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a b s t r a c t

We call the digraph D an k-colored digraph if the arcs of D are colored with k colors. A
subdigraphH ofD is calledmonochromatic if all of its arcs are colored alike. A setN ⊆ V (D)
is said to be a kernel by monochromatic paths if it satisfies the following two conditions:
(i) for every pair of different vertices u, v ∈ N , there is no monochromatic directed path
between them, and (ii) for every vertex x ∈ (V (D) \ N), there is a vertex y ∈ N such
that there is an xy-monochromatic directed path. In this paper, we prove that if D is an
k-colored digraph that can be partitioned into two vertex-disjoint transitive tournaments
such that every directed cycle of length 3, 4 or 5 is monochromatic, then D has a kernel by
monochromatic paths. This result gives a positive answer (for this family of digraphs) of the
following question, which has motivated many results in monochromatic kernel theory: Is
there a natural number l such that if a digraph D is k-colored so that every directed cycle of
length at most l is monochromatic, then D has a kernel by monochromatic paths?

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let D be a digraph. We denote by V (D) and A(D) the sets of vertices and the set of arcs of D, respectively. Let v ∈ V (D).
We denote by N+(v) and N−(v) the out- and in-neighborhood of v in D, respectively. We define δ+(w) = |N+(w)| and
δ−(w) = |N−(w)|. For S ⊆ V (D), we denote by D[S] the subdigraph of D induced by the vertex set S. For two disjoint
subsets U, V of V (D), we denote by (U, V ) = {uv ∈ A(D) : u ∈ U, v ∈ V } and [U, V ] = (U, V ) ∪ (V ,U). An UV -arc is an arc
from (U, V ) if U = {u} (resp. V = {v}), we denote the UV -arc by uV -arc (resp. Uv-arc). We call the digraph D an k-colored
digraph if the arcs of D are colored with k colors. The digraph D will be an k-colored digraph and all the paths, cycles and
walks considered in this paper will be directed paths, cycles or walks. If W = (x0, x1, . . . , xn) is a walk, the length of W is
n. The length of a walk W is denoted by l(W ). The path (u0, u1, . . . , un) will be called an UV -path whenever u0 ∈ U and
un ∈ V . A tournament is a digraph T such that there is exactly one arc between any two vertices of T . An acyclic tournament
is called a transitive tournament. A vertex v ∈ V (T ) is called a sink if N−(v) = V (D) \ v. A subdigraph H of a k-colored
digraph D is called monochromatic if all of its arcs are colored alike. Let N ⊆ V (D). Then, N is said to be m-independent if
there is no monochromatic directed path between any pair of vertices of the set N , N is a m-absorbent (or m-dominant) if
for every vertex x ∈ (V (D) \ N) there is a vertex y ∈ N such that there is an xy-monochromatic directed path and finally, N
is am-kernel (kernel by monochromatic paths) if it satisfies the following two conditions: (i) N ism-independent and (ii) N
is m-absorbent. For general concepts, we refer the reader to [1,2,7].

The topic of domination in graphs has been widely studied by many authors. A very complete study of this topic is
presented in [19,20]. A special class of domination is the domination in digraphs, and it is defined as follows. In a digraph D,
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a set of vertices S ⊆ V (D) dominates whenever for everyw ∈ (V (D)\S) there exists awS-arc inD. Dominating independent
sets in digraphs (kernels in digraphs) have foundmany applications in different topics of mathematics (see for instance [21,
22,8,9,26]) and they have been studied by several authors; interesting surveys of kernels in digraphs can be found in [6,9].
The concepts of m-domination, m-independence and m-kernel in edge-colored digraphs are generalization of those of
domination, independence and kernel in digraphs. The study of the existence of m-kernels in edge-colored digraphs starts
with the theorem of Sands, Sauer and Woodrow, proved in [25], which asserts that every two-colored digraph possesses
an m-kernel. In the same work, the authors proposed the following question: let D be an k-colored tournament such that
every directed cycle of length 3 is quasi-monochromatic (a subdigraph H of an k-colored digraph D is said to be quasi-
monochromatic if, with at most one exception, all of its arcs are colored alike) must D have am-kernel? Minggan [24] proved
that if D is an k-colored tournament such that every directed cycle of length 3 and every transitive tournament of order 3
is quasi-monochromatic, then D has a m-kernel. He also proved that this result is best possible for m ≥ 5. In [15], it was
proved that the result is best possible for m ≥ 4. The question for m = 3 is still open: Does every 3-colored tournament
such that every directed cycle of length 3 is quasi-monochromatic have a m-kernel? Sufficient conditions for the existence of
m-kernels in edge-colored digraphs have been obtained mainly in tournaments and generalized tournaments, and ask for
the monochromaticity or quasi-monochromaticity of small digraphs (due to the difficulty of the problem) in several papers
(see [10,11,15,16,18,24]).Other interesting results can be found in [27,28]. Another question which has motivated many
results inm-kernel theory is the following (proposed in the abstract): Given a digraph D is there an integer k such that if every
directed cycle of length at most k is monochromatic (resp. quasi-monochromatic), then D has a m-kernel? In [11] (resp. in [16]) it
was proved that ifD is an k-colored tournament (resp. bipartite tournament) such that every directed cycle of length 3 (resp.
every directed cycle of length 4) is monochromatic, then D has am-kernel. Later the following generalization of both results
was proved in [17]: if D is an k-colored k-partite tournament, such that every directed cycle of length 3 and every directed
cycle of length 4 ismonochromatic, thenD has am-kernel. In [18]were considered quasi-monochromatic cycles, the authors
proved that if D is an k-colored tournament such that for some k every directed cycle of length k is quasi-monochromatic
and every directed cycle of length less than k is not polychromatic (a subdigraphH ofD is called polychromatic whenever it is
colored with at least three colors), then D has am-kernel. In [13] this result was extended for nearly complete digraphs. The
covering number of a digraph D is the minimum number of transitive tournaments of D that partition V (D). Digraphs with a
small covering number are a nice class of nearly tournament digraphs. The existence of kernels in digraphs with a covering
number at most 3 has been studied by several authors, in particular by Berge [3], Maffray [23] and others [4,5,12,14].

In this paper, we study the existence of m-kernel in edge-colored digraphs with covering number 2, asking for the
monochromaticity of small directed cycles. We prove that if D is an k-colored digraph with covering number 2 such that
every directed cycle of length 3, 4 or 5 is monochromatic, then D has am-kernel.

2. Structural properties

We consider the familyD of digraphsDwith covering number 2. SinceD has covering number 2, there exists a non-trivial
partition of V (D) into two sets U , V such that D[U], D[V ] are transitive tournaments. Throughout this paper, the non-trivial
partition of the vertex set into U, V is such that D[U], D[V ] are transitive tournaments. Let T be a transitive tournament of
order n. Throughout this paper, (vn, vn−1, . . . , v1) will denote the Hamiltonian path in T . Thus for any 1 ≤ i ≤ n, the vertex
vi is the sink of T \ {v1, v2, . . . , vi−1}, in particular, v1 is the sink of T . When P = (u0, u1, . . . , uk) is a path, we will denote
by (ui, P, uj), for 0 ≤ i < j ≤ k, the ui, uj-path contained in P . Let uiui+1 and ujuj+1 be two distinct arcs on P . We say that
the arc uiui+1 precedes (resp. follows) the arc ujuj+1 on the path P , if i < j (resp. j < i).

Throughout this paper, the vertex z will be fixed and arbitrary.
First, we prove some structural properties of thewz-paths ofminimum lengthwithw ∈ {u1, v1} in digraphs of the family

D. Next, we extend these properties for wz-paths of minimum length with w ∈ {u1, v1} in k-colored digraphs of the family
D with every directed cycle of length 3, 4 or 5 monochromatic.

Let umvn, vkul ∈ [U, V ]. We say that umvn, vkul are crossing arcs if um, ul ∈ V (D), vn, vk ∈ V (D), andm ≤ l, k ≤ n, except
when n = k andm = l (see Fig. 1). Let umvn ∈ (U, V ). If xy, umvn ∈ [U, V ] are crossing arcs, then clearly xy ∈ (V ,U).

Fig. 1. umvn and vkul are crossing arcs.
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Lemma 1. Let D be a digraph of the family D such that the sinks u1, v1 of D[U] and D[V ] respectively has a nonempty out-
neighborhood. Let P be a wz-path of minimum length, withw ∈ {u1, v1}. Then, any a ∈ [U, V ]∩A(P) has at most one preceding
crossing arc on P and at most one following crossing arc on P.

Proof. Let D be a digraph that satisfies the hypothesis of this lemma and let P be a wz-path of minimum length starting at
the vertex u1 or v1 and |[U, V ] ∩ A(P)| ≥ 2.

Suppose, for a contradiction, that there is an arc of [U, V ] ∩ A(P) with at least two following (preceding) crossing arcs on
P . By symmetry, we may assume that uivj ∈ (U, V ) ∩ A(P) is such that uivj has at least two following (preceding) crossing
arcs in (V ,U). Let vkul ∈ (V ,U) be the first following crossing arc on P and let vsut ∈ (V ,U) be the last following crossing
arc on P (resp. let veuf ∈ (V ,U) be the first preceding crossing arc on P). Since uivj and vsut are crossing arcs, j ≥ k, s and
l, t ≥ i. Do also note that P is a path and therefore l ≠ t and k ≠ s (see Fig. 2).

Fig. 2. uivj and vsut are crossing arcs.

The cycle (ui, vj, vs, ut , ui) (resp. the cycle (ui, vj, ve, uf , ui)) has length at most 4 (see Fig. 2), and since P is a path, vjvs is
not on P , then P ′

= (w, P, vj) ∪ (vj, vs) ∪ (vs, P, z) (resp. P ′
= (w, P, uf ) ∪ (uf , ui) ∪ (ui, P, z)) is a wz-directed path such

that l(P ′) < l(P), which contradicts the way we chose P . So uivj ∈ (U, V ) has at most one following (preceding) crossing arc;
by symmetry any arc of [U, V ] has at most one following (preceding) crossing arc and we are done. �

Remark 1. Let D be a digraph of the family D such that δ+(u1), δ
+(v1) > 0. Let P be a wz-path of minimum length with

w ∈ {u1, v1}. Then, xy is the first arc of [U, V ] ∩ A(P) if and only if x = w.

Lemma 2. Let D be a digraph of the family D such that δ+(u1), δ
+(v1) > 0. Let P be a directed wz-path of minimum length,

with w ∈ {u1, v1}. Then, any two consecutive [U, V ]-arcs on P are crossing arcs.

Proof. Let D be a digraph that satisfies the hypothesis of this lemma and let P be a path of minimum length, starting at the
vertex u1 or v1, with |[U, V ] ∩ A(P)| ≥ 2.

Suppose, for a contradiction, that there are two consecutive [U, V ]-arcs on P such that they are not crossing arcs. By
symmetry, we may assume that uivj ∈ (U, V ), vkul ∈ (V ,U) is the first pair of consecutive [U, V ]-arcs that does not form
a crossing pair, then 1 ≤ l < i and by Remark 1, the arc uivj must have a preceding VU-arc, and this arc must be a crossing
arc by the way we chose the arc uivj. Let vguh ∈ (V ,U) be the preceding crossing arc of uivj. Since D[U] is transitive, then
P ′

= (w, P, uh) ∪ (uh, ul) ∪ (ul, P, z) is a wz-path such that l(P ′) < l(P) (see Fig. 3), which is a contradiction. �

Fig. 3. How we find a path P ′ such that l(P ′) < l(P).

Proposition 1. Let D be a digraph of the family D such that δ+(u1), δ
+(v1) > 0. Let P be a wz-path of minimum length with

|[U, V ] ∩ A(P)| ≥ 2. Then, the first and the last [U, V ]-arc on P have exactly one crossing arc and any [U, V ]-arc except the first
and the last one, has exactly one preceding and exactly one following crossing [U, V ]-arc.

Proof. A consequence of the Lemmas 1 and 2. �

Wewill now extend the results Lemmas 1, 2 and Proposition 1 to k-colored digraphs of the family D, with every directed
cycle of length 3, 4 or 5 monochromatic.
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Remark 2. Let D be an k-colored digraph of the family D such that the cycles of length 3,4 and 5 are monochromatic. Then
any two crossing arcs have the same color, and so ifm < l and k < n, then (ul, um, vn, vk, ul) is a 4-cycle, ifm < l and n = k,
then (um, vn, ul, um) is a 3-cycle and ifm = l and k < n, then (um, vn, vk, um) is a 3-cycle (see Fig. 1).

Moreover for any integers i or j,m < i < l and n < j < k (if they exist), the arcs ului, uium, vnvj, vjvk have the same color
as the crossing arcs umvn, vkul (see Fig. 1).

Lemma 3. Let D be an k-colored digraph of the family D such that the cycles of length 3, 4 and 5 are monochromatic. If
δ+(u1), δ

+(v1) > 0, then u1vj and v1ui has the same color for any ui ∈ N+(v1) and vj ∈ N+(u1).

Proof. Let i, j be two integers such that ui ∈ N+(v1) and vj ∈ N+(u1). Then, the arcs u1vj, v1ui are crossing arcs and by
Remark 2, they have the same color. �

Corollary 1. Let D be an k-colored digraph of the family D such that the cycles of length 3, 4 and 5 are monochromatic. If
δ+(u1), δ

+(v1) > 0, then all the monochromatic paths from u1 or from v1 have the same color.

By Lemma 3, we may assume that every arc u1vj, v1ui has color 1, and by Corollary 1, any monochromatic u1x-path,
v1x-path has color 1, for all x ∈ V (D).

Lemma 4. Let D be an k-colored digraph of the family D such that the cycles of length 3 and 4 are monochromatic and such that
δ+(u1), δ

+(v1) > 0. Let P be a monochromatic wz-path of minimum length, with w ∈ {u1, v1}, and let a ∈ [U, V ]∩A(P). Then
the arc a has at most one preceding crossing [U, V ]-arc on P and at most one following crossing [U, V ]-arc on P.

Proof. Let D be a digraph that satisfies the hypothesis of the Lemma 4 and let P be a monochromatic wz-path of minimum
length starting at the vertex u1 or v1 and |[U, V ] ∩ A(P)| ≥ 2.

Suppose, for a contradiction, that a ∈ [U, V ]∩A(P) such that a has at least two following crossing arcs on P . By symmetry,
we may assume that uivj ∈ (U, V ) is the first [U, V ]-arc of P such that uivj has at least two following crossing arcs on P .
Proceed as in the proof of Lemma 1. Since the cycle (ui, vj, vs, ut , ui) has length at most 4, it is monochromatic. Moreover,
the arc uivj has color 1, so the cycle and the path P ′ are bothmonochromatic of color 1 (see Fig. 2) and P ′ is a monochromatic
wz-path such that l(P ′) < l(P). So any [U, V ]-arc on P has at most one following crossing [U, V ]-arc on P . Analogously, any
[U, V ]-arc on P has at most one preceding crossing [U, V ]-arc on P . �

Remark 3. Let D be an k-colored digraph of the family D such that the cycles of length 3, 4 and 5 are monochromatic. Let P
be a monochromatic wz-path of minimum length with w ∈ {u1, v1}. Then xy is the first [U, V ]-arc on P if and only if x = w.

Lemma 5. Let D be an k-colored digraph of the family D such that the cycles of length 3, 4 and 5 are monochromatic and such
that δ+(u1), δ

+(v1) > 0. Let P be a monochromatic wz-path of minimum length, with w ∈ {u1, v1}. Then any two consecutive
[U, V ]-arcs on P are crossing arcs.

Proof. Let D be a digraph that satisfies the hypothesis of this lemma and let P be a monochromatic path of minimum length
starting at the vertex u1 or v1, with |[U, V ] ∩ A(P)| ≥ 2.

Suppose, for a contradiction, that there are two consecutive [U, V ]-arcs on P that are not crossing arcs. By symmetry, we
may assume that uivj ∈ (U, V ) is the first [U, V ]-arc such that the following [U, V ]-arc vkul is not a crossing arc of uivj.

Claim 1. If v1ux ∈ A(P) is the first [U, V ]-arc on P, then x < l.

Let x ≥ l. Suppose, for a contradiction, that v1ux is the first [U, V ]-arc on P , then (v1, ux, ul, u1, vy, v1) is amonochromatic
cycle of color 1 and of length atmost 5 (where vy is any vertex inN+(u1)). Thus P ′

= (w = v1, ux, ul)∪(ul, P, z) is a directed
monochromatic wz-path of color 1. Since |[U, V ] ∩ A(P)| ≥ 2, P ′ is such that l(P ′) < l(P), and the Claim 1 is valid. �

Claim 2. P has no crossing arcs uavb, vcud preceding the arc uivj with a < l < d.

Let a < l < d. For a contradiction, suppose that uavb, vcud is a pair of crossing arcs, both preceding the arc uivj on the path
P . The length of the cycle C = (ua, vb, vc, ud, ul, ua) is atmost 5. The path P ismonochromatic of color 1, and so is the cycle C .
If uavb, vcud are consecutive crossing arcs, then P ′

= (w, P, ud) ∪ (ud, ul) ∪ (ul, P, z) is a directed monochromatic wz-path.
The arcs uavb, vcud are preceding to the arc uivj; thus, P ′ is such that l(P ′) < l(P). If vcud, uavb are consecutive crossing arcs,
then P ′

= (w, P, ud) ∪ (ud, ul) ∪ (ul, P, z) is a directed monochromatic wz-path. The arcs uavb, vcud are preceding to the
arc uivj; thus, P ′ is such that l(P ′) < l(P). So Claim 2 is valid. �

The arcs uivj and vkul are not crossing arcs, then i > l > 0 and by Remark 3, the arc uivj is not the first [U, V ]-arc on P .
Let vguh ∈ (V ,U) be the preceding crossing arc of uivj. Then, h ≥ i > l and g < j.

Note that h ≥ i > l. By Claim 1 and Remark 3, the arc vguh is not the first [U, V ]-arc on P . Let veuf ∈ (V ,U) be the first arc
on P such that f > l, such arc does exist (for instance vgun). By Claim 1 and Remark 3, the arc veuf is not the first [U, V ]-arc
on P . Then, the arc veuf must have a preceding [U, V ]-arc, and this arc must be a crossing arc by the way we chose the arc
uivj. Let ucvd ∈ (U, V ) be the preceding crossing arc of veuf . By Claim 2 and the fact that f > l, we have that c ≥ l; moreover,
since P is a path c > l, then Claim 1 and Remark 3 imply that the arc ucvd is not the first [U, V ]-arc on P . So the arc veuf
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Fig. 4. Any two consecutive [U, V ]-arcs on P are crossing arcs.

must have a preceding [U, V ]-arc, and this arc must be a crossing arc by the way we chose the arc uivj. Let vaub ∈ (V ,U) be
the preceding crossing arc of ucvd (see Fig. 4).

By the choice of the arc uivj, it follows that vaub and ucvd are crossing arcs, and b > c > l which contradicts the choice
of the arc veuf . So any two consecutive [U, V ]-arcs on P does form a crossing pair of arcs. �

Corollary 2. Let D be an k-colored digraph of the family D such that the cycles of length 3, 4 and 5 are monochromatic and such
that δ+(u1), δ

+(v1) > 0. Let P be amonochromatic wz-path of minimum length with |[U, V ]∩A(P)| ≥ 2. Then, the first and the
last [U, V ]-arc on P have exactly one crossing arc and any [U, V ]-arc, except the first and the last one has exactly one preceding
and exactly one following crossing [U, V ]-arc. Moreover, two crossing arcs on P must be consecutive [U, V ]-arcs on P.
Proof. A consequence of the Lemmas 4 and 5. �

The following theorem collects the results of Lemmas 4, 5 and Corollary 2. Moreover, it describes the structure of a
monochromatic path of minimum length, as shown in Fig. 5.

Fig. 5. The structure of a monochromatic directed wz-path of minimum length.

We denote by PU the digraph on the vertex set V (P) ∩ U , and A(PU) = A(P) ∩ A(D[U]).

Theorem 1. Let D be an k-colored digraph of the family D such that the cycles of length 3, 4 and 5 are monochromatic and such
that δ+(u1), δ

+(v1) > 0. Let P be a monochromatic wz-path of minimum length, with w ∈ {u1, v1}. Then,
(i) if uavb ∈ (U, V ) and uevf ∈ (U, V ) are arcs on P and uevf follows uavb, a < e and b < f ;
(ii) an induced path of PU (resp. PV ) has length at most one.
Proof. Let D be a digraph that satisfies the hypothesis of this lemma and let P be a monochromatic path of minimum length
starting at the vertex u1 or v1.
(i) In order to prove the item (i) we take uavb and uevf the preceding and the following crossing arc respectively of vcud on

the path P , by the definition of crossing arcs a, e < d and c < b, f . Suppose, for a contradiction, that a > e, then uavb is
not the first [U, V ]-arc on P , by Remark 3. By Lemma 5, uavb has a preceding crossing arc, say h, then the arc uevf would
have two preceding crossing arcs, namely vcud and h and by Lemma 4, we have a contradiction, so a < e. Analogously
b < f .

(ii) In order to prove that an induced path of PU has length at most 1, we take two consecutive crossing arcs on the path P ,
say uavb, vcud, and prove that vbvc ∈ A(P). The length of the cycle C = (ua, vb, vc, ud, ua) is at most 4 and the path P is
monochromatic of color 1, and so is the cycle C . Then P ′

= (w, P, vb)∪ (vb, vc)∪ (vc, P, z) is a directed monochromatic
wz-path. If vbvc ∉ A(P), then P ′ would be a monochromatic zw-path such that l(P ′) < l(P), so vbvc ∈ A(P). �

3. m-kernel

Let D be an k-colored digraph. A subset S of V (D) is a m-semi-kernel of D if it satisfies the following two conditions:
(a) S is m-independent, and
(b) for every vertex z ∉ S for which there exists a Sz-monochromatic directed path, there also exists a zS-monochromatic

directed path.
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A kernel of a digraph D is also a semi-kernel of D, but the converse is not true.
We prove that an k-colored digraph D of the family D with any cycle of length 3, 4 and 5 monochromatic has a m-semi-

kernel of only one vertex. This fact will lead us to the main theorem.
The main idea in the proof of Proposition 2 is the following.
Let x be any vertex, say us, on a monochromatic wz-path P of minimum length, with w ∈ {u1, v1}. We prove that if P has

at least two [U, V ]-arcs, then there is a pair of crossing arcs on P , say uivj and vkul, such that i < l and i ≤ s ≤ l.

Proposition 2. Let D be an k-colored digraph of the family D such that the cycles of length 3, 4 and 5 are monochromatic. Then,
u1 (resp. v1) is a m-semi-kernel of one vertex of D.

Moreover if there is a monochromatic wz-path, with w ∈ {u1, v1}, of color 1, then there is a monochromatic zw-path of
color 1.

Proof. If δ+(u1) = 0 (δ+(v1) = 0), then u1 (resp. v1) is a m-semi-kernel. Let δ+(u1), δ
+(v1) > 0, and let k, l be maximum

integers such that uk ∈ N+(v1) and vl ∈ N+(u1). By Corollary 1, we may assume that any monochromatic path from v1 or
u1 has color 1.

We prove that if there is a monochromatic wz-path, with w ∈ {u1, v1}, then there is a monochromatic zw-path of color
1. Since u1 is the sink of D[U] (resp. v1 is the sink of D[V ]), there is an uu1 arc in D, for any u ∈ U \ u1 (resp. there is an vv1 arc
in D for any v ∈ U \ v1), but this arc is not necessarily of color 1.

Proceeding by contradiction, we take a monochromatic wz-path P of minimum length (thus P is colored 1) with z as the
first vertex on P such that there is nomonochromatic zw-path colored 1. By symmetry, wemay assume that z = us for some
integer 1 ≤ s ≤ n. Let vkul ∈ (V ,U) be the first arc on P such that l ≥ s. Such arc does exist because D[U] is a transitive
tournament and thus for each ur ∈ U ∩V (P), the preceding vertex on P is a vertex of the set {ur+1, ur+2, . . . , un} ∪V . If vkul
is the first [U, V ]-arc on P , then k = 1 and for any v ∈ N+(u1) the cycle (v1 = vk, ul, us, u1, v, v1) has length at most 5 and
is monochromatic of color 1. Then P ′

= (us, u1) (resp. P ′′
= (us, u1, v, v1)) is a monochromatic usu1-path (resp. usv1-path)

of color 1 and we are done.
Therefore, vkul is not the first [U, V ]-arc on P . Let uivj ∈ (U, V ) be the preceding crossing arc on P; this arc exists by

Lemma 5. Since P is a path, i ≠ l. If i > s, then uivj is not the first [U, V ]-arc on P and by Lemma 5, uivj has a preceding
crossing arc vguh ∈ (V ,U). By (ii) of Theorem 1, i < h < l, which contradicts the choice of the arc vkul. Then, i < s. The cycle
(vk, ul, us, ui, vj, vk) has length at most 5 and it is monochromatic of color 1 (see Fig. 6). By the choice of the vertex us, there
is a monochromatic uiw-path P ′ colored 1. Then, (us, ui) ∪ P ′ is a monochromatic usw-path colored 1, and we are done.

Fig. 6. The 5-cycle (vk, ul, us, ui, vj, vk) is monochromatic of color 1.

So, if there is a monochromatic wus-path, with w ∈ {u1, v1}, then there is a monochromatic usw-path of color 1.
Analogously, if there is a monochromatic wvs-path, with w ∈ {u1, v1}, then there is a monochromatic vsw-path of color 1.
Therefore, {u1} and {v1} are both semi-kernels of D. �

Theorem 2. Let D be an k-colored digraph of the family D such that the cycles of length 3, 4 and 5 are monochromatic. Then, D
has a m-kernel.

Proof. If δ+(u1) = 0 (resp. δ+(v1) = 0), then u1 (resp. v1) is a m-semi-kernel; else Proposition 2 implies that u1 or v1 is
a m-semi-kernel of D. We may assume that v1 is a m-semi-kernel of D. Suppose that v1 is not a m-kernel of D. Let U ′ be
the subset of the vertices of V (D) such that there is no monochromatic U ′v1-directed path. As v1 is a semi-kernel of D, we
have that there are no monochromatic directed path between v1 and a vertex x ∈ U ′. Since D[V ] is a transitive tournament,
vjv1 ∈ A(D) for every 1 < j ≤ m; therefore, U ′

⊂ U . As v1 is not a m-kernel of D, then U ′
≠ ∅ and D[U] is a transitive

tournament, then D[U ′
] has a sink. Let up be the sink of D[U ′

]. Then {v1, up} is a kernel by monochromatic paths of D. �

4. Final remarks

In this section, we show three digraphs from the family D. The first one (Example 1) is a digraph colored with a large
number of colors. Next we show two digraphs without m-kernel; the first one (Example 2) has 4- and 5-cycles that are not
monochromatic and the second one (Example 3) has 3- and 5-cycles that are not monochromatic. The Example 2 shows
that the condition of monochromatic 3-cycles is not sufficient, and Example 3 shows that monochromatic 4-cycles is not
sufficient.
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Example 1. We define the digraph D as follows.
Let U = {u1, u2, . . . , uk}, V = {v1, v2, . . . , vl} be a partition of the vertex set V (D) such that D[U],D[V ] are transitive

tournaments. Let

A(D) = {uiuj : j < i} ∪ {vivj : j < i} ∪ {v1u2, u1v2} ∪ A′

A′
⊂ {uivj : j ≤ i} ∪ {viuj : j < i} \ {v2u1, u2v1}.

The only cycles of D are the cycles in D[u1, u2, v1, v2]. Since there are no other cycles, we can color each arc outside
D[u1, u2, v1, v2] with a different color and still have an arc coloring of D, with all cycles of length 3, 4 and 5monochromatic.

If D is a tournament, then D has


k+l
2


arcs. There are 6-arcs in D[u1, u2, v1, v2], so the maximum number of colors of

D is 
k + l
2


− 5.

So, we have k-colored digraphs in the family D with any cycle of length 3, 4 and 5 monochromatic, such that the D is not
a tournament nor a nearly complete digraphs, andm = A(D) − 6.

Example 2. Let D be the digraph in Fig. 7(a). Note that the 4-cycle (u1, v3, u4, u2, u1) is not monochromatic. We show that
D has no m-kernel. First observe that the only vertex that absorbs the vertex v2 is v1. If D has a kernel K , then v1 or v2 are
vertices of K , but not both. Suppose that v1 ∈ K . Since (v1, u3, u1) is a monochromatic path, u1 ∉ K . The only vertices that
absorbs the vertex u1 are the vertices u4 and v3, but v3 is not independent to v1 and u4 does not absorb the vertex u2; then
v1 ∉ K and v2 ∈ K . In this case, v1 is not absorbed by v2. The vertices of D that absorb the vertex v1 are u1 and u3, but u1 is
not independent to v2 and u3 does not absorb the vertex u2, so v2 ∉ K . Therefore, D has no kernel.

Example 3. Let D be the digraph in Fig. 7(b). Note that the 3-cycle (u2, v3, u3, u2) and the 5-cycle (u2, v3, u3, v4, u4, u2) are
not monochromatic. We show that D has no m-kernel. First observe that there is no vertex x ∈ V (D) such that x absorbs
every vertex from V (D) \ x. Thus, if D has a kernel K , then |K | ≥ 2 and K ∩ {u1, u2, u3, u4} ≠ ∅ and K ∩ {v1, v2, v3, v4} ≠ ∅.
Any vertex of the set {v1, v2, v3} absorbs all the vertices of D except the vertices u3, u4. If {v1, v2, v3} ∩ K ≠ ∅, then u3 ∉ K ,
because there is a monochromatic path from any of the vertices v1, v2, v3 to the vertex u3. Thus, u4 ∈ K , but the vertex u4
does not absorb the vertex u3. Therefore, {v1, v2, v3} ∩ K = ∅ andv4 ∈ K . The vertex v4 absorbs all the vertices except the
vertex u4, but v4u4 is a directed monochromatic path. So, the digraph D has no m-kernel.

In Fig. 7 there are two digraphs, 3- and 4-colored respectively, with the colors.

In Fig. 7(a) the 3-cycles are all monochromatic, but there are 4-cycles and 5-cycles, which are not monochromatic (for
instance (u1, v3, u4, u2, u1)). In Fig. 7(b) the 4-cycles are all monochromatic, but there are 3-cycles and 5-cycles which are
not monochromatic. In both cases, the digraph has nom-kernel. These digraphs shows that monochromatic 3-cycles are not
sufficient and that monochromatic 4-cycles are not sufficient.

a b

Fig. 7. Digraphs without am-kernel.
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