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a b s t r a c t

The acyclic disconnection of a digraph D is the maximum number of components that can
be obtained by deleting from D the set of arcs of an acyclic subdigraph. We give bounds
for the acyclic disconnection of strongly connected bipartite tournaments and of regular
bipartite tournaments. For the latter case, we exhibit an infinite family of tournaments
with acyclic disconnection equal to 4.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A coloring of the vertices of a digraph D is a proper coloring if each color is assigned to at least one vertex of D. The
acyclic disconnection −→ω (D) of a digraph D was defined in [7] as the maximum possible number of connected components
of the underlying graph of D \ A(D∗) where D∗ is an acyclic subdigraph of D. Equivalently, −→ω (D) can be defined as the
maximum number of colors for which there is a coloring of the vertices of D not producing well-colored directed cycles (a
directed cycle

−→
C is well-colored if every pair of adjacent vertices of

−→
C is colored with different colors), see more details

in Section 2. There are other forms of defining the acyclic disconnection which are also useful depending on the context
(Proposition 4). A small value of −→ω (D) implies a complex pattern of cycles in D. Besides the important results for this
parameter in general digraphs that were introduced in [7], the acyclic disconnection (and particularly, the so called directed
triangle free disconnection,a very closely related notion defined in the same paper) has mainly been studied for tournaments,
specially, for circulant tournaments (see for instance the already mentioned paper, [2,4]) and for some classes of (non-
circulant) regular tournaments in [5].

The acyclic and the directed triangle free disconnection are also related to the dichromatic number of a digraph,
a definition established by Neumann-Lara in [8]. Infinite families of regular tournaments with given fixed acyclic
disconnection s and dichromatic number r(2 ≤ s ≤ r)were determined in [7,5] for small values of integers s and r , namely,
2 ≤ s ≤ r ≤ 3. In [6], the general problem was studied for all possible values of the parameters.

In this paper, we begin the study of the acyclic disconnection of general multipartite tournaments, in particular we focus
on the class of bipartite tournaments. After some preliminaries and terminology in Section 2 (in general, we follow [1] for the
basics), in Section 3 we prove that for every c-partite tournament T , in order to determine−→ω (T ) it is sufficient to consider
directed cycles of lengths 3, 4 and 6 (Theorem 8). Evidently, directed triangles are excluded in case of bipartite tournaments.
This result generalizes a previous one for tournaments (see Proposition 6.3 of [7]).

✩ Research partially supported by Conacyt 83856 and 83917, PROMEP47510201 and UAM-PTC-187.
∗ Corresponding author. Tel.: +52 55 26363800; fax: +52 55 26363804.

E-mail address: olsen@matem.unam.mx (M. Olsen).

0166-218X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2012.03.008

http://dx.doi.org/10.1016/j.dam.2012.03.008
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:olsen@matem.unam.mx
http://dx.doi.org/10.1016/j.dam.2012.03.008


A.P. Figueroa et al. / Discrete Applied Mathematics 160 (2012) 1524–1531 1525

In Section 4, we observe that 3 ≤ −→ω (T ) ≤ n − 1 for every strongly connected bipartite tournament T of order n. In
Corollary 17(ii), we show a strongly connected bipartite tournament T of order n with acyclic disconnection n − 1. Since
the acyclic disconnection of a directed cycle on 4 vertices is 3, the bounds given cannot be improved for strongly connected
bipartite tournaments in general. On the other hand, if T is an r-regular bipartite tournament, we have that−→ω (T ) ≤ 2r + 1
(Theorem 13). We also give examples showing that this bound is tight (Corollary 18(i)).

Finally, in Section 5 we study the acyclic disconnection of regular bipartite tournaments without concordance. If T is an
r-regular bipartite tournament without concordance, our best bound for the acyclic disconnection is 3 ≤ −→ω (T ) ≤ r + 2
(Theorem22). In spite of the fact thatwewere not able to find an infinite family of regular bipartite tournamentswith acyclic
disconnection 3 nor r + 2, we show such an infinite family of digraphs without concordance with acyclic disconnection 4.

2. Preliminaries and terminology

A digraph D is asymmetric if (v, u) is not an arc of D whenever (u, v) is an arc of D. In this paper every digraph is
asymmetric, finite and without loops or multiple arcs.

Let D be a digraph. The vertex set and the arc set of D are denoted by V (D) and A(D), respectively. We say that a graph is
nontrivial if it has order greater than one. For a set X ⊆ V (D), we denote by D[X] and D \ X the subdigraphs of D induced by
X and V (D) \ X , respectively.

Let u ∈ V (D), the out-neighborhood and in-neighborhood of u are denoted byN+(u) andN−(u), respectively. If S ⊆ V (G),
the set S∩N+(u) (resp. S∩N−(u)) is denoted byN+(u; S) (resp.N−(u; S)). Analogously, d+(u), d+(u; S), d−(u) and d−(u; S)
denote the out-degree, the out-degree with respect to S, the in-degree and the in-degree with respect to S of u, respectively.
A vertex v is a source of D if d−(v) = 0. A digraph D is r-regular if d+(v) = d−(v) = r for every vertex v of D.

We say that twodistinct vertices u and v of a digraphD are concordant vertices (resp. discordant vertices) ifN+(u) = N+(v)
and N−(u) = N−(v) (resp. N+(u) = N−(v) and N−(u) = N+(v)). If u and v are not concordant for every u ≠ v ∈ V (D),
then we say that D is a digraph without concordance.

Throughout this article a cycle of Dmeans a directed cycle of D. A digraph Dwithout cycles is an acyclic digraph. It is well
known that D is acyclic if and only if there exists a labeling of its vertex set V (D) = {v0, v1, . . . , vn} such that v0 is a source
of D and for every 1 ≤ k ≤ n, vk is a source of D \ {v0, v1, . . . , vk−1}.

A tournament T is a digraph such that there is exactly one arc between every pair of vertices. Let c ≥ 2 be an integer, a
c-partite tournament is an orientation of a complete c-partite graph. In particular, every n-partite tournamentwith n vertices
is a tournament. A 2-partite tournament is called a bipartite tournament. If T is an r-regular bipartite tournamentwith partite
sets U and V , then |U| = |V | = 2r .

For m ≥ 3 we denote by Zm the cyclic group of integers modulo m. Let J be a non-empty subset of Zm \ {0} with the
property that−j ∉ J whenever j ∈ J . A circulant(or rotational) digraph, denoted by

−→
C m(J), has vertex set V (

−→
C m(J)) = Zm

and arc set A(
−→
C m(J)) = {(i, j) : j− i ∈ J}. Notice that

−→
C m(J) is a vertex transitive digraph.

Let D be a digraph and {Fu}u∈V (D) be a family of digraphs. The Zykov sum [9] (X-Join [3] or lexicographic sum) of the digraph
D with the family {Fu}, denoted by σ(D, Fu) has vertex set {(u, x) : u ∈ V (D), x ∈ V (Fu)} and ((u, x), (v, y)) is an arc of
σ(D, Fu) if and only if

(u, v) ∈ A(D) or u = v and (x, y) ∈ A(Fu).

Let D and F be digraphs, the composition D[F ] (or lexicographic product D ◦ F [3]) is the digraph σ(D, Fu) where Fu is
an isomorphic copy of F for every u ∈ V (D). It is well known that the composition of digraphs is associative but not
commutative. Furthermore the composition of two regular digraphs is again a regular digraph.

For a complete graph Kn, let K n denote the complement of Kn.

Proposition 1. Let D be a nontrivial digraph. A Zykov sum σ(D, Fu) is a bipartite tournament if and only if D is a bipartite
tournament and Fu is isomorphic to a graph K nu , with nu ≥ 1, for every u ∈ V (D).

Proof. Suppose that σ(D, Fu) is a bipartite tournament. By definition, any Zykov sum σ(D, Fu) has an induced subdigraph
D′ isomorphic to D. If D has no arcs, then all arcs of σ(D, Fu) are of the form ((u, x), (u, y)) where (x, y) is an arc of Fu and
this is not possible since σ(D, Fu) is a bipartite tournament and D has at least two vertices. Therefore there is an arc (u, v)
of D and, consequently, an arc ((u, x), (v, y)) of D′. This implies that D′ is an induced subdigraph of a bipartite tournament
with at least one edge, therefore, D′ and also D are bipartite tournaments too. Moreover, N+(u) ∪ N−(u) ≠ ∅ for every
u ∈ V (D), since D is a nontrivial bipartite tournament. If Fu has an arc xy and v ∈ N+(u) ∪ N−(u) ≠ ∅ for some u ∈ V (D),
then {(u, x), (u, y), (v, z)} induces a (not directed) triangle of σ(D, Fu), where z is any vertex of Fv . We reach a contradiction
since σ(D, Fu) is bipartite, therefore Fu ∼= K nu for every u ∈ V (D).

On the other hand, if D is a bipartite tournament with partite sets U and V , then σ(D, K nu) is a bipartite tournament with
bipartition (U ′, V ′), where U ′ = {(u, x) : u ∈ U, x ∈ V (K nu)} and V ′ = {(v, y) : v ∈ V , y ∈ K nv }. �

Corollary 2. Let D be a nontrivial digraph. A composition D[F ] is a (regular) bipartite tournament if and only if D is a (regular)
bipartite tournament and F ∼= K n.
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Remark 3. A bipartite tournament T has concordant vertices if and only if T = σ(D, Fu) and Fv is nontrivial for some
v ∈ V (D).

Proof. Let v ∈ V (D) be such that Fv has at least two vertices. If T = σ(D, K nu) and x1 ≠ x2 ∈ V (Knv ), it is easy to see that
(v, x1), (v, x2) are concordant. Now, let T be a bipartite tournament, x, y ∈ V (T ) concordant vertices of T , and T ′ = T \ {x}.
Then, T is isomorphic to the Zykov sum σ(T ′, Fu), where V (Fy) = {x, y} and V (Fu) = {u} for every u ≠ y. �

We denote by ω(D) the number of connected components of the underlying graph of D. A spanning subdigraph D0 of D
is called a linear

−→
C -transversal of D if A(D0) contains at least one arc of every cycle of D. The set of linear

−→
C -transversals

of D is denoted by Tr(D). Let π be a partition of V (D), an arc uv is external if u and v are elements of different parts of π . A
partition of the vertex set of a digraph D is an externally acyclic partition if the digraph induced by the external arcs of D is
acyclic.

The following proposition gives different characterizations of−→ω (D).

Proposition 4 (Proposition 2.2 [7]). Each of the following values is equal to−→ω (D).

(i) max{ω(D \ F) : F ⊆ A(D), F acyclic}.
(ii) max{ω(W ) : W ∈ Tr(D)}.
(iii) The maximum cardinality of an externally acyclic partition of D.
(iv) The maximum number of colors in a proper coloring of V (D) not producing well-colored cycles.

For s ≥ 1, let Γs denote the set of colors {c1, c2, . . . , cs}. If D is a digraph and ϕ : V (D) → Γs is a vertex coloring of D,
then the coloring ϕ induces two natural spanning subdigraphs of D. Themonochromatic digraph of D,Mϕ(D), is the spanning
subdigraph of D with arc set {uv ∈ A(D) : ϕ(u) = ϕ(v)} and the heterochromatic digraph of D, Hϕ(D), is the spanning
subdigraph of Dwith arc set {uv ∈ A(D) : ϕ(u) ≠ ϕ(v)}. We say that a coloring ϕ : V (D)→ Γs is externally acyclic if Hϕ(D)
is an acyclic digraph.

Proposition 5. If −→ω (D) ≥ k, then there is a proper coloring γ of D with exactly k colors such that Hγ (D) contains no cycles.

Proof. If −→ω (D) = t ≥ k, then there is a proper coloring δ with t colors {c1, c2, . . . , ct} such that Hδ(D) is acyclic. Let γ be
the proper coloring of D with k colors obtained from δ as follows:

γ (v) =


ci if δ(v) = ci with 1 ≤ i ≤ k− 1
ck if δ(v) = ci with i ≥ k.


If γ (u) ≠ γ (v), then δ(u) ≠ δ(v); therefore Hγ (D) is a subdigraph of Hδ(D). This implies that Hγ (D) is also acyclic. �

The following proposition is a reformulation of Proposition 4(iv).

Proposition 6. For any digraphD,−→ω (D) is the largest integer n forwhich there is an externally acyclic coloring ϕ : V (D) −→ Γn.

Let ϕ be a coloring of a digraph D, we say that color c is a singular class of ϕ if |ϕ−1({c})| = 1. Let S ⊂ V (D), we denote
by ϕ(S) the set {ϕ(u) : u ∈ S}.

3. Forbidden cycles in an externally acyclic coloring

Let c ≥ 2. We will prove that if T is a c-partite tournament and ϕ is a coloring of T such that Hϕ(T ) has a cycle of any
length, then Hϕ(T ) has also a cycle of length 3, 4 or 6. Let

−→
C be a cycle of a digraph D and u, v ∈ V (

−→
C ). We say that {u, v}

is a chord of
−→
C if uv or vu is a chord of

−→
C .

Remark 7. Let T be a c-partite tournament, ϕ : V (T )→ Γs be a coloring which is not externally acyclic and
−→
C be a cycle

of minimum length in Hϕ(T ). If {u, v} is a chord of
−→
C , then ϕ(u) = ϕ(v).

Theorem 8. Let T be a c-partite tournament and ϕ be a vertex coloring of T . If ϕ is not an externally acyclic coloring, then Hϕ(T )
has a 3-cycle, a 4-cycle or a 6-cycle.

Proof. Let T be a c-partite tournament with partite sets V1, V2, . . . , Vc and ϕ be a vertex coloring of T that is not externally
acyclic. Suppose by contradiction that

−→
C = (v0, v1, . . . vt−1, v0) is a cycle of minimum length in Hϕ(T )with t ≠ 3, 4, 6.

Claim 1. If vi, vj ∈ V (
−→
C ) and j ≠ i+ 1, i, i− 1, i− 2, then either {vi, vj} or {vi, vj+1} is a chord of

−→
C , but not both.

Proof of Claim. If {vi, vj} and {vi, vj+1} are not chords of
−→
C , then vi, vj and vj+1 are in the same partite set of T , which is a

contradiction because (vj, vj+1) ∈ A(T ). On the other hand, if {vi, vj} and {vi, vj+1} are both chords of
−→
C , then by Remark 7,

ϕ(vj) = ϕ(vi) = ϕ(vj+1). This is impossible because
−→
C is a cycle of Hϕ(T ). �
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Case 1. t = 2s+ 1 for some s ≥ 2.
Since

−→
C is a cycle of minimum length, by Claim 1, the chords of type {vi, vi+s} and {vi, vi+s+1} induce a perfect matching

of the vertices of
−→
C which is a contradiction because t is odd.

Case 2. t = 2s for some s ≥ 4.
By Claim 1, we can choose s ≤ i ≤ s+ 1 such that {v0, vi} is a chord of

−→
C and {v0, vi+1} and {v0, vi−1} are not chords of

−→
C . Thus there exists a partite set U of T such that v0, vi−1, vi+1 ∈ U . Analogously, there exists a partite set V of T such that
v1, vi, v2s−1 ∈ V . Notice that v2 ∉ V since v1 ∈ V and (v1, v2) is an arc of T . This implies that {v2, vi} and {v2, v2s−1} are also
chords of

−→
C . By Remark 7, ϕ(v0) = ϕ(vi) = ϕ(v2) = ϕ(v2s−1) which is a contradiction because (v2s−1, v0) is an arc of

−→
C

which is a cycle of Hϕ(T ). �

In the case where T is a bipartite tournament, T has no odd cycles. So we have the following corollary.

Corollary 9. Let T be a bipartite tournament and ϕ be a vertex coloring of T . If ϕ is not an externally acyclic coloring, then Hϕ(T )
has a 4-cycle or a 6-cycle.

The following example shows that there exists a vertex coloring ϕ with 3 colors of a bipartite tournament T such that
Hϕ(T ) has a 6-cycle but no 4-cycle. This example and Corollary 9 show that it is not enough to check that Hϕ(T ) does not
have cycles of length 4 to assure that Hϕ(T ) is acyclic.

Example 10. Let T be a bipartite tournament with partite sets U = {v0, v2, v4} and V = {v1, v3, v5} in which
−→
C = (v0, v1,

v2, v3, v4, v5, v0) is a hamiltonian cycle. Let ϕ : V (T )→ Γ3 be the vertex coloring defined by:

ϕ(vi) = ϕ(vi+3) = ci, for i = 0, 1, 2.

Clearly
−→
C is a cycle ofHϕ(T ). Note that every 4-cycle in T has an arc of type either (vi, vi+3) or (vi+3, vi) for some i = 0, 1, 2.

Hence, Hϕ(T ) has no 4-cycles.

c0 → c1 → c2
↑ ↓

c2 ← c1 ← c0

Note that if T is a tournament and ϕ is a vertex coloring of T such that Hϕ(T ) has a 6-cycle, then Hϕ(T ) has a 3-cycle or a
4-cycle. So, we have the following.

Corollary 11 (Proposition 6.3 [7]). Let T be a tournament andϕ be a vertex coloring of T . If ϕ is not an externally acyclic coloring,
then Hϕ(T ) has a 3-cycle or a 4-cycle.

4. Bipartite tournaments

In this section, we find bounds on the acyclic disconnection of bipartite tournaments. If T is an acyclic bipartite
tournament, then −→ω (T ) = n, where n = |V (T )|. Throughout this paper we consider bipartite tournaments with at least
one cycle. If T is not acyclic and U and V are the parts of T , then |U|, |V | ≥ 2.

Proposition 12. Let T be a bipartite tournament of order n. If T is not acyclic, then 3 ≤ −→ω (T ) ≤ n− 1.

Proof. Let u and v be vertices in different partite sets of T and define ϕ : V (T ) → Γ3 as follows: ϕ(u) = 1, ϕ(v) = 2 and
ϕ(x) = 3 for each x ∈ V (T ) \ {u, v}. Since each cycle of T contains adjacent vertices with color 3, ϕ is externally acyclic. �

Theorem 13. If T is an r-regular bipartite tournament of order 4r, then−→ω (T ) ≤ 2r + 1.

Proof. Let U and W be the partite sets of T . Suppose by contradiction that ϕ : V (T )→ Γk is an externally acyclic coloring
of T with k ≥ 2r + 2 colors.

Since Hϕ(T ) is acyclic, we may assume that there exists a source u ∈ U of Hϕ(T ). That is, ϕ(N−(u)) = {ϕ(u)}. Let S ⊂ W
be such that:

S has exactly one vertex of each color in ϕ(W ) (1)

Let A be the set of vertices inW with color ϕ(u). Since N−(u) ⊆ A and T is an r-regular bipartite tournament, |A| ≥ r . By
(1), |S ∩ A| = 1 and therefore

|ϕ(W )| = |S| = |S ∩ A| + |S ∩ (W \ A)| ≤ 1+ |W \ A| ≤ 1+ 2r − r = r + 1. (2)

Notice that

Γk \ ϕ(W ) ⊂ ϕ(U). (3)
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Let S ′ ⊂ U be such that

S ′ has exactly one vertex of each color in Γk \ ϕ(W ). (4)

Since T is colored by at least 2r + 2 colors, (2) and (3), we have that

|S ′| = |Γk \ ϕ(W )| ≥ k− (r + 1) ≥ 2r + 2− r − 1 = r + 1. (5)

Let v ∈ S. Since T is r-regular, and (5), there exist u1, u2 ∈ S ′ such that u1 ∈ N+(v) and u2 ∈ N−(v). By (3) and (4),
ϕ(u1) ≠ ϕ(v) ≠ ϕ(u2). Since v ∈ N−(u1) ∩ N+(u2) and T is an r-regular tournament, there exists v∗ ∈ N+(u1) ∩ N−(u2).
By (3) and (4), ϕ(u1) ≠ ϕ(v

∗) ≠ ϕ(u2). Therefore (v, u1, v
∗, u2, v) is a cycle of Hϕ(T )which is a contradiction. �

For a digraph W , we denote byW 0 the digraphW without its isolated vertices.
We will use the following result to prove that the bounds of Proposition 12 are tight for strongly connected bipartite

tournaments, and that the upper bound of Theorem 13 is tight for regular bipartite tournaments.

Theorem 14 (Theorem 3.4 [7]). Let σ(D, Fu) be a digraph. Then

−→ω (σ(D, Fu)) = max
W∈Tr(D)

ω(W 0)+


u∉V (W0)

|Fu|

 .
As a consequence of Theorem14 and the definitions of Zykov sumand composition,we have the following two corollaries

for bipartite tournaments.

Corollary 15. Let σ(D, K nu) be a bipartite tournament, where nu ≥ 1. Then

−→ω (σ(D, K nu)) = max
W∈Tr(D)

ω(W 0)+


u∉V (W0)

|nu|

 .
Corollary 16. Let D[K n] be a bipartite tournament. Then

−→ω (D[K n]) = max
W∈Tr(D)

{ω(W 0)+ n|V (D) \ V (W 0)|}.

Corollary 17. Let T = σ(
−→
C 4, K ni) (0 ≤ i ≤ 3), where

−→
C 4 = (u0, u1, u2, u3, u0), n2 ≥ n0 and n3 ≥ n1. Then −→ω (σ(

−→
C 4,

K ni)) = n2 + n3 + 1. Moreover,

(i) For every r ∈ N, there exists an r-regular bipartite tournament Tr such that −→ω (Tr) = 2r + 1.
(ii) For every n, k ∈ N such that n ≥ 4 and ⌈n/2⌉ + 1 ≤ k ≤ n− 1, there exists a strongly connected bipartite tournament T of

order n such that −→ω (T ) = k.

Proof. Wemay assume that U = {K n0 , K n2} and V = {K n1 , K n3} are the partite sets of T .
Let S ∈ Tr(

−→
C 4). We define ρ(S) = ω(S0)+


ui∉V (S0)

(nui).
If |A(S0)| ≥ 2, then ρ(S) ≤ 2+max{n2, n3} and if |A(S0)| = 1, then ρ(S) ≤ 1+ n2 + n3. By Theorem 14,
−→ω (T ) = max

S∈Tr(
−→
C 4)

ρ(S) ≤ 1+ n2 + n3.

LetW ∈ Tr(
−→
C 4) such that A(W 0) = {u0u1}. Note that ρ(W ) = 1+ n2 + n3. Hence,

−→ω (T ) = 1+ n2 + n3.

(i) Observe that Tr =
−→
C 4[Kr ] is such that−→ω (Tr) = 2r + 1.

(ii) Let T = σ(
−→
C 4, K ni) (0 ≤ i ≤ 3), where

−→
C 4 = (u0, u1, u2, u3, u0), n2 ≥ n0 and n3 ≥ n1. If k and n are integers such that

⌈n/2⌉ + 1 ≤ k ≤ n− 1 and n2 + n3 = k− 1, then by (i) it follows that−→ω (T ) = k. �

By Corollary 17(ii) and since −→ω (
−→
C 4) = 3, the bounds given in Proposition 12 are best possible for strongly connected

bipartite tournaments. Corollary 17 (i) shows that the upper bound of Theorem 13 is also tight for regular bipartite
tournaments.

The following corollary gives lower bounds on the acyclic disconnection of bipartite tournaments with concordance.
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Corollary 18. Let T be a bipartite tournament with partite sets U and V . If T is not acyclic, then we have the following bounds
on the acyclic disconnection of T .

(i) If U ′ ⊆ U and V ′ ⊆ V such that |U ′| = s and |V ′| = t, and the vertices of U ′ (resp. of V ′) are concordant, then
−→ω (T ) ≥ s+ t + 1.

(ii) If T has concordant vertices, then−→ω (T ) ≥ 4.
(iii) If T ∼= D[K r ], then−→ω (T ) ≥ 2r + 1.

Proof. (i) Let u′ ∈ U ′, v′ ∈ V ′, W = (U ′ ∪ V ′) \ {u′, v′} and T ′ = T \ W . If V (Fu) = {u} whenever u ∈ V (T ′) \ {u′, v′},
V (Fu′) = U ′ and V (Fv′) = V ′, then it is clear that T ′ ∼= σ(T ′, Fu). Thus, by Corollary 15,−→ω (T ) ≥ s+ t + 1.
(ii) and (iii) follow by Remark 3 and (i). �

Notice that if T is a bipartite tournament of order n with concordance, then 4 ≤ −→ω (T ) ≤ n − 1 (Corollary 18(ii) and
Proposition 12). Finally, by Corollary 17 (ii), the previous bounds are tight for bipartite tournament with concordance.

The results proved in this section show that if a bipartite tournament T has concordant vertices, then−→ω (T ) is relatively
big with respect to its order. Furthermore, in order to find bipartite tournaments with minimal values for their acyclic
disconnection, the most interesting cases are the highly ‘‘cyclic’’ regular bipartite tournaments without concordance.

5. Bipartite regular tournaments without concordance

In this section we only consider regular bipartite tournaments without concordance.

Lemma 19. Let T be a regular bipartite tournament without concordance, U and V be the partite sets of T . If ϕ : V (T )→ Γs is
a vertex coloring of T , then

(i) For every pair u ≠ v ∈ U (resp. u ≠ v ∈ V), there exists a 4-cycle containing u and v.
(ii) If the set U (resp. V ) has two vertices with colors which are not in ϕ(V ) (resp. in ϕ(U)), then Hϕ(T ) has a 4-cycle.

Proof. (i) Since u and v are not concordant vertices, there exist x ∈ N+(u) ∩ N−(v) and y ∈ N+(v) ∩ N−(u). Therefore
(u, x, v, y, u) is a 4-cycle of T . (ii) follows from (i). �

Lemma 20. Let T be a regular bipartite tournament without concordance, U and V the partite sets of T . If ϕ : V (T )→ Γs is an
externally acyclic vertex coloring of T , then

(i) There are at most two singular classes and |ϕ(V ) ∩ ϕ(U)| ≥ s− 2.
(ii) Each element ci of ϕ(U) \ ϕ(V ) is a singular class of ϕ.

Proof. As a consequence of Lemma 19(ii), there is atmost one color inU not being used in V and reciprocally; so (i) is settled.
Finally, (ii) is proved by pointing out that if there exists a color in U not being used in V , then this color must be a singular
class by Lemma 19(ii). �

By Lemma 20(i), if T has no concordant vertices, then an externally acyclic partition of V (T ) with −→ω (T ) classes has at
most two singular classes. Then we have the following corollary to Theorem 14.

Corollary 21. Let D be a bipartite tournament without concordance. Then
−→ω (D[K n]) ≤ max

W∈Tr(D)
{ω(W 0)+ 2n}.

Proof. Note that |V (D) \ V (W 0)| ≤ 2, since there are at most two singular classes of an externally acyclic coloring, by
Lemma 20(i). �

Theorem 22. If T is an r-regular bipartite tournament without concordance, then−→ω (T ) ≤ r + 2.

Proof. This proof is analogous to the proof of Theorem 13. Using the same notations of the proof of Theorem 13, we obtain
|S| ≤ r + 1 and |S ′| ≥ 2. This is a contradiction to the fact that U has at most one vertex s such that ϕ(s) ∉ ϕ(W ), by
Lemma 19(ii). �

We denote by Bk the circulant bipartite tournament
−→
C 4k({1, 3, . . . , 2k− 1}). Our last result states that the digraphs Bk

with k ≥ 2 form an infinite family of regular bipartite tournaments without concordance with acyclic disconnection 4. To
show that we need the following lemmas.

Lemma 23. −→ω (B2) = 4.

Proof. Let ϕ be an externally acyclic coloring with at least five colors. SinceHϕ(B2) is acyclic and B2 is vertex transitive, then
we may assume that 0 is the source of Hϕ(B2) and that ϕ(0) = R. Since 7, 5 ∈ N−(0), we have that ϕ({7, 5}) = R. Notice
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that the rest of the vertices of B2 (five in total) are coloredwith at least four colors. Therefore, there are at least three singular
classes which is a contradiction by Lemma 20 (i).

Let ϕ : V (B2)→ {R, B,G, Y } be the coloring such that ϕ({0, 2, 5, 7}) = R, ϕ({1, 6}) = B, ϕ(4) = G and ϕ(3) = Y . It is
clear that ϕ is an externally acyclic coloring of B2. �

Lemma 24. Let k ≥ 2. For each i = 0, 1, . . . , 2k− 1,

(i) the vertices i and i+ 2k are discordant in Bk.
(ii) the set {i, i+ 1, 2k+ i, 2k+ i+ 1} induces a 4-cycle in Bk and
(iii) the digraph Bk \ {i, i+ 1, i+ 2k, i+ 2k+ 1} is isomorphic to Bk−1.

Proof. (i) and (ii) are easy consequences of the definition of Bk. Since Bk is a vertex transitive bipartite tournament and the
fact that for each i, the map φ : j→ j+ i, is an automorphism of Bk, we may assume that i = 2k− 2. Then (iii) follows since

ψ(j) =

j if 0 ≤ j < 2k− 2,
j− 2 if 2k ≤ j < 4k− 2.

shows that Bk \ {i, i+ 1, i+ 2k, i+ 2k+ 1} is isomorphic to Bk−1 in the case where i = 2k− 2. �

Theorem 25. If k ≥ 2, then−→ω (Bk) = 4.

Proof. Let k ≥ 2. To prove−→ω (Bk) ≥ 4 we define a vertex coloring ϕ : V (Bk)→ {R, B,G, Y } as follows:

ϕ(2i) =

R if 0 ≤ 2i ≤ 2k− 2,
G if 2i = 2k,
B if 2k+ 2 ≤ 2i ≤ 4k− 2,

(6)

and

ϕ(2i− 1) =

B if 1 ≤ 2i− 1 ≤ 2k− 3,
Y if 2i− 1 = 2k− 1,
R if 2k+ 1 ≤ 2i− 1 ≤ 4k− 1

(7)

and show that ϕ is an externally acyclic coloring.
Observe that N−(0) = {2i − 1 : 2k + 1 ≤ 2i − 1 ≤ 4k − 1}. By (6) and (7), ϕ(v) = ϕ(0) = R for every v ∈ N−(0).

Therefore 0 is a source of Hϕ(Bk). Analogously, 1 is a source of Hϕ(Bk) \ {0}, since ϕ(v) = ϕ(1) = B for every v ∈
N−(1; Bk \ {0}) = {2i : 2k+ 2 ≤ 2i ≤ 4k− 2}.

If 2 ≤ 2j ≤ 2k− 2, then

N−(2j; Bk \ {2j− 1, 2j− 2, . . . , 0}) ⊆ {2i− 1 : 2k+ 1 ≤ 2i− 1 ≤ 4k− 1}.

By (6) and (7), ϕ(u) = ϕ(2j) = R for each u ∈ {2i − 1 : 2k + 1 ≤ 2i − 1 ≤ 4k − 1}. Therefore 2j is a source of
Hϕ(Bk) \ {2j− 1, 2j− 2, . . . , 0}.

If 2k ≤ 2j ≤ 4k−2, then N−(2j; Bk \{2j−1, 2j−2, . . . , 0}) = ∅ and 2j is also a source ofHϕ(Bk)\{2j−1, 2j−2, . . . , 0}.
Analogously, if 3 ≤ 2j− 1 ≤ 2k− 3, then

N−(2j− 1; Bk \ {2j− 2, 2j− 3, . . . , 0}) ⊆ {2i : 2k+ 2 ≤ 2i ≤ 4k− 2}.

Again by (6) and (7), ϕ(v) = ϕ(2j − 1) = B for each v ∈ {2i : 2k + 2 ≤ 2i ≤ 4k − 2}. Therefore 2j − 1 is a source of
Hϕ(Bk) \ {2j− 2, 2j− 3, . . . , 0}.

Finally, if 2k − 1 ≤ 2j − 1 ≤ 4k − 1, then N−(2j; Bk \ {2j − 2, 2j − 3, . . . , 0}) = ∅ and 2j − 1 is also a source of
Hϕ(Bk) \ {2j− 2, 2j− 3, . . . , 0}.

Therefore Hϕ(Bk) is an acyclic digraph which shows−→ω (Bk) ≥ 4.
We proceed to prove−→ω (Bt) ≤ 4 for t ≥ 2. Suppose by contradiction that there is an integer r ≥ 2 such that−→ω (Br) ≥ 5

and let k be the smallest such integer. By Proposition 5 there is a coloring ϕ of Bk with exactly 5 colors such that Hϕ(Bk)

contains no cycles. Notice that k ≥ 3 as−→ω (B2) = 4 by Lemma 23.
Form = 0, 1, . . . , 2k− 1, let Sm = {m,m+ 1, 2k+m, 2k+m+ 1}. By Lemma 24, Bk \ Sm is isomorphic to Bk−1 and by

the choice of k, −→ω (Bk \ Sm) = −→ω (Bk−1) ≤ 4. Since Hϕ(Bk) contains no cycles, Hϕ(Bk) \ Sm must also by acyclic. Therefore,
for m = 0, 1, . . . , 2k− 1, there is a color cm of ϕ such that ϕ(u) ≠ cm for each vertex u of Bk \ Sm.

Notice that S0, S2, . . . , S2r−2 are pairwise disjoint and therefore c2i ≠ c2j if i ≠ j. Analogously c2i+1 ≠ c2j+1 if i ≠ j.
Moreover, if ci = cj, then Si ∩ Sj ≠ ∅ and therefore j = i− 1 or j = i+ 1 modulo 2k.

For each m = 0, 1, . . . , 2k− 1, choose a vertex sm ∈ Sm such that ϕ(sm) = cm.

Claim 2. If ci = ci+1, then color ci = ci+1 is a singular class of ϕ and si = si+1 = i+ 1 or si = si+1 = i+ 1+ 2k.
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Proof of Claim. If ci = ci+1, then {si, si+1} ⊂ Si ∩ Si+1 = {i + 1, i + 1 + 2k}. In any case, if color ci = ci+1 is not a singular
class of ϕ, then ϕ(i + 1) = ϕ(i + 1 + 2k) and {i + 1, i + 2, i + 1 + 2k, i + 2 + 2k} induces a cycle of Hϕ(Bk) which is not
possible.

If si = i+ 1 and si+1 = i+ 1+ 2k or si = i+ 1+ 2k and si+1 = i+ 1, then ϕ(i+ 1) = ϕ(i+ 1+ 2k)which again is not
possible. Therefore either si = si+1 = i+ 1 or si = si+1 = i+ 1+ 2k. �

By Lemma 20, ϕ has at most two singular classes. Therefore Claim 2 implies that there are at most two integers i and j
such that ci = ci+1 and cj = cj+1. This, together with the fact that there are only five colors available for s0, s1, . . . , s2k−1,
gives k ≤ 3. Since k ≥ 3, the only remaining case is that of B3.

As ϕ is a coloring of B3 with exactly five colors, there are at least two colors ci and ci+1 such that ci = ci+1; without loss
of generality we may assume i = 0. Again by Claim 2, color c0 = c1 is a singular class of ϕ and either s0 = s1 = 1 or
s0 = s1 = 7. Since B3 is vertex transitive, we assume that s0 = s1 = 1.

Suppose c0 = c1, c2, c3, c4 and c5 are the five colors in ϕ. In this case we reach a contradiction since ϕ(7) ≠ ci for
i = 0, 1, 2, 3, 4, 5 because color c0 = c1 = ϕ(1) is a singular class of ϕ and 7 ∉ Si for i = 2, 3, 4, 5.

Therefore, there is an integer 0 < t < 5 such that ct = ct+1. By Claim 2, color ct = ct+1 is a singular class and either
st = st+1 = t + 1 or st = st+1 = t + 7.

If t is even and st = st+1 = t + 1, then {1, 2, t + 1, 8} induces a cycle in Hϕ(B3) and if t is even and st = st+1 = t + 7,
then {1, 6, t + 7, 0} induces a cycle in Hϕ(B3). In both cases we reach a contradiction.

If t = 1, then c0 = c1 = c2 which is not possible since S0 ∩ S2 = ∅. Therefore t = 3 in which case color c3 = c4 is a
singular class and either s3 = s4 = 4 or s3 = s4 = 10. We show that in both cases Hϕ(B3) contains a cycle.

Observe that there is a color x in ϕ such that x ≠ ci for i = 0, 1, . . . , 5 because ϕ is a 5-coloring of B3 with c0 = c1 and
c3 = c4.
Case 1.- s0 = s1 = 1 and s3 = s4 = 4.

Since 7 ∉ Si for i = 2, 3, 4, 5 and color c0 = c1 is a singular class of ϕ, then ϕ(7) = x; analogously ϕ(10) = x. As none
of the sets {7, 0, 1, 4}, {7, 8, 1, 4}, {5, 10, 1, 4} or {9, 10, 1, 4} induces a cycle of Hϕ(B3), ϕ(0) = x, ϕ(8) = x, ϕ(5) = x and
ϕ(9) = x. Since color c2 is not a singular class and ϕ(8) = ϕ(9) = x, then ϕ(2) = ϕ(3) = c2. Finally, ϕ(6) = ϕ(11) = c5,
because color c5 is not a singular class and ϕ(0) = ϕ(5) = x. In this case {2, 5, 6, 9} induces a cycle of Hϕ(B3).
Case 2.- s0 = s1 = 1 and s3 = s4 = 10.

Since 7 ∉ Si for i = 2, 3, 4, 5 and color c0 = c1 is a singular class of ϕ, then ϕ(7) = x; analogously ϕ(4) = x. As none of
the sets {2, 7, 10, 1}, {6, 7, 10, 1}, {4, 5, 10, 1} or {4, 9, 10, 1} induces a cycle of Hϕ(B3), ϕ(2) = x, ϕ(6) = x, ϕ(5) = x and
ϕ(9) = x. Since color c5 is not a singular class and ϕ(5) = ϕ(6) = x, then ϕ(11) = ϕ(0) = c5. Finally, ϕ(3) = ϕ(8) = c2,
because color c2 is not a singular class and ϕ(2) = ϕ(9) = x. In this case {0, 5, 8, 9} induces a cycle of Hϕ(B3).

In all cases we reach a contradiction by finding a cycle in Hϕ(B3). Therefore−→ω (Bk) ≤ 4, for every k ≥ 2. �

As a final remark we present the following intriguing conjecture.

Conjecture 26. Let T be a bipartite tournament. Then−→ω (T ) = 3 if and only if T ∼=
−→
C 4.
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