent for $1 \leq i<\alpha$.
Let $i<\alpha$. If $w_{1} u_{i} \in A(D)$, then $\left\{u_{i}, w_{l}\right\}$ is independent by the 4-cycle $\left(w_{l}, w_{1}, u_{i}, v_{1}, w_{l}\right)$. In this case ($u_{\alpha}, u_{i}, u_{1}, v_{1}, w_{l}, w_{\beta}, w_{1}, u_{\alpha}$) induces a $\vec{C}_{7}(1,2)$ and by Remark $1, D \cong \vec{C}_{7}(1,2)$.

Hence, we may assume that for every $i<\alpha, w_{1} u_{i} \notin A(D)$, and by the path (w_{1}, u_{α}, u_{i}),
$\left\{u_{i}, w_{1}\right\}$ is independent for $i<\alpha$.
In Fig. 2, we show the arcs that must be in the digraph D. With dashed lines we indicate the independent sets as well as the arcs that are not in D.

We will analyze separately the two cases: $\alpha<n$ or $\alpha=n$.
Case I $\alpha<n$.
Let N_{u} be a kernel of $D-\left\{u_{n}\right\}$. Then $U \cap N_{u}=\emptyset$. By (14)(a) and (15), $\left(u_{\alpha}, W\right)=\emptyset$, so there is a vertex $v_{\gamma} \in V \cap N_{u}$ such that $u_{\alpha} v_{\gamma} \in A(D)$. By definition of $N_{w}=\left\{u_{\alpha}, v_{1}\right\}, \gamma>1$.

By the path $\left(u_{n}, u_{\alpha}, v_{\gamma}\right)$ and the definition of N_{u}, by the paths $\left(v_{\gamma}, v_{1}, w_{l}\right)$ and $\left(v_{\gamma}, v_{1}, w_{\beta}\right)$,
(a) $\left\{u_{n}, v_{\gamma}\right\}$ is independent,
(b) $w_{l} v_{\gamma}, w_{\beta} v_{\gamma} \notin A(D)$.

Since $\gamma>1$ and $v_{1} v_{\gamma} \notin A(D)$, by (12), there is a vertex $w_{\delta} \in W \cap N_{u}$ such that $v_{1} w_{\delta} \in A(D)$. So $\delta>1$, and $N_{u}=\left\{v_{\gamma}, w_{\delta}\right\}$. By the definition of $N_{u},\left\{v_{\gamma}, w_{\delta}\right\}$ is independent. Moreover, $v_{i} w_{\delta} \in A(D)$ for $1 \leq i<\gamma$ and

$$
\begin{equation*}
w_{i} v_{\gamma} \in A(D) \quad \text { for } 1 \leq i<\delta \tag{24}
\end{equation*}
$$

By Lemma 2, (23)(a) and (17)(b),
(a) $w_{\delta} u_{n} \in A(D)$,
(b) $1<\delta<l$.

By definition of N_{u} and the path $\left(u_{i}, u_{\alpha}, v_{\gamma}\right), v_{\gamma} u_{i} \notin A(D)$ for $i>\alpha$, and so, by the path (w_{δ}, u_{n}, u_{i}), with $i<n$, we have that $\left(U, w_{\delta}\right)=\emptyset$. Since N_{u} is kernel of $D-\left\{u_{n}\right\}$,
(a) $u_{i} v_{\gamma} \in A(D), \quad$ for $1 \leq i<n$,
(b) $v_{i} u_{1} \notin A(D)$ for $i<\gamma$.

By (23)(b) and the 4-cycle ($v_{1}, w_{\beta}, u_{\alpha}, v_{\gamma}, v_{1}$), $\left\{v_{\gamma}, w_{\beta}\right\}$ is independent and by (24), $\delta \leq \beta$. By (25)(a), we have that $v_{\gamma} \notin N_{1}$ and so, by (24) and the definition of $N_{u},\left(v_{\gamma}, U \cup W\right)=\emptyset$.

So, there is a vertex $v_{\varepsilon} \in V \cap N_{1}$ such that $1<\varepsilon<\gamma$ by (19)(a) and (19)(b). By (25)(b), $\left\{u_{1}, v_{\varepsilon}\right\}$ is independent. By the definition of N_{1} and Lemma $2, N_{1} \cap U \neq \emptyset$. Otherwise, by the fact that $\left\{u_{1}, v_{\varepsilon}\right\}$ is independent and (17)(a), it follows that $N^{\prime}=\left\{u_{1}, v_{\varepsilon}, w_{\beta}\right\}$ independent. Moreover, N^{\prime} is a kernel of D, which is a contradiction.

Let $N_{1}=\left\{u_{\chi}, v_{\varepsilon}, w_{\beta}\right\}$. By the 4-cycles $\left(u_{1}, w_{l}, w_{\delta}, u_{n}, u_{1}\right),\left(u_{\alpha}, v_{\gamma}, v_{\varepsilon}, w_{\delta}, u_{\alpha}\right)$ and $\left(u_{i}, v_{1}, w_{\delta}, u_{\alpha}, u_{i}\right)$, it follows that $\left\{u_{n}, w_{l}\right\},\left\{u_{\alpha}, v_{\varepsilon}\right\}$ and $\left\{u_{i}, w_{\delta}\right\}$ are independent sets for $i<\alpha$. Then $\left\{u_{n}, v_{1}\right\}$ is independent by the 4-cycle $\left(u_{1}, v_{1}, w_{\delta}, u_{n}, u_{1}\right)$.
$\operatorname{By}(20)(\mathrm{a}),(20)(\mathrm{b})$ and the independent set $\left\{u_{\alpha}, v_{\varepsilon}\right\}$, it follows that $\chi<\alpha$. $\operatorname{By}(22)$ and the path $\left(v_{\varepsilon}, w_{\delta}, w_{1}\right),\left(w_{1}, N_{1}\right)=\emptyset$ which contradicts that N_{1} is a kernel of $D-\left\{u_{1}\right\}$.

So, the case $\alpha<n$ leads to a contradiction.
Case $2 \alpha=n$.
In this case, by Claim 3 and (14)(a), we obtain that $\left\{u_{n}, v_{1}\right\}$ and $\left\{u_{n}, w_{l}\right\}$ are independent sets, $N_{w}=\left\{u_{n}, v_{1}\right\}$, by (20) $u_{n} \notin N_{1}$ and by (15)(b),

$$
\begin{equation*}
w_{i} u_{n} \in A(D) \quad \text { for every } 1 \leq i<l \tag{26}
\end{equation*}
$$

Since $\left(w_{1}, U \backslash\left\{u_{n}\right\} \cup\left\{w_{\beta}\right\}\right)=\emptyset$, there is a vertex $v_{\gamma} \in N_{1} w_{1} v_{\gamma} \in A(D)$. By (19)(b), $1<\gamma$. By the 4-cycles $\left(w_{1}, v_{\gamma}, v_{1}, w_{\beta}, w_{1}\right)$ and $\left(w_{1}, v_{\gamma}, v_{1}, w_{l}, w_{1}\right)$ the following sets are independent,
(a) $\left\{v_{\gamma}, w_{\beta}\right\}$,
(b) $\left\{v_{\gamma}, w_{l}\right\}$.

Claim 4. If $u_{n} v_{\gamma}, v_{\gamma} u_{1} \in A(D)$, then $D \cong \vec{C}_{7}(1,2)$.
Let $u_{n} v_{\gamma} \in A(D), v_{\gamma} u_{1} \in A(D)$, then $\left(u_{n}, v_{\gamma}, u_{1}, v_{1}, w_{l}, w_{\beta}, w_{1}, u_{n}\right)$ induces a $\vec{C}_{7}(1,2)$ and by Remark $1, D \cong \vec{C}_{7}(1,2)$. If $N_{1}=\left\{v_{\gamma}, w_{\beta}\right\}$, then $u_{n} v_{\gamma} \in A(D)$ by the definition of N_{1} and by Lemma $2, v_{\gamma} u_{1} \in A(D)$ and $D \cong \vec{C}_{7}(1,2)$ by Claim 4. So,

$$
\begin{equation*}
N_{1} \cap\left(U \backslash\left\{u_{1}\right\}\right) \neq \emptyset \tag{28}
\end{equation*}
$$

Let N_{v} be a kernel of $D-\left\{v_{m}\right\}$. Then $N_{v} \cap V=\emptyset$.
Since $m>1$ and $\left(v_{1}, U\right)=\emptyset$, then $w_{\rho} \in N_{v}$ for some $\rho>1$ and $v_{1} w_{\rho} \in A(D)$. Then $w_{1} \notin N_{v}$ and since $\left(w_{1}, U \backslash\left\{u_{n}\right\}\right)=\emptyset$, then $u_{n} \in N_{v}$. Hence, by (15), $\rho=l$ and $N_{v}=\left\{u_{n}, w_{l}\right\}$. By Lemma 2 and the path $\left(v_{m}, v_{1}, w_{l}\right)$ it follows that $\left\{v_{m}, w_{l}\right\}$ is independent and $u_{n} v_{m} \in A(D)$. By the path $\left(u_{n}, v_{m}, v_{i}\right)$ and the definition of N_{v}, it follows that $v_{i} w_{l} \in A(D)$ for all $i<m$.

If $\gamma<m$, then by the path $\left(u_{n}, v_{m}, v_{\gamma}\right)$ and by (27)(b) it follows that $\left(v_{\gamma}, N_{v}\right)=\emptyset$, which contradicts that N_{v} is a kernel of $D-\left\{v_{m}\right\}$. Then $\gamma=m$.

By definition of $N_{v}, u_{i} w_{l} \in A(D)$, for $i<n$, then by and Lemma $2,\left\{v_{m}, w_{l}\right\}$ is independent and,

$$
\begin{equation*}
u_{n} v_{m} \in A(D) \tag{29}
\end{equation*}
$$

By Claim 4 and the definition of N_{1}, we may assume that $\left\{u_{1}, v_{m}\right\}$ is independent. By the path $\left(u_{n}, v_{m}, v_{i}\right)$, it follows that $v_{i} u_{n} \notin A(D)$. By the definition of N_{v}, it follows that $v_{i} w_{l} \in A(D)$. By the 4-cycle $\left(u_{i}, w_{l}, w_{j}, u_{n}, u_{i}\right)$,

$$
\begin{equation*}
\left\{u_{i}, w_{j}\right\} \text { is independent for } i<n \text { and } j<l . \tag{30}
\end{equation*}
$$

By (28) and (29),

$$
\begin{equation*}
N_{1}=\left\{u_{\chi}, v_{m}, w_{\beta}\right\} \quad \text { for some } 1<\chi<n \tag{31}
\end{equation*}
$$

Hence, there exists $u_{2} \neq u_{n}$. Let N_{2} be a kernel of $D-\left\{u_{2}\right\}$. Then $u_{1}, v_{1}, w_{l} \notin N_{2}$.
In this case, $v_{y} \in N_{2}$ for some $1<y<m$, else $\left(u_{1}, N_{2}\right)=\emptyset$. Notice that, $v_{m} \notin N_{2}$ and then, $w_{z} \in N_{2}$ for some $1<z<l$, else $\left(v_{1}, N_{2}\right)=\emptyset$. Also, $w_{1} \notin N_{2}$ and then, $u_{n} \in N_{2}$, else $\left(w_{1}, N_{2}\right)=\emptyset$. Hence, $N_{2}=\left\{u_{n}, v_{y}, w_{z}\right\}$. By (26), for $i<l$, $w_{i} u_{n} \in A(D)$ and since $w_{l} \notin N_{2}$, then $N_{2} \cap W=\emptyset$, which contradicts that $N_{2}=\left\{u_{n}, v_{y}, w_{z}\right\}$.

So Case 2, is settled.
As a summary of Propositions 3-6, we have the following.
Theorem 7. Let D be an asymmetric CKI-digraph with covering number 3. Then $D \cong \vec{C}_{5}$ or $D \cong \vec{C}_{7}(1,2)$.
Proof. We analyze all the possibilities for $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$. If $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has no arcs, then $\left\{u_{1}, v_{1}, w_{1}\right\}$ is a kernel of D, which is a contradiction. If $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has exactly one arc, then by Proposition $6, D \cong \vec{C}_{5}$ or $D \cong \vec{C}_{7}(1,2)$. By Propositions 3 and 4 , if $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ has at least two arcs, then $D\left[\left\{u_{1}, v_{1}, w_{1}\right\}\right]$ is a path of length two and hence, by Proposition $5, D \cong \vec{C}_{5}$ or $D \cong \vec{C}_{7}(1,2)$.

As a summary of Corollaries 1 and 2(i) and Theorems 6 and 7, we have the following.
Proposition 7. Let D be a CKI-digraph with covering number at most three.
(i) The covering number of $\operatorname{Asym}(D)$ is one if and only if $D \cong \vec{C}_{3}$.
(ii) The covering number of D is one if and only if $D \cong \vec{C}_{m}\left(1, \pm 2, \pm 3, \ldots, \pm\left\lfloor\frac{m}{2}\right\rfloor\right)$.
(iii) The covering number of $\operatorname{Asym}(D)$ is two if and only if $D \cong \vec{C}_{4}(1,2)$.
(iv) The covering number of D is not equal to two.
(v) If D is an asymmetric digraph, then the covering number of D is three if and only if $D \cong \vec{C}_{5}$ or $D \cong \vec{C}_{7}(1,2)$.

Proposition 8. Let D be a KP-digraph with covering number at most three.
(i) The covering number of D is at most two if and only if D is \vec{C}_{3}-free.
(ii) The covering number of Asym (D) is two if and only if D has no induced subdigraph isomorphic to \vec{C}_{3} nor to $\vec{C}_{4}(1,2)$.
(iii) Let D be asymmetric and $\sigma(\operatorname{asym}(D))=3$. Then D is a KP-digraph if and only if D has no induced subdigraph isomorphic to $\vec{C}_{3}, \vec{C}_{4}(1,2), \vec{C}_{5} \operatorname{nor} \vec{C}_{7}(1,2)$.

5. Consequences of the results

In this section we review some previous results that can be obtained with our results in case that $\sigma(D) \leq 2$, $\sigma(\operatorname{Asym}(D)) \leq 2$ and in case that the asymmetric digraph D has covering number three.

Theorem 8 (Theorem 1.4 [15]). If D is a digraph with $\sigma(D) \leq 2$ such that each directed cycle of length 3 has two symmetrical arcs, then D is a KP-digraph.
Proof. Since each directed cycle of length 3 has two symmetrical arcs, then D has no induced \vec{C}_{3} nor an induced $\vec{C}_{4}(1,2)$ because $(0,1,2,0)$ is directed cycle of length 3 with exactly one symmetrical arc. So, by Theorem $8(\mathrm{i}), D$ is a KP-digraph.

Hence Theorem 1.4 [15] is a consequence of Theorem 8.
Theorem 9 (Theorem 2.3 [15]). Let D be a digraph with $\sigma(D) \leq 3$ such that each directed cycle of length 3 is symmetrical. If every directed cycle of length 5 has two diagonals, then D is a KP-digraph.
Proof. Since each directed cycle of length 3 is symmetrical, D has no induced cycles of length 3 and hence by Theorem 8(i), D is a KP-digraph in case $\sigma(D) \leq 2$. Let D be asymmetric with $\sigma(D)=3$. Every directed cycle of length 5 has two diagonals, so D has no induced cycle of length 5 . Moreover, D has no induced $\vec{C}_{7}(1,2)$ because the 5 -cycle $(0,1,2,4,5,0)$ has only one diagonal, namely the arc $(0,2)$. By Theorem $8(\mathrm{ii}), D$ is a KP-digraph.

Theorem 10 (Theorem 2.4 [15]). Let D be a digraph with $\sigma(D) \leq 3$, but without directed cycles of length 3 . If every directed cycle of length 5 has two diagonals, then D is a KP-digraph.

Proof. Analogously to the proof of Theorem 9.
Hence, Theorems 2.3 and 2.4 [15] are both consequences of Theorem 8.
Theorem 11 (Theorem 2.1 [14]). Let D be a digraph such that every directed triangle has two symmetric arcs and $\sigma(D) \leq 3$. If each directed cycle \mathcal{C} of length 5 in D satisfies at least one of the following properties: (a) \mathcal{C} has two diagonals, (b) \mathcal{C} has three symmetrical arcs, then D is a KP-digraph.

Proof. Analogously to the proof of Theorem 9.
Hence, Theorem 2.1 [14] is a consequence of Theorem 8.

Acknowledgments

The authors want to thank the anonymous referees for their kind help and valuable suggestions which led to an improvement of this paper.

References

[1] C. Balbuena, M. Guevara, M. Olsen, Structural properties of CKI-digraphs (submitted for publication).
[2] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2001.
[3] C. Berge, Graphs, North-Holland, Amsterdam, 1985.
[4] C. Berge, V. Chvátal (Eds.), Topics on perfect graphs, in: Ann Discrete Math. Vol. 21, North-Holland Mathematics Studies, 1984.
[5] C. Berge, P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27-31.
[6] M. Blidia, P. Duchet, F. Maffray, On kernels in perfect graphs, Combinatorica 13 (2) (1993) 231-233.
[7] M. Blidia, P. Duchet, F. Maffray, On the orientation of Meyniel graphs, J. Graph Theory 18 (7) (1994) 705-711.
[8] E. Boros, V. Gurvich, Perfect graphs, kernels and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354.
[9] E. Boros, V. Gurvich, Perfect graphs are kernel solvable, Discrete Math. 159 (1996) 35-55.
[10] M. Chudnovsky, N. Robertson, P. Seymour, P. Thomas, The strong perfect graph theorem, Ann. Math 164 (2) (2006) 51-229. No 1.
[11] P. Duchet, Representation: noyaux en théorie des graphes et hypergraphes, Thèse, Paris, 1979.
[12] A.S. Fraenkel, Combinatorial game theory foundations applied to digraph kernels, The Electronic Journal of Combinatorics 4 (1997) 17.
[13] A.S. Fraenkel, Combinatorial games: selected bibliography with a succinct gourmet introduction, The Electronic Journal of Combinatorics 14 (2007) DS2.
[14] H. Galeana-Sánchez, Kernels in digraphs with covering number at most 3, Discrete Math. 259 (2002) 121-135.
[15] H. Galeana-Sánchez, Xueliang Li, Kernels in a special class of digraphs, Discrete Math. 178 (1998) 73-80.
[16] H. Galeana-Sánchez, V. Neumann-Lara, On Kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265.
[17] J. Ghoshal, R. Laskar, D. Pillone, Topics on domination in directed graphs, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs, Vol. 209, Marcel Dekker, New York, 1998, pp. 401-437.
[18] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, in: Monographs and Textbooks in Pure and Applied Mathematics, vol. 208, Marcel Dekker, Inc, New York, 1998.
[19] J.M. Le Bars, Counterexample of the 0-1 law for fragments of existential second-order logic; an overview, Bull. Symbolic Logic 9 (2000) 67-82.
[20] J.M. Le Bars, The 0-1 law fails for frame satisfiability of propositional model logic, Proceedings of the 17th Symposium on Logic in Computer Science, 2002, 225-234.
[21] F. Maffray, Sur l existence de noyaux dans les geaphes parfaits, Thèse de 3-éme cycle, Univ. P. et M Curie, Paris.
[22] J.L. Ramírez, B. Reed, Perfect Graphs, John Wiley \& Sons. Ltd, 2001.
[23] J. von Leeuwen, Having a Grundy numbering is NP-complete, Report 207 Computer Science Department, Pennsylvania State University, University Park, PA, 1976.

[^0]: Whesearch supported by CONACyT-México under project 83917.

 * Corresponding author.

 E-mail addresses: olsen@correo.cua.uam.mx, olsen.mika@gmail.com (M. Olsen).

