Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Kernels by monochromatic paths in digraphs with covering number 2^*

Hortensia Galeana-Sánchez^a, Mika Olsen^{b,*}

^a Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México DF, Mexico ^b Departamento de Matemáticas Aplicadas y Sistemas, UAM-Cuajimalpa, Calle Artificios 40 6º piso, Álvaro Obregón, CP 01120, México DF, Mexico

ARTICLE INFO

Article history: Available online 16 October 2010

Keywords: Digraphs Kernel by monochromatic paths Covering number

ABSTRACT

We call the digraph *D* an *k*-colored digraph if the arcs of *D* are colored with *k* colors. A subdigraph *H* of *D* is called monochromatic if all of its arcs are colored alike. A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices $u, v \in N$, there is no monochromatic directed path between them, and (ii) for every vertex $x \in (V(D) \setminus N)$, there is a vertex $y \in N$ such that there is an *xy*-monochromatic directed path. In this paper, we prove that if *D* is an *k*-colored digraph that can be partitioned into two vertex-disjoint transitive tournaments such that every directed cycle of length 3, 4 or 5 is monochromatic, then *D* has a kernel by monochromatic paths. This result gives a positive answer (for this family of digraphs) of the following question, which has motivated many results in monochromatic kernel theory: *Is there a natural number 1 such that if a digraph D is k-colored so that every directed cycle of length 2, 4 or 5 is monochromatic paths?*

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let *D* be a digraph. We denote by V(D) and A(D) the sets of vertices and the set of arcs of *D*, respectively. Let $v \in V(D)$. We denote by $N^+(v)$ and $N^-(v)$ the out- and in-neighborhood of v in *D*, respectively. We define $\delta^+(w) = |N^+(w)|$ and $\delta^-(w) = |N^-(w)|$. For $S \subseteq V(D)$, we denote by D[S] the subdigraph of *D* induced by the vertex set *S*. For two disjoint subsets *U*, *V* of *V*(*D*), we denote by $(U, V) = \{uv \in A(D) : u \in U, v \in V\}$ and $[U, V] = (U, V) \cup (V, U)$. An *UV*-arc is an arc from (U, V) if $U = \{u\}$ (resp. $V = \{v\}$), we denote the *UV*-arc by *uV*-arc (resp. *Uv*-arc). We call the digraph *D* an *k*-colored digraph if the arcs of *D* are colored with *k* colors. The digraph *D* will be an *k*-colored digraph and all the paths, cycles and walks considered in this paper will be directed paths, cycles or walks. If $W = (x_0, x_1, \ldots, x_n)$ is a walk, the *length* of *W* is *n*. The length of a walk *W* is denoted by l(W). The path (u_0, u_1, \ldots, u_n) will be called an *UV*-path whenever $u_0 \in U$ and $u_n \in V$. A tournament is a digraph *T* such that there is exactly one arc between any two vertices of *T*. An acyclic tournament is called a *transitive tournament*. A vertex $v \in V(T)$ is called a *sink* if $N^-(v) = V(D) \setminus v$. A subdigraph *H* of a *k*-colored digraph *D* is called *monochromatic* if all of its arcs are colored alike. Let $N \subseteq V(D) \setminus v$. A subdigraph *H* of a *k*-colored digraph *D* is called monochromatic directed path between any pair of vertices of the set *N*, *N* is a *m*-absorbent (or *m*-dominant) if for every vertex $x \in (V(D) \setminus N)$ there is a vertex $y \in N$ such that there is an *xy*-monochromatic directed path and finally, *N* is a *m*-absorbent. For general concepts, we refer the reader to [1,2,7].

The topic of domination in graphs has been widely studied by many authors. A very complete study of this topic is presented in [19,20]. A special class of domination is the domination in digraphs, and it is defined as follows. In a digraph *D*,

☆ Research supported by CONACyT-México under project 83917.

* Corresponding author. E-mail addresses: olsen@correo.cua.uam.mx, olsen@correo.cua.mx (M. Olsen).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter S 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.09.022

a set of vertices $S \subseteq V(D)$ dominates whenever for every $w \in (V(D) \setminus S)$ there exists a wS-arc in D. Dominating independent sets in digraphs (kernels in digraphs) have found many applications in different topics of mathematics (see for instance [21, 22,8,9,26]) and they have been studied by several authors; interesting surveys of kernels in digraphs can be found in [6,9]. The concepts of *m*-domination, *m*-independence and *m*-kernel in edge-colored digraphs are generalization of those of domination, independence and kernel in digraphs. The study of the existence of *m*-kernels in edge-colored digraphs starts with the theorem of Sands, Sauer and Woodrow, proved in [25], which asserts that every two-colored digraph possesses an *m*-kernel. In the same work, the authors proposed the following question: let *D* be an *k*-colored tournament such that every directed cycle of length 3 is quasi-monochromatic (a subdigraph H of an k-colored digraph D is said to be quasimonochromatic if, with at most one exception, all of its arcs are colored alike) must D have a m-kernel? Minggan [24] proved that if D is an k-colored tournament such that every directed cycle of length 3 and every transitive tournament of order 3 is guasi-monochromatic, then D has a m-kernel. He also proved that this result is best possible for m > 5. In [15], it was proved that the result is best possible for $m \ge 4$. The question for m = 3 is still open: Does every 3-colored tournament such that every directed cycle of length 3 is quasi-monochromatic have a m-kernel? Sufficient conditions for the existence of *m*-kernels in edge-colored digraphs have been obtained mainly in tournaments and generalized tournaments, and ask for the monochromaticity or quasi-monochromaticity of small digraphs (due to the difficulty of the problem) in several papers (see [10,11,15,16,18,24]). Other interesting results can be found in [27,28]. Another question which has motivated many results in *m*-kernel theory is the following (proposed in the abstract): Given a digraph D is there an integer k such that if every directed cycle of length at most k is monochromatic (resp. quasi-monochromatic), then D has a m-kernel? In [11] (resp. in [16]) it was proved that if *D* is an *k*-colored tournament (resp. bipartite tournament) such that every directed cycle of length 3 (resp. every directed cycle of length 4) is monochromatic, then D has a m-kernel. Later the following generalization of both results was proved in [17]: if D is an k-colored k-partite tournament, such that every directed cycle of length 3 and every directed cycle of length 4 is monochromatic, then D has a m-kernel. In [18] were considered quasi-monochromatic cycles, the authors proved that if D is an k-colored tournament such that for some k every directed cycle of length k is quasi-monochromatic and every directed cycle of length less than k is not polychromatic (a subdigraph H of D is called *polychromatic* whenever it is colored with at least three colors), then D has a m-kernel. In [13] this result was extended for nearly complete digraphs. The covering number of a digraph D is the minimum number of transitive tournaments of D that partition V(D). Digraphs with a small covering number are a nice class of nearly tournament digraphs. The existence of kernels in digraphs with a covering number at most 3 has been studied by several authors, in particular by Berge [3], Maffray [23] and others [4,5,12,14].

In this paper, we study the existence of *m*-kernel in edge-colored digraphs with covering number 2, asking for the monochromaticity of small directed cycles. We prove that if *D* is an *k*-colored digraph with covering number 2 such that every directed cycle of length 3, 4 or 5 is monochromatic, then *D* has a *m*-kernel.

2. Structural properties

We consider the family \mathfrak{D} of digraphs D with covering number 2. Since D has covering number 2, there exists a non-trivial partition of V(D) into two sets U, V such that D[U], D[V] are transitive tournaments. Throughout this paper, the non-trivial partition of the vertex set into U, V is such that D[U], D[V] are transitive tournaments. Let T be a transitive tournament of order n. Throughout this paper, $(v_n, v_{n-1}, \ldots, v_1)$ will denote the Hamiltonian path in T. Thus for any $1 \le i \le n$, the vertex v_i is the sink of $T \setminus \{v_1, v_2, \ldots, v_{i-1}\}$, in particular, v_1 is the sink of T. When $P = (u_0, u_1, \ldots, u_k)$ is a path, we will denote by (u_i, P, u_j) , for $0 \le i < j \le k$, the u_i, u_j -path contained in P. Let $u_i u_{i+1}$ and $u_j u_{j+1}$ be two distinct arcs on P. We say that the arc $u_i u_{i+1}$ precedes (resp. follows) the arc $u_i u_{i+1}$ on the path P, if i < j (resp. j < i).

Throughout this paper, the vertex *z* will be **fixed and arbitrary**.

First, we prove some structural properties of the wz-paths of minimum length with $w \in \{u_1, v_1\}$ in digraphs of the family \mathfrak{D} . Next, we extend these properties for wz-paths of minimum length with $w \in \{u_1, v_1\}$ in k-colored digraphs of the family \mathfrak{D} with every directed cycle of length 3, 4 or 5 monochromatic.

Let $u_m v_n$, $v_k u_l \in [U, V]$. We say that $u_m v_n$, $v_k u_l$ are crossing arcs if u_m , $u_l \in V(D)$, v_n , $v_k \in V(D)$, and $m \le l$, $k \le n$, except when n = k and m = l (see Fig. 1). Let $u_m v_n \in (U, V)$. If xy, $u_m v_n \in [U, V]$ are crossing arcs, then clearly $xy \in (V, U)$.

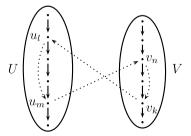


Fig. 1. $u_m v_n$ and $v_k u_l$ are crossing arcs.

Lemma 1. Let *D* be a digraph of the family \mathfrak{D} such that the sinks u_1, v_1 of D[U] and D[V] respectively has a nonempty outneighborhood. Let *P* be a *wz*-path of minimum length, with $w \in \{u_1, v_1\}$. Then, any $a \in [U, V] \cap A(P)$ has at most one preceding crossing arc on *P* and at most one following crossing arc on *P*.

Proof. Let *D* be a digraph that satisfies the hypothesis of this lemma and let *P* be a *wz*-path of minimum length starting at the vertex u_1 or v_1 and $|[U, V] \cap A(P)| \ge 2$.

Suppose, for a contradiction, that there is an arc of $[U, V] \cap A(P)$ with at least two following (*preceding*) crossing arcs on P. By symmetry, we may assume that $u_i v_j \in (U, V) \cap A(P)$ is such that $u_i v_j$ has at least two following (*preceding*) crossing arcs in (V, U). Let $v_k u_l \in (V, U)$ be the first following crossing arc on P and let $v_s u_t \in (V, U)$ be the last following crossing arc on P. Since $u_i v_j$ and $v_s u_t$ are crossing arcs, $j \geq k$, s and l, $t \geq i$. Do also note that P is a path and therefore $l \neq t$ and $k \neq s$ (see Fig. 2).

Fig. 2. $u_i v_i$ and $v_s u_t$ are crossing arcs.

The cycle $(u_i, v_j, v_s, u_t, u_i)$ (resp. the cycle $(u_i, v_j, v_e, u_f, u_i)$) has length at most 4 (see Fig. 2), and since *P* is a path, v_jv_s is not on *P*, then $P' = (w, P, v_j) \cup (v_j, v_s) \cup (v_s, P, z)$ (resp. $P' = (w, P, u_f) \cup (u_f, u_i) \cup (u_i, P, z)$) is a *wz*-directed path such that l(P') < l(P), which contradicts the way we chose *P*. So $u_iv_j \in (U, V)$ has at most one following (preceding) crossing arc; by symmetry any arc of [U, V] has at most one following (preceding) crossing arc and we are done. \Box

Remark 1. Let *D* be a digraph of the family \mathfrak{D} such that $\delta^+(u_1)$, $\delta^+(v_1) > 0$. Let *P* be a *wz*-path of minimum length with $w \in \{u_1, v_1\}$. Then, *xy* is the first arc of $[U, V] \cap A(P)$ if and only if x = w.

Lemma 2. Let D be a digraph of the family \mathfrak{D} such that $\delta^+(u_1), \delta^+(v_1) > 0$. Let P be a directed wz-path of minimum length, with $w \in \{u_1, v_1\}$. Then, any two consecutive [U, V]-arcs on P are crossing arcs.

Proof. Let *D* be a digraph that satisfies the hypothesis of this lemma and let *P* be a path of minimum length, starting at the vertex u_1 or v_1 , with $|[U, V] \cap A(P)| \ge 2$.

Suppose, for a contradiction, that there are two consecutive [U, V]-arcs on P such that they are not crossing arcs. By symmetry, we may assume that $u_i v_j \in (U, V)$, $v_k u_l \in (V, U)$ is the first pair of consecutive [U, V]-arcs that does not form a crossing pair, then $1 \le l < i$ and by Remark 1, the arc $u_i v_j$ must have a preceding VU-arc, and this arc must be a crossing arc by the way we chose the arc $u_i v_j$. Let $v_g u_h \in (V, U)$ be the preceding crossing arc of $u_i v_j$. Since D[U] is transitive, then $P' = (w, P, u_h) \cup (u_h, u_l) \cup (u_l, P, z)$ is a wz-path such that l(P') < l(P) (see Fig. 3), which is a contradiction. \Box

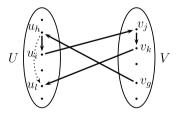


Fig. 3. How we find a path P' such that l(P') < l(P).

Proposition 1. Let *D* be a digraph of the family \mathfrak{D} such that $\delta^+(u_1), \delta^+(v_1) > 0$. Let *P* be a *wz*-path of minimum length with $|[U, V] \cap A(P)| \ge 2$. Then, the first and the last [U, V]-arc on *P* have exactly one crossing arc and any [U, V]-arc except the first and the last one, has exactly one preceding and exactly one following crossing [U, V]-arc.

Proof. A consequence of the Lemmas 1 and 2. \Box

We will now extend the results Lemmas 1, 2 and Proposition 1 to k-colored digraphs of the family \mathfrak{D} , with every directed cycle of length 3, 4 or 5 monochromatic.

Remark 2. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic. Then any two crossing arcs have the same color, and so if m < l and k < n, then $(u_l, u_m, v_n, v_k, u_l)$ is a 4-cycle, if m < l and n = k, then (u_m, v_n, u_l, u_m) is a 3-cycle and if m = l and k < n, then (u_m, v_n, v_k, u_m) is a 3-cycle (see Fig. 1).

Moreover for any integers *i* or *j*, m < i < l and n < j < k (if they exist), the arcs $u_l u_i$, $u_i u_m$, $v_n v_j$, $v_j v_k$ have the same color as the crossing arcs $u_m v_n$, $v_k u_l$ (see Fig. 1).

Lemma 3. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3, 4 and 5 are monochromatic. If $\delta^+(u_1), \delta^+(v_1) > 0$, then u_1v_i and v_1u_i has the same color for any $u_i \in N^+(v_1)$ and $v_i \in N^+(u_1)$.

Proof. Let *i*, *j* be two integers such that $u_i \in N^+(v_1)$ and $v_j \in N^+(u_1)$. Then, the arcs u_1v_j , v_1u_i are crossing arcs and by Remark 2, they have the same color. \Box

Corollary 1. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3, 4 and 5 are monochromatic. If $\delta^+(u_1), \delta^+(v_1) > 0$, then all the monochromatic paths from u_1 or from v_1 have the same color.

By Lemma 3, we may assume that every arc u_1v_j , v_1u_i has color 1, and by Corollary 1, any monochromatic u_1x -path, v_1x -path has color 1, for all $x \in V(D)$.

Lemma 4. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3 and 4 are monochromatic and such that $\delta^+(u_1), \delta^+(v_1) > 0$. Let *P* be a monochromatic *wz*-path of minimum length, with $w \in \{u_1, v_1\}$, and let $a \in [U, V] \cap A(P)$. Then the arc *a* has at most one preceding crossing [U, V]-arc on *P* and at most one following crossing [U, V]-arc on *P*.

Proof. Let *D* be a digraph that satisfies the hypothesis of the Lemma 4 and let *P* be a monochromatic *wz*-path of minimum length starting at the vertex u_1 or v_1 and $|[U, V] \cap A(P)| \ge 2$.

Suppose, for a contradiction, that $a \in [U, V] \cap A(P)$ such that a has at least two following crossing arcs on P. By symmetry, we may assume that $u_i v_j \in (U, V)$ is the first [U, V]-arc of P such that $u_i v_j$ has at least two following crossing arcs on P. Proceed as in the proof of Lemma 1. Since the cycle $(u_i, v_j, v_s, u_t, u_i)$ has length at most 4, it is monochromatic. Moreover, the arc $u_i v_j$ has color 1, so the cycle and the path P' are both monochromatic of color 1 (see Fig. 2) and P' is a monochromatic wz-path such that l(P') < l(P). So any [U, V]-arc on P has at most one following crossing [U, V]-arc on P. Analogously, any [U, V]-arc on P has at most one preceding crossing [U, V]-arc on P.

Remark 3. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3, 4 and 5 are monochromatic. Let *P* be a monochromatic *wz*-path of minimum length with $w \in \{u_1, v_1\}$. Then *xy* is the first [U, V]-arc on *P* if and only if x = w.

Lemma 5. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3, 4 and 5 are monochromatic and such that $\delta^+(u_1), \delta^+(v_1) > 0$. Let *P* be a monochromatic *wz*-path of minimum length, with $w \in \{u_1, v_1\}$. Then any two consecutive [U, V]-arcs on *P* are crossing arcs.

Proof. Let *D* be a digraph that satisfies the hypothesis of this lemma and let *P* be a monochromatic path of minimum length starting at the vertex u_1 or v_1 , with $|[U, V] \cap A(P)| \ge 2$.

Suppose, for a contradiction, that there are two consecutive [U, V]-arcs on P that are not crossing arcs. By symmetry, we may assume that $u_iv_j \in (U, V)$ is the first [U, V]-arc such that the following [U, V]-arc v_ku_l is not a crossing arc of u_iv_j .

Claim 1. If $v_1u_x \in A(P)$ is the first [U, V]-arc on P, then x < l.

Let $x \ge l$. Suppose, for a contradiction, that v_1u_x is the first [U, V]-arc on P, then $(v_1, u_x, u_l, u_1, v_y, v_1)$ is a monochromatic cycle of color 1 and of length at most 5 (where v_y is any vertex in $N^+(u_1)$). Thus $P' = (w = v_1, u_x, u_l) \cup (u_l, P, z)$ is a directed monochromatic wz-path of color 1. Since $|[U, V] \cap A(P)| \ge 2$, P' is such that l(P') < l(P), and the Claim 1 is valid. \Box

Claim 2. *P* has no crossing arcs $u_a v_b$, $v_c u_d$ preceding the arc $u_i v_i$ with a < l < d.

Let a < l < d. For a contradiction, suppose that $u_a v_b$, $v_c u_d$ is a pair of crossing arcs, both preceding the arc $u_i v_j$ on the path P. The length of the cycle $C = (u_a, v_b, v_c, u_d, u_l, u_a)$ is at most 5. The path P is monochromatic of color 1, and so is the cycle C. If $u_a v_b$, $v_c u_d$ are consecutive crossing arcs, then $P' = (w, P, u_d) \cup (u_d, u_l) \cup (u_l, P, z)$ is a directed monochromatic wz-path. The arcs $u_a v_b$, $v_c u_d$ are preceding to the arc $u_i v_j$; thus, P' is such that l(P') < l(P). If $v_c u_d, u_a v_b$ are consecutive crossing arcs, then $P' = (w, P, u_d) \cup (u_d, u_l) \cup (u_l, P, z)$ is a directed monochromatic wz-path. The arcs $u_a v_b$, $v_c u_d$ are preceding to the arc $u_i v_j$; thus, P' is such that l(P') < l(P). So Claim 2 is valid. \Box

The arcs $u_i v_j$ and $v_k u_l$ are not crossing arcs, then i > l > 0 and by Remark 3, the arc $u_i v_j$ is not the first [U, V]-arc on P. Let $v_g u_h \in (V, U)$ be the preceding crossing arc of $u_i v_j$. Then, $h \ge i > l$ and g < j.

Note that $h \ge i > l$. By Claim 1 and Remark 3, the arc $v_g u_h$ is not the first [U, V]-arc on *P*. Let $v_e u_f \in (V, U)$ be the first arc on *P* such that f > l, such arc does exist (for instance $v_g u_n$). By Claim 1 and Remark 3, the arc $v_e u_f$ is not the first [U, V]-arc on *P*. Then, the arc $v_e u_f$ must have a preceding [U, V]-arc, and this arc must be a crossing arc by the way we chose the arc $u_i v_j$. Let $u_c v_d \in (U, V)$ be the preceding crossing arc of $v_e u_f$. By Claim 2 and the fact that f > l, we have that $c \ge l$; moreover, since *P* is a path c > l, then Claim 1 and Remark 3 imply that the arc $u_c v_d$ is not the first [U, V]-arc on *P*. So the arc $v_e u_f$

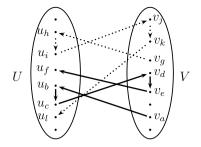


Fig. 4. Any two consecutive [U, V]-arcs on P are crossing arcs.

must have a preceding [U, V]-arc, and this arc must be a crossing arc by the way we chose the arc $u_i v_j$. Let $v_a u_b \in (V, U)$ be the preceding crossing arc of $u_c v_d$ (see Fig. 4).

By the choice of the arc $u_i v_j$, it follows that $v_a u_b$ and $u_c v_d$ are crossing arcs, and b > c > l which contradicts the choice of the arc $v_e u_f$. So any two consecutive [U, V]-arcs on P does form a crossing pair of arcs.

Corollary 2. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3, 4 and 5 are monochromatic and such that $\delta^+(u_1)$, $\delta^+(v_1) > 0$. Let *P* be a monochromatic *wz*-path of minimum length with $|[U, V] \cap A(P)| \ge 2$. Then, the first and the last [U, V]-arc on *P* have exactly one crossing arc and any [U, V]-arc, except the first and the last one has exactly one preceding and exactly one following crossing [U, V]-arc. Moreover, two crossing arcs on *P* must be consecutive [U, V]-arcs on *P*.

Proof. A consequence of the Lemmas 4 and 5. \Box

The following theorem collects the results of Lemmas 4, 5 and Corollary 2. Moreover, it describes the structure of a monochromatic path of minimum length, as shown in Fig. 5.

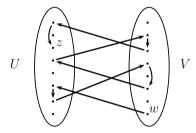


Fig. 5. The structure of a monochromatic directed *wz*-path of minimum length.

We denote by P_U the digraph on the vertex set $V(P) \cap U$, and $A(P_U) = A(P) \cap A(D[U])$.

Theorem 1. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3, 4 and 5 are monochromatic and such that $\delta^+(u_1), \delta^+(v_1) > 0$. Let *P* be a monochromatic *wz*-path of minimum length, with $w \in \{u_1, v_1\}$. Then,

(i) if $u_a v_b \in (U, V)$ and $u_e v_f \in (U, V)$ are arcs on P and $u_e v_f$ follows $u_a v_b$, a < e and b < f;

(ii) an induced path of P_U (resp. P_V) has length at most one.

Proof. Let *D* be a digraph that satisfies the hypothesis of this lemma and let *P* be a monochromatic path of minimum length starting at the vertex u_1 or v_1 .

- (i) In order to prove the item (i) we take $u_a v_b$ and $u_e v_f$ the preceding and the following crossing arc respectively of $v_c u_d$ on the path *P*, by the definition of crossing arcs a, e < d and c < b, f. Suppose, for a contradiction, that a > e, then $u_a v_b$ is not the first [U, V]-arc on *P*, by Remark 3. By Lemma 5, $u_a v_b$ has a preceding crossing arc, say *h*, then the arc $u_e v_f$ would have two preceding crossing arcs, namely $v_c u_d$ and *h* and by Lemma 4, we have a contradiction, so a < e. Analogously b < f.
- (ii) In order to prove that an induced path of P_U has length at most 1, we take two consecutive crossing arcs on the path P, say $u_a v_b$, $v_c u_d$, and prove that $v_b v_c \in A(P)$. The length of the cycle $C = (u_a, v_b, v_c, u_d, u_a)$ is at most 4 and the path P is monochromatic of color 1, and so is the cycle C. Then $P' = (w, P, v_b) \cup (v_b, v_c) \cup (v_c, P, z)$ is a directed monochromatic wz-path. If $v_b v_c \notin A(P)$, then P' would be a monochromatic zw-path such that l(P') < l(P), so $v_b v_c \in A(P)$. \Box

3. m-kernel

Let *D* be an *k*-colored digraph. A subset *S* of *V*(*D*) is a *m*-semi-kernel of *D* if it satisfies the following two conditions:

- (a) *S* is *m*-independent, and
- (b) for every vertex $z \notin S$ for which there exists a Sz-monochromatic directed path, there also exists a zS-monochromatic directed path.

A kernel of a digraph *D* is also a semi-kernel of *D*, but the converse is not true.

We prove that an *k*-colored digraph *D* of the family \mathfrak{D} with any cycle of length 3, 4 and 5 monochromatic has a *m*-semikernel of only one vertex. This fact will lead us to the main theorem.

The main idea in the proof of Proposition 2 is the following.

Let x be any vertex, say u_s , on a monochromatic wz-path P of minimum length, with $w \in \{u_1, v_1\}$. We prove that if P has at least two [U, V]-arcs, then there is a pair of crossing arcs on P, say $u_i v_i$ and $v_k u_l$, such that i < l and $i \le s \le l$.

Proposition 2. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3, 4 and 5 are monochromatic. Then, u_1 (resp. v_1) is a *m*-semi-kernel of one vertex of *D*.

Moreover if there is a monochromatic wz-path, with $w \in \{u_1, v_1\}$, of color 1, then there is a monochromatic zw-path of color 1.

Proof. If $\delta^+(u_1) = 0$ ($\delta^+(v_1) = 0$), then u_1 (*resp.* v_1) is a *m*-semi-kernel. Let $\delta^+(u_1)$, $\delta^+(v_1) > 0$, and let k, l be maximum integers such that $u_k \in N^+(v_1)$ and $v_l \in N^+(u_1)$. By Corollary 1, we may assume that any monochromatic path from v_1 or u_1 has color 1.

We prove that if there is a monochromatic wz-path, with $w \in \{u_1, v_1\}$, then there is a monochromatic zw-path of color 1. Since u_1 is the sink of D[U] (resp. v_1 is the sink of D[V]), there is an uu_1 arc in D, for any $u \in U \setminus u_1$ (resp. there is an vv_1 arc in D for any $v \in U \setminus v_1$), but this arc is not necessarily of color 1.

Proceeding by contradiction, we take a monochromatic wz-path P of minimum length (thus P is colored 1) with z as the first vertex on P such that there is no monochromatic zw-path colored 1. By symmetry, we may assume that $z = u_s$ for some integer $1 \le s \le n$. Let $v_k u_l \in (V, U)$ be the first arc on P such that $l \ge s$. Such arc does exist because D[U] is a transitive tournament and thus for each $u_r \in U \cap V(P)$, the preceding vertex on P is a vertex of the set $\{u_{r+1}, u_{r+2}, \ldots, u_n\} \cup V$. If $v_k u_l$ is the first [U, V]-arc on P, then k = 1 and for any $v \in N^+(u_1)$ the cycle $(v_1 = v_k, u_l, u_s, u_1, v, v_1)$ has length at most 5 and is monochromatic of color 1. Then $P' = (u_s, u_1)$ (resp. $P'' = (u_s, u_1, v, v_1)$) is a monochromatic $u_s u_1$ -path (resp. $u_s v_1$ -path) of color 1 and we are done.

Therefore, $v_k u_l$ is not the first [U, V]-arc on P. Let $u_i v_j \in (U, V)$ be the preceding crossing arc on P; this arc exists by Lemma 5. Since P is a path, $i \neq l$. If i > s, then $u_i v_j$ is not the first [U, V]-arc on P and by Lemma 5, $u_i v_j$ has a preceding crossing arc $v_g u_h \in (V, U)$. By (ii) of Theorem 1, i < h < l, which contradicts the choice of the arc $v_k u_l$. Then, i < s. The cycle $(v_k, u_l, u_s, u_i, v_j, v_k)$ has length at most 5 and it is monochromatic of color 1 (see Fig. 6). By the choice of the vertex u_s , there is a monochromatic $u_i w$ -path P' colored 1. Then, $(u_s, u_i) \cup P'$ is a monochromatic $u_s w$ -path colored 1, and we are done.

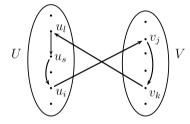


Fig. 6. The 5-cycle $(v_k, u_l, u_s, u_i, v_i, v_k)$ is monochromatic of color 1.

So, if there is a monochromatic wu_s -path, with $w \in \{u_1, v_1\}$, then there is a monochromatic $u_s w$ -path of color 1. Analogously, if there is a monochromatic wv_s -path, with $w \in \{u_1, v_1\}$, then there is a monochromatic $v_s w$ -path of color 1. Therefore, $\{u_1\}$ and $\{v_1\}$ are both semi-kernels of D. \Box

Theorem 2. Let *D* be an *k*-colored digraph of the family \mathfrak{D} such that the cycles of length 3, 4 and 5 are monochromatic. Then, *D* has a *m*-kernel.

Proof. If $\delta^+(u_1) = 0$ (resp. $\delta^+(v_1) = 0$), then u_1 (resp. v_1) is a *m*-semi-kernel; else Proposition 2 implies that u_1 or v_1 is a *m*-semi-kernel of *D*. Suppose that v_1 is not a *m*-kernel of *D*. Let *U'* be the subset of the vertices of *V*(*D*) such that there is no monochromatic $U'v_1$ -directed path. As v_1 is a semi-kernel of *D*, we have that there are no monochromatic directed path between v_1 and a vertex $x \in U'$. Since D[V] is a transitive tournament, $v_jv_1 \in A(D)$ for every $1 < j \leq m$; therefore, $U' \subset U$. As v_1 is not a *m*-kernel of *D*, then $U' \neq \emptyset$ and D[U] is a transitive tournament, then D[U'] has a sink. Let u_p be the sink of D[U']. Then $\{v_1, u_p\}$ is a kernel by monochromatic paths of *D*.

4. Final remarks

In this section, we show three digraphs from the family \mathfrak{D} . The first one (Example 1) is a digraph colored with a large number of colors. Next we show two digraphs without *m*-kernel; the first one (Example 2) has 4- and 5-cycles that are not monochromatic and the second one (Example 3) has 3- and 5-cycles that are not monochromatic. The Example 2 shows that the condition of monochromatic 3-cycles is not sufficient, and Example 3 shows that monochromatic 4-cycles is not sufficient.

Example 1. We define the digraph *D* as follows.

Let $U = \{u_1, u_2, \dots, u_k\}$, $V = \{v_1, v_2, \dots, v_l\}$ be a partition of the vertex set V(D) such that D[U], D[V] are transitive tournaments. Let

$$A(D) = \{u_i u_j : j < i\} \cup \{v_i v_j : j < i\} \cup \{v_1 u_2, u_1 v_2\} \cup A'$$

$$A' \subset \{u_i v_j : j \le i\} \cup \{v_i u_j : j < i\} \setminus \{v_2 u_1, u_2 v_1\}.$$

The only cycles of *D* are the cycles in $D[u_1, u_2, v_1, v_2]$. Since there are no other cycles, we can color each arc outside $D[u_1, u_2, v_1, v_2]$ with a different color and still have an arc coloring of *D*, with all cycles of length 3, 4 and 5 monochromatic.

If *D* is a tournament, then *D* has $\binom{k+l}{2}$ arcs. There are 6-arcs in $D[u_1, u_2, v_1, v_2]$, so the maximum number of colors of *D* is

$$\binom{k+l}{2} - 5$$

So, we have *k*-colored digraphs in the family \mathfrak{D} with any cycle of length 3, 4 and 5 monochromatic, such that the *D* is not a tournament nor a nearly complete digraphs, and m = A(D) - 6.

Example 2. Let *D* be the digraph in Fig. 7(a). Note that the 4-cycle $(u_1, v_3, u_4, u_2, u_1)$ is not monochromatic. We show that *D* has no *m*-kernel. First observe that the only vertex that absorbs the vertex v_2 is v_1 . If *D* has a kernel *K*, then v_1 or v_2 are vertices of *K*, but not both. Suppose that $v_1 \in K$. Since (v_1, u_3, u_1) is a monochromatic path, $u_1 \notin K$. The only vertices that absorbs the vertex u_1 are the vertices u_4 and v_3 , but v_3 is not independent to v_1 and u_4 does not absorb the vertex u_2 ; then $v_1 \notin K$ and $v_2 \in K$. In this case, v_1 is not absorbed by v_2 . The vertices of *D* that absorb the vertex v_1 are u_1 and u_3 , but u_1 is not independent to v_2 and u_3 does not absorb the vertex u_2 , so $v_2 \notin K$. Therefore, *D* has no kernel.

Example 3. Let *D* be the digraph in Fig. 7(b). Note that the 3-cycle (u_2, v_3, u_3, u_2) and the 5-cycle $(u_2, v_3, u_3, v_4, u_4, u_2)$ are not monochromatic. We show that *D* has no *m*-kernel. First observe that there is no vertex $x \in V(D)$ such that *x* absorbs every vertex from $V(D) \setminus x$. Thus, if *D* has a kernel *K*, then $|K| \ge 2$ and $K \cap \{u_1, u_2, u_3, u_4\} \ne \emptyset$ and $K \cap \{v_1, v_2, v_3, v_4\} \ne \emptyset$. Any vertex of the set $\{v_1, v_2, v_3\}$ absorbs all the vertices of *D* except the vertices u_3, u_4 . If $\{v_1, v_2, v_3\} \cap K \ne \emptyset$, then $u_3 \notin K$, because there is a monochromatic path from any of the vertices v_1, v_2, v_3 to the vertex u_3 . Thus, $u_4 \in K$, but the vertex u_4 does not absorb the vertex u_3 . Therefore, $\{v_1, v_2, v_3\} \cap K = \emptyset$ and $v_4 \in K$. The vertex v_4 absorbs all the vertices except the vertex u_4 , but v_4u_4 is a directed monochromatic path. So, the digraph *D* has no *m*-kernel.

In Fig. 7 there are two digraphs, 3- and 4-colored respectively, with the colors.

In Fig. 7(a) the 3-cycles are all monochromatic, but there are 4-cycles and 5-cycles, which are not monochromatic (for instance $(u_1, v_3, u_4, u_2, u_1)$). In Fig. 7(b) the 4-cycles are all monochromatic, but there are 3-cycles and 5-cycles which are not monochromatic. In both cases, the digraph has no *m*-kernel. These digraphs shows that monochromatic 3-cycles are not sufficient and that monochromatic 4-cycles are not sufficient.

• · · · · · • • • • • • • • • •

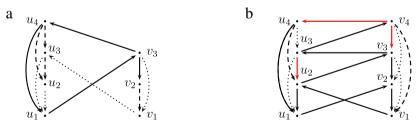


Fig. 7. Digraphs without a *m*-kernel.

Acknowledgements

We thanks the anonymous referees for their comments, which improved substantially the rewriting of this paper.

References

- [1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2001.
- [2] C. Berge, Graphs, North-Holland, Amsterdam, 1985.
- [3] C. Berge, P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27-31.
- [4] M. Blidia, P. Duchet, F. Maffray, On kernels in perfect graphs, Combinatorica 13 (2) (1993) 231–233.

- [5] M. Blidia, P. Duchet, F. Maffray, On the orientation of meyniel graphs, J. Graph Theory 18 (7) (1994) 705–711.
- [6] E. Boros, V. Gurvich, Perfect graphs, kernels and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354.
- [7] G. Chartrand, L. Lesniak, Graphs and Digraphs, 3rd ed., Chapman and Hall, London, 1996.
- [8] A.S. Fraenkel, Combinatorial game theory foundations applied to digraph kernels, Electron. J. Combin. 4 (1997) 17.
- [9] A.S. Fraenkel, succinctsuccint gourmet introduction, Electron. J. Combin. 14 (2007) #DS2.
- [10] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112.
- [11] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87–99.
- [12] H. Galeana-Sánchez, Kernels in digraphs with covering number at most 3, Discrete Math. 259 (2002) 121–135.
- [13] H. Galeana-Sánchez, Kernels in edge-coloured orientations of nearly complete graphs, Discrete Math. 308 (2008) 4599–4607.
- [14] H. Galeana-Sánchez, Xueliang Li, Kernels in a special class of digraphs, Discrete Math. 178 (1998) 73–80.
- [15] H. Galeana-Sánchez, R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) 275-276.
- [16] H. Galeana-Sánchez, R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments, Discrete Math. 285 (2004) 313–318.
- [17] H. Galeana-Sánchez, R. Rojas-Monroy, Monochromatic paths and monochromatic cycles in edge-colored k-partite tournaments, Ars Combin. 97A (2010).
- [18] G. Hahn, P. Ille, R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99.
- [19] T.W. Haynes, T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs, Advanced Topics, Marcel Dekker Inc., 1998.
- [20] T.W. Haynes, T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
- [21] J.M. Le Bars, Counterexample of the 0-1 law for fragments of existential second-order logic; an overview, Bull. Symbolic Logic 9 (2000) 67-82.
- [22] J.M. Le Bars, The 0-1 law fails for frame satisfiability of propositional model logic, in: Proceedings of the 17th Symposium on Logic in Computer Science, 2002, pp. 225-234.
- [23] F. Maffray, Sur l'existence de noyaux dans les geaphes parfaits, Thése de 3-ém3 cycle, Univ. P. et M Curie, Paris.
- [24] S. Minggang, On monochromatic paths in *m*-coloured tournaments, J. Combin. Theory Ser. B 45 (1988) 108-111.
- [25] B. Sands, N. Sauer, R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin, Theory Ser, B 33 (1982) 271–275.
- [26] J. von Leeuwen, Having a grundy numbering is NP-complete, Report 207 Computer Science Department Pennsylvania State University University Park, PA, 1976.
- [27] I. Wloch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93–99.
- [28] I. Wloch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (4) (2008) 537-542.