Kernels by monochromatic paths in digraphs with covering number 2^{\star}

Hortensia Galeana-Sánchez ${ }^{\text {a }}$, Mika Olsen ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 México DF, Mexico
${ }^{\text {b }}$ Departamento de Matemáticas Aplicadas y Sistemas, UAM-Cuajimalpa, Calle Artificios 406^{0} piso, Álvaro Obregón, CP 01120, México DF, Mexico

ARTICLE INFO

Article history:

Available online 16 October 2010

Keywords:

Digraphs
Kernel by monochromatic paths
Covering number

Abstract

We call the digraph D an k-colored digraph if the arcs of D are colored with k colors. A subdigraph H of D is called monochromatic if all of its arcs are colored alike. A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices $u, v \in N$, there is no monochromatic directed path between them, and (ii) for every vertex $x \in(V(D) \backslash N)$, there is a vertex $y \in N$ such that there is an $x y$-monochromatic directed path. In this paper, we prove that if D is an k-colored digraph that can be partitioned into two vertex-disjoint transitive tournaments such that every directed cycle of length 3,4 or 5 is monochromatic, then D has a kernel by monochromatic paths. This result gives a positive answer (for this family of digraphs) of the following question, which has motivated many results in monochromatic kernel theory: Is there a natural number l such that if a digraph D is k-colored so that every directed cycle of length at most l is monochromatic, then D has a kernel by monochromatic paths?

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let D be a digraph. We denote by $V(D)$ and $A(D)$ the sets of vertices and the set of arcs of D, respectively. Let $v \in V(D)$. We denote by $N^{+}(v)$ and $N^{-}(v)$ the out- and in-neighborhood of v in D, respectively. We define $\delta^{+}(w)=\left|N^{+}(w)\right|$ and $\delta^{-}(w)=\left|N^{-}(w)\right|$. For $S \subseteq V(D)$, we denote by $D[S]$ the subdigraph of D induced by the vertex set S. For two disjoint subsets U, V of $V(D)$, we denote by $(U, V)=\{u v \in A(D): u \in U, v \in V\}$ and $[U, V]=(U, V) \cup(V, U)$. An $U V$-arc is an arc from (U, V) if $U=\{u\}$ (resp. $V=\{v\}$), we denote the $U V$-arc by $u V$-arc (resp. $U v$-arc). We call the digraph D an k-colored digraph if the arcs of D are colored with k colors. The digraph D will be an k-colored digraph and all the paths, cycles and walks considered in this paper will be directed paths, cycles or walks. If $W=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is a walk, the length of W is n. The length of a walk W is denoted by $l(W)$. The path $\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ will be called an $U V$-path whenever $u_{0} \in U$ and $u_{n} \in V$. A tournament is a digraph T such that there is exactly one arc between any two vertices of T. An acyclic tournament is called a transitive tournament. A vertex $v \in V(T)$ is called a sink if $N^{-}(v)=V(D) \backslash v$. A subdigraph H of a k-colored digraph D is called monochromatic if all of its arcs are colored alike. Let $N \subseteq V(D)$. Then, N is said to be m-independent if there is no monochromatic directed path between any pair of vertices of the set N, N is a m-absorbent (or m-dominant) if for every vertex $x \in(V(D) \backslash N)$ there is a vertex $y \in N$ such that there is an $x y$-monochromatic directed path and finally, N is a m-kernel (kernel by monochromatic paths) if it satisfies the following two conditions: (i) N is m-independent and (ii) N is m-absorbent. For general concepts, we refer the reader to [1,2,7].

The topic of domination in graphs has been widely studied by many authors. A very complete study of this topic is presented in [19,20]. A special class of domination is the domination in digraphs, and it is defined as follows. In a digraph D,

[^0]a set of vertices $S \subseteq V(D)$ dominates whenever for every $w \in(V(D) \backslash S)$ there exists a $w S$-arc in D. Dominating independent sets in digraphs (kernels in digraphs) have found many applications in different topics of mathematics (see for instance [21, $22,8,9,26]$) and they have been studied by several authors; interesting surveys of kernels in digraphs can be found in [6,9]. The concepts of m-domination, m-independence and m-kernel in edge-colored digraphs are generalization of those of domination, independence and kernel in digraphs. The study of the existence of m-kernels in edge-colored digraphs starts with the theorem of Sands, Sauer and Woodrow, proved in [25], which asserts that every two-colored digraph possesses an m-kernel. In the same work, the authors proposed the following question: let D be an k-colored tournament such that every directed cycle of length 3 is quasi-monochromatic (a subdigraph H of an k-colored digraph D is said to be quasimonochromatic if, with at most one exception, all of its arcs are colored alike) must D have a m-kernel? Minggan [24] proved that if D is an k-colored tournament such that every directed cycle of length 3 and every transitive tournament of order 3 is quasi-monochromatic, then D has a m-kernel. He also proved that this result is best possible for $m \geq 5$. In [15], it was proved that the result is best possible for $m \geq 4$. The question for $m=3$ is still open: Does every 3-colored tournament such that every directed cycle of length 3 is quasi-monochromatic have a m-kernel? Sufficient conditions for the existence of m-kernels in edge-colored digraphs have been obtained mainly in tournaments and generalized tournaments, and ask for the monochromaticity or quasi-monochromaticity of small digraphs (due to the difficulty of the problem) in several papers (see $[10,11,15,16,18,24]$).Other interesting results can be found in $[27,28]$. Another question which has motivated many results in m-kernel theory is the following (proposed in the abstract): Given a digraph D is there an integer k such that if every directed cycle of length at most k is monochromatic (resp. quasi-monochromatic), then D has a m-kernel? In [11] (resp. in [16]) it was proved that if D is an k-colored tournament (resp. bipartite tournament) such that every directed cycle of length 3 (resp. every directed cycle of length 4) is monochromatic, then D has a m-kernel. Later the following generalization of both results was proved in [17]: if D is an k-colored k-partite tournament, such that every directed cycle of length 3 and every directed cycle of length 4 is monochromatic, then D has a m-kernel. In [18] were considered quasi-monochromatic cycles, the authors proved that if D is an k-colored tournament such that for some k every directed cycle of length k is quasi-monochromatic and every directed cycle of length less than k is not polychromatic (a subdigraph H of D is called polychromatic whenever it is colored with at least three colors), then D has a m-kernel. In [13] this result was extended for nearly complete digraphs. The covering number of a digraph D is the minimum number of transitive tournaments of D that partition $V(D)$. Digraphs with a small covering number are a nice class of nearly tournament digraphs. The existence of kernels in digraphs with a covering number at most 3 has been studied by several authors, in particular by Berge [3], Maffray [23] and others [4,5,12,14].

In this paper, we study the existence of m-kernel in edge-colored digraphs with covering number 2, asking for the monochromaticity of small directed cycles. We prove that if D is an k-colored digraph with covering number 2 such that every directed cycle of length 3,4 or 5 is monochromatic, then D has a m-kernel.

2. Structural properties

We consider the family \mathfrak{D} of digraphs D with covering number 2 . Since D has covering number 2 , there exists a non-trivial partition of $V(D)$ into two sets U, V such that $D[U], D[V]$ are transitive tournaments. Throughout this paper, the non-trivial partition of the vertex set into U, V is such that $D[U], D[V]$ are transitive tournaments. Let T be a transitive tournament of order n. Throughout this paper, $\left(v_{n}, v_{n-1}, \ldots, v_{1}\right)$ will denote the Hamiltonian path in T. Thus for any $1 \leq i \leq n$, the vertex v_{i} is the sink of $T \backslash\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$, in particular, v_{1} is the sink of T. When $P=\left(u_{0}, u_{1}, \ldots, u_{k}\right)$ is a path, we will denote by (u_{i}, P, u_{j}), for $0 \leq i<j \leq k$, the u_{i}, u_{j}-path contained in P. Let $u_{i} u_{i+1}$ and $u_{j} u_{j+1}$ be two distinct arcs on P. We say that the arc $u_{i} u_{i+1}$ precedes (resp. follows) the arc $u_{j} u_{j+1}$ on the path P, if $i<j$ (resp. $j<i$).

Throughout this paper, the vertex z will be fixed and arbitrary.
First, we prove some structural properties of the $w z$-paths of minimum length with $w \in\left\{u_{1}, v_{1}\right\}$ in digraphs of the family \mathfrak{D}. Next, we extend these properties for $w z$-paths of minimum length with $w \in\left\{u_{1}, v_{1}\right\}$ in k-colored digraphs of the family \mathfrak{D} with every directed cycle of length 3 , 4 or 5 monochromatic.

Let $u_{m} v_{n}, v_{k} u_{l} \in[U, V]$. We say that $u_{m} v_{n}, v_{k} u_{l}$ are crossing arcs if $u_{m}, u_{l} \in V(D), v_{n}, v_{k} \in V(D)$, and $m \leq l, k \leq n$, except when $n=k$ and $m=l$ (see Fig. 1). Let $u_{m} v_{n} \in(U, V)$. If $x y, u_{m} v_{n} \in[U, V]$ are crossing arcs, then clearly $x y \in(V, U)$.

Fig. 1. $u_{m} v_{n}$ and $v_{k} u_{l}$ are crossing arcs.

Lemma 1. Let D be a digraph of the family \mathfrak{D} such that the sinks u_{1}, v_{1} of $D[U]$ and $D[V]$ respectively has a nonempty outneighborhood. Let P be a wz-path of minimum length, with $w \in\left\{u_{1}, v_{1}\right\}$. Then, any $a \in[U, V] \cap A(P)$ has at most one preceding crossing arc on P and at most one following crossing arc on P.

Proof. Let D be a digraph that satisfies the hypothesis of this lemma and let P be a $w z$-path of minimum length starting at the vertex u_{1} or v_{1} and $|[U, V] \cap A(P)| \geq 2$.

Suppose, for a contradiction, that there is an arc of $[U, V] \cap A(P)$ with at least two following (preceding) crossing arcs on P. By symmetry, we may assume that $u_{i} v_{j} \in(U, V) \cap A(P)$ is such that $u_{i} v_{j}$ has at least two following (preceding) crossing arcs in (V, U). Let $v_{k} u_{l} \in(V, U)$ be the first following crossing arc on P and let $v_{s} u_{t} \in(V, U)$ be the last following crossing arc on P (resp. let $v_{e} u_{f} \in(V, U)$ be the first preceding crossing arc on P). Since $u_{i} v_{j}$ and $v_{s} u_{t}$ are crossing arcs, $j \geq k, s$ and $l, t \geq i$. Do also note that P is a path and therefore $l \neq t$ and $k \neq s$ (see Fig. 2).

Fig. 2. $u_{i} v_{j}$ and $v_{s} u_{t}$ are crossing arcs.
The cycle $\left(u_{i}, v_{j}, v_{s}, u_{t}, u_{i}\right)$ (resp. the cycle $\left(u_{i}, v_{j}, v_{e}, u_{f}, u_{i}\right)$) has length at most 4 (see Fig. 2), and since P is a path, $v_{j} v_{s}$ is not on P, then $P^{\prime}=\left(w, P, v_{j}\right) \cup\left(v_{j}, v_{s}\right) \cup\left(v_{s}, P, z\right)\left(\right.$ resp. $\left.P^{\prime}=\left(w, P, u_{f}\right) \cup\left(u_{f}, u_{i}\right) \cup\left(u_{i}, P, z\right)\right)$ is a $w z$-directed path such that $l\left(P^{\prime}\right)<l(P)$, which contradicts the way we chose P. So $u_{i} v_{j} \in(U, V)$ has at most one following (preceding) crossing arc; by symmetry any arc of $[U, V]$ has at most one following (preceding) crossing arc and we are done.

Remark 1. Let D be a digraph of the family \mathfrak{D} such that $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$. Let P be a $w z$-path of minimum length with $w \in\left\{u_{1}, v_{1}\right\}$. Then, $x y$ is the first arc of $[U, V] \cap A(P)$ if and only if $x=w$.

Lemma 2. Let D be a digraph of the family \mathfrak{D} such that $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$. Let P be a directed wz-path of minimum length, with $w \in\left\{u_{1}, v_{1}\right\}$. Then, any two consecutive $[U, V]$-arcs on P are crossing arcs.
Proof. Let D be a digraph that satisfies the hypothesis of this lemma and let P be a path of minimum length, starting at the vertex u_{1} or v_{1}, with $|[U, V] \cap A(P)| \geq 2$.

Suppose, for a contradiction, that there are two consecutive [U, V]-arcs on P such that they are not crossing arcs. By symmetry, we may assume that $u_{i} v_{j} \in(U, V), v_{k} u_{l} \in(V, U)$ is the first pair of consecutive [U, V]-arcs that does not form a crossing pair, then $1 \leq l<i$ and by Remark 1 , the arc $u_{i} v_{j}$ must have a preceding $V U$-arc, and this arc must be a crossing arc by the way we chose the arc $u_{i} v_{j}$. Let $v_{g} u_{h} \in(V, U)$ be the preceding crossing arc of $u_{i} v_{j}$. Since $D[U]$ is transitive, then $P^{\prime}=\left(w, P, u_{h}\right) \cup\left(u_{h}, u_{l}\right) \cup\left(u_{l}, P, z\right)$ is a $w z$-path such that $l\left(P^{\prime}\right)<l(P)$ (see Fig. 3), which is a contradiction.

Fig. 3. How we find a path P^{\prime} such that $l\left(P^{\prime}\right)<l(P)$.

Proposition 1. Let D be a digraph of the family \mathfrak{D} such that $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$. Let P be a wz-path of minimum length with $|[U, V] \cap A(P)| \geq 2$. Then, the first and the last $[U, V]$-arc on P have exactly one crossing arc and any $[U, V]$-arc except the first and the last one, has exactly one preceding and exactly one following crossing [U, V]-arc.

Proof. A consequence of the Lemmas 1 and 2.
We will now extend the results Lemmas 1,2 and Proposition 1 to k-colored digraphs of the family \mathfrak{D}, with every directed cycle of length 3,4 or 5 monochromatic.

Remark 2. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic. Then any two crossing arcs have the same color, and so if $m<l$ and $k<n$, then ($u_{l}, u_{m}, v_{n}, v_{k}, u_{l}$) is a 4-cycle, if $m<l$ and $n=k$, then $\left(u_{m}, v_{n}, u_{l}, u_{m}\right)$ is a 3-cycle and if $m=l$ and $k<n$, then ($u_{m}, v_{n}, v_{k}, u_{m}$) is a 3-cycle (see Fig. 1).

Moreover for any integers i or $j, m<i<l$ and $n<j<k$ (if they exist), the $\operatorname{arcs} u_{l} u_{i}, u_{i} u_{m}, v_{n} v_{j}, v_{j} v_{k}$ have the same color as the crossing arcs $u_{m} v_{n}, v_{k} u_{l}$ (see Fig. 1).

Lemma 3. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic. If $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$, then $u_{1} v_{j}$ and $v_{1} u_{i}$ has the same color for any $u_{i} \in N^{+}\left(v_{1}\right)$ and $v_{j} \in N^{+}\left(u_{1}\right)$.
Proof. Let i, j be two integers such that $u_{i} \in N^{+}\left(v_{1}\right)$ and $v_{j} \in N^{+}\left(u_{1}\right)$. Then, the arcs $u_{1} v_{j}, v_{1} u_{i}$ are crossing arcs and by Remark 2, they have the same color.

Corollary 1. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic. If $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$, then all the monochromatic paths from u_{1} or from v_{1} have the same color.

By Lemma 3, we may assume that every arc $u_{1} v_{j}, v_{1} u_{i}$ has color 1 , and by Corollary 1, any monochromatic $u_{1} x$-path, $v_{1} x$-path has color 1 , for all $x \in V(D)$.

Lemma 4. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3 and 4 are monochromatic and such that $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$. Let P be a monochromatic wz-path of minimum length, with $w \in\left\{u_{1}, v_{1}\right\}$, and let $a \in[U, V] \cap A(P)$. Then the arc a has at most one preceding crossing [U, V]-arc on P and at most one following crossing [U, V]-arc on P.
Proof. Let D be a digraph that satisfies the hypothesis of the Lemma 4 and let P be a monochromatic $w z$-path of minimum length starting at the vertex u_{1} or v_{1} and $|[U, V] \cap A(P)| \geq 2$.

Suppose, for a contradiction, that $a \in[U, V] \cap A(P)$ such that a has at least two following crossing arcs on P. By symmetry, we may assume that $u_{i} v_{j} \in(U, V)$ is the first $[U, V]$-arc of P such that $u_{i} v_{j}$ has at least two following crossing arcs on P. Proceed as in the proof of Lemma 1. Since the cycle ($u_{i}, v_{j}, v_{s}, u_{t}, u_{i}$) has length at most 4, it is monochromatic. Moreover, the $\operatorname{arc} u_{i} v_{j}$ has color 1 , so the cycle and the path P^{\prime} are both monochromatic of color 1 (see Fig. 2) and P^{\prime} is a monochromatic $w z$-path such that $l\left(P^{\prime}\right)<l(P)$. So any $[U, V]$-arc on P has at most one following crossing $[U, V]$-arc on P. Analogously, any $[U, V]$-arc on P has at most one preceding crossing [U, V]-arc on P.

Remark 3. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic. Let P be a monochromatic $w z$-path of minimum length with $w \in\left\{u_{1}, v_{1}\right\}$. Then $x y$ is the first $[U, V]$-arc on P if and only if $x=w$.

Lemma 5. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic and such that $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$. Let P be a monochromatic $w z$-path of minimum length, with $w \in\left\{u_{1}, v_{1}\right\}$. Then any two consecutive [U, V]-arcs on P are crossing arcs.
Proof. Let D be a digraph that satisfies the hypothesis of this lemma and let P be a monochromatic path of minimum length starting at the vertex u_{1} or v_{1}, with $|[U, V] \cap A(P)| \geq 2$.

Suppose, for a contradiction, that there are two consecutive [U, V]-arcs on P that are not crossing arcs. By symmetry, we may assume that $u_{i} v_{j} \in(U, V)$ is the first $[U, V]$-arc such that the following $[U, V]-\operatorname{arc} v_{k} u_{l}$ is not a crossing arc of $u_{i} v_{j}$.

Claim 1. If $v_{1} u_{x} \in A(P)$ is the first $[U, V]$-arc on P, then $x<l$.
Let $x \geq l$. Suppose, for a contradiction, that $v_{1} u_{x}$ is the first $[U, V]$-arc on P, then $\left(v_{1}, u_{x}, u_{l}, u_{1}, v_{y}, v_{1}\right)$ is a monochromatic cycle of color 1 and of length at most 5 (where v_{y} is any vertex in $\left.N^{+}\left(u_{1}\right)\right)$. Thus $P^{\prime}=\left(w=v_{1}, u_{x}, u_{l}\right) \cup\left(u_{l}, P, z\right)$ is a directed monochromatic $w z$-path of color 1 . Since $|[U, V] \cap A(P)| \geq 2, P^{\prime}$ is such that $l\left(P^{\prime}\right)<l(P)$, and the Claim 1 is valid.

Claim 2. P has no crossing arcs $u_{a} v_{b}, v_{c} u_{d}$ preceding the arc $u_{i} v_{j}$ with $a<l<d$.
Let $a<l<d$. For a contradiction, suppose that $u_{a} v_{b}, v_{c} u_{d}$ is a pair of crossing arcs, both preceding the arc $u_{i} v_{j}$ on the path P. The length of the cycle $C=\left(u_{a}, v_{b}, v_{c}, u_{d}, u_{l}, u_{a}\right)$ is at most 5 . The path P is monochromatic of color 1 , and so is the cycle C. If $u_{a} v_{b}, v_{c} u_{d}$ are consecutive crossing arcs, then $P^{\prime}=\left(w, P, u_{d}\right) \cup\left(u_{d}, u_{l}\right) \cup\left(u_{l}, P, z\right)$ is a directed monochromatic $w z$-path. The $\operatorname{arcs} u_{a} v_{b}, v_{c} u_{d}$ are preceding to the arc $u_{i} v_{j}$; thus, P^{\prime} is such that $l\left(P^{\prime}\right)<l(P)$. If $v_{c} u_{d}, u_{a} v_{b}$ are consecutive crossing arcs, then $P^{\prime}=\left(w, P, u_{d}\right) \cup\left(u_{d}, u_{l}\right) \cup\left(u_{l}, P, z\right)$ is a directed monochromatic $w z$-path. The arcs $u_{a} v_{b}, v_{c} u_{d}$ are preceding to the arc $u_{i} v_{j}$; thus, P^{\prime} is such that $l\left(P^{\prime}\right)<l(P)$. So Claim 2 is valid.

The arcs $u_{i} v_{j}$ and $v_{k} u_{l}$ are not crossing arcs, then $i>l>0$ and by Remark 3, the arc $u_{i} v_{j}$ is not the first [U,V]-arc on P. Let $v_{g} u_{h} \in(V, U)$ be the preceding crossing arc of $u_{i} v_{j}$. Then, $h \geq i>l$ and $g<j$.

Note that $h \geq i>l$. By Claim 1 and Remark 3, the arc $v_{g} u_{h}$ is not the first $[U, V]$-arc on P. Let $v_{e} u_{f} \in(V, U)$ be the first arc on P such that $f>l$, such arc does exist (for instance $v_{g} u_{n}$). By Claim 1 and Remark 3, the arc $v_{e} u_{f}$ is not the first $[U, V]$-arc on P. Then, the arc $v_{e} u_{f}$ must have a preceding [U,V]-arc, and this arc must be a crossing arc by the way we chose the arc $u_{i} v_{j}$. Let $u_{c} v_{d} \in(U, V)$ be the preceding crossing arc of $v_{e} u_{f}$. By Claim 2 and the fact that $f>l$, we have that $c \geq l$; moreover, since P is a path $c>l$, then Claim 1 and Remark 3 imply that the $\operatorname{arc} u_{c} v_{d}$ is not the first $[U, V]$-arc on P. So the arc $v_{e} u_{f}$

Fig. 4. Any two consecutive $[U, V]$-arcs on P are crossing arcs.
must have a preceding [$U, V]$-arc, and this arc must be a crossing arc by the way we chose the $\operatorname{arc} u_{i} v_{j}$. Let $v_{a} u_{b} \in(V, U)$ be the preceding crossing arc of $u_{c} v_{d}$ (see Fig. 4).

By the choice of the arc $u_{i} v_{j}$, it follows that $v_{a} u_{b}$ and $u_{c} v_{d}$ are crossing arcs, and $b>c>l$ which contradicts the choice of the $\operatorname{arc} v_{e} u_{f}$. So any two consecutive $[U, V]$-arcs on P does form a crossing pair of arcs.

Corollary 2. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic and such that $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$. Let P be a monochromatic wz-path of minimum length with $|[U, V] \cap A(P)| \geq 2$. Then, the first and the last $[U, V]$-arc on P have exactly one crossing arc and any $[U, V]$-arc, except the first and the last one has exactly one preceding and exactly one following crossing [U, V]-arc. Moreover, two crossing arcs on P must be consecutive $[U, V]$-arcs on P.
Proof. A consequence of the Lemmas 4 and 5.
The following theorem collects the results of Lemmas 4, 5 and Corollary 2. Moreover, it describes the structure of a monochromatic path of minimum length, as shown in Fig. 5.

Fig. 5. The structure of a monochromatic directed $w z$-path of minimum length.
We denote by P_{U} the digraph on the vertex set $V(P) \cap U$, and $A\left(P_{U}\right)=A(P) \cap A(D[U])$.
Theorem 1. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic and such that $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$. Let P be a monochromatic $w z$-path of minimum length, with $w \in\left\{u_{1}, v_{1}\right\}$. Then,
(i) if $u_{a} v_{b} \in(U, V)$ and $u_{e} v_{f} \in(U, V)$ are arcs on P and $u_{e} v_{f}$ follows $u_{a} v_{b}, a<e$ and $b<f$;
(ii) an induced path of P_{U} (resp. P_{V}) has length at most one.

Proof. Let D be a digraph that satisfies the hypothesis of this lemma and let P be a monochromatic path of minimum length starting at the vertex u_{1} or v_{1}.
(i) In order to prove the item (i) we take $u_{a} v_{b}$ and $u_{e} v_{f}$ the preceding and the following crossing arc respectively of $v_{c} u_{d}$ on the path P, by the definition of crossing arcs $a, e<d$ and $c<b, f$. Suppose, for a contradiction, that $a>e$, then $u_{a} v_{b}$ is not the first $[U, V]$-arc on P, by Remark 3 . By Lemma $5, u_{a} v_{b}$ has a preceding crossing arc, say h, then the arc $u_{e} v_{f}$ would have two preceding crossing arcs, namely $v_{c} u_{d}$ and h and by Lemma 4, we have a contradiction, so $a<e$. Analogously $b<f$.
(ii) In order to prove that an induced path of P_{U} has length at most 1 , we take two consecutive crossing arcs on the path P, say $u_{a} v_{b}, v_{c} u_{d}$, and prove that $v_{b} v_{c} \in A(P)$. The length of the cycle $C=\left(u_{a}, v_{b}, v_{c}, u_{d}, u_{a}\right)$ is at most 4 and the path P is monochromatic of color 1 , and so is the cycle C. Then $P^{\prime}=\left(w, P, v_{b}\right) \cup\left(v_{b}, v_{c}\right) \cup\left(v_{c}, P, z\right)$ is a directed monochromatic $w z$-path. If $v_{b} v_{c} \notin A(P)$, then P^{\prime} would be a monochromatic $z w$-path such that $l\left(P^{\prime}\right)<l(P)$, so $v_{b} v_{c} \in A(P)$.

3. m-kernel

Let D be an k-colored digraph. A subset S of $V(D)$ is a m-semi-kernel of D if it satisfies the following two conditions:
(a) S is m-independent, and
(b) for every vertex $z \notin S$ for which there exists a $S z$-monochromatic directed path, there also exists a $z S$-monochromatic directed path.

A kernel of a digraph D is also a semi-kernel of D, but the converse is not true.
We prove that an k-colored digraph D of the family \mathfrak{D} with any cycle of length 3,4 and 5 monochromatic has a m-semikernel of only one vertex. This fact will lead us to the main theorem.

The main idea in the proof of Proposition 2 is the following.
Let x be any vertex, say u_{s}, on a monochromatic $w z$-path P of minimum length, with $w \in\left\{u_{1}, v_{1}\right\}$. We prove that if P has at least two $[U, V]$-arcs, then there is a pair of crossing arcs on P, say $u_{i} v_{j}$ and $v_{k} u_{l}$, such that $i<l$ and $i \leq s \leq l$.

Proposition 2. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic. Then, u_{1} (resp. v_{1}) is a m-semi-kernel of one vertex of D.

Moreover if there is a monochromatic wz-path, with $w \in\left\{u_{1}, v_{1}\right\}$, of color 1 , then there is a monochromatic zw-path of color 1.
Proof. If $\delta^{+}\left(u_{1}\right)=0\left(\delta^{+}\left(v_{1}\right)=0\right)$, then $u_{1}\left(\right.$ resp. $\left.v_{1}\right)$ is a m-semi-kernel. Let $\delta^{+}\left(u_{1}\right), \delta^{+}\left(v_{1}\right)>0$, and let k, l be maximum integers such that $u_{k} \in N^{+}\left(v_{1}\right)$ and $v_{l} \in N^{+}\left(u_{1}\right)$. By Corollary 1 , we may assume that any monochromatic path from v_{1} or u_{1} has color 1 .

We prove that if there is a monochromatic $w z$-path, with $w \in\left\{u_{1}, v_{1}\right\}$, then there is a monochromatic $z w$-path of color 1. Since u_{1} is the sink of $D[U]$ (resp. v_{1} is the sink of $D[V]$), there is an $u u_{1}$ arc in D, for any $u \in U \backslash u_{1}$ (resp. there is an $v v_{1}$ arc in D for any $v \in U \backslash v_{1}$), but this arc is not necessarily of color 1 .

Proceeding by contradiction, we take a monochromatic $w z$-path P of minimum length (thus P is colored 1) with z as the first vertex on P such that there is no monochromatic $z w$-path colored 1. By symmetry, we may assume that $z=u_{s}$ for some integer $1 \leq s \leq n$. Let $v_{k} u_{l} \in(V, U)$ be the first arc on P such that $l \geq s$. Such arc does exist because $D[U]$ is a transitive tournament and thus for each $u_{r} \in U \cap V(P)$, the preceding vertex on P is a vertex of the set $\left\{u_{r+1}, u_{r+2}, \ldots, u_{n}\right\} \cup V$. If $v_{k} u_{l}$ is the first $[U, V]$-arc on P, then $k=1$ and for any $v \in N^{+}\left(u_{1}\right)$ the cycle $\left(v_{1}=v_{k}, u_{l}, u_{s}, u_{1}, v, v_{1}\right)$ has length at most 5 and is monochromatic of color 1 . Then $P^{\prime}=\left(u_{s}, u_{1}\right)$ (resp. $\left.P^{\prime \prime}=\left(u_{s}, u_{1}, v, v_{1}\right)\right)$ is a monochromatic $u_{s} u_{1}$-path (resp. $u_{s} v_{1}$-path) of color 1 and we are done.

Therefore, $v_{k} u_{l}$ is not the first $[U, V]$-arc on P. Let $u_{i} v_{j} \in(U, V)$ be the preceding crossing arc on P; this arc exists by Lemma 5 . Since P is a path, $i \neq l$. If $i>s$, then $u_{i} v_{j}$ is not the first $[U, V]$-arc on P and by Lemma $5, u_{i} v_{j}$ has a preceding crossing arc $v_{g} u_{h} \in(V, U)$. By (ii) of Theorem $1, i<h<l$, which contradicts the choice of the arc $v_{k} u_{l}$. Then, $i<s$. The cycle $\left(v_{k}, u_{l}, u_{s}, u_{i}, v_{j}, v_{k}\right)$ has length at most 5 and it is monochromatic of color 1 (see Fig. 6). By the choice of the vertex u_{s}, there is a monochromatic $u_{i} w$-path P^{\prime} colored 1 . Then, $\left(u_{s}, u_{i}\right) \cup P^{\prime}$ is a monochromatic $u_{s} w$-path colored 1 , and we are done.

Fig. 6. The 5 -cycle $\left(v_{k}, u_{l}, u_{s}, u_{i}, v_{j}, v_{k}\right)$ is monochromatic of color 1 .
So, if there is a monochromatic $w u_{s}$-path, with $w \in\left\{u_{1}, v_{1}\right\}$, then there is a monochromatic $u_{s} w$-path of color 1 . Analogously, if there is a monochromatic $w v_{s}$-path, with $w \in\left\{u_{1}, v_{1}\right\}$, then there is a monochromatic $v_{s} w$-path of color 1 . Therefore, $\left\{u_{1}\right\}$ and $\left\{v_{1}\right\}$ are both semi-kernels of D.

Theorem 2. Let D be an k-colored digraph of the family \mathfrak{D} such that the cycles of length 3,4 and 5 are monochromatic. Then, D has a m-kernel.
Proof. If $\delta^{+}\left(u_{1}\right)=0$ (resp. $\delta^{+}\left(v_{1}\right)=0$), then u_{1} (resp. v_{1}) is a m-semi-kernel; else Proposition 2 implies that u_{1} or v_{1} is a m-semi-kernel of D. We may assume that v_{1} is a m-semi-kernel of D. Suppose that v_{1} is not a m-kernel of D. Let U^{\prime} be the subset of the vertices of $V(D)$ such that there is no monochromatic $U^{\prime} v_{1}$-directed path. As v_{1} is a semi-kernel of D, we have that there are no monochromatic directed path between v_{1} and a vertex $x \in U^{\prime}$. Since $D[V]$ is a transitive tournament, $v_{j} v_{1} \in A(D)$ for every $1<j \leq m$; therefore, $U^{\prime} \subset U$. As v_{1} is not a m-kernel of D, then $U^{\prime} \neq \emptyset$ and $D[U]$ is a transitive tournament, then $D\left[U^{\prime}\right]$ has a sink. Let u_{p} be the sink of $D\left[U^{\prime}\right]$. Then $\left\{v_{1}, u_{p}\right\}$ is a kernel by monochromatic paths of D.

4. Final remarks

In this section, we show three digraphs from the family \mathfrak{D}. The first one (Example 1) is a digraph colored with a large number of colors. Next we show two digraphs without m-kernel; the first one (Example 2) has 4 - and 5 -cycles that are not monochromatic and the second one (Example 3) has 3 - and 5 -cycles that are not monochromatic. The Example 2 shows that the condition of monochromatic 3-cycles is not sufficient, and Example 3 shows that monochromatic 4-cycles is not sufficient.

Example 1. We define the digraph D as follows.
Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ be a partition of the vertex set $V(D)$ such that $D[U], D[V]$ are transitive tournaments. Let

$$
\begin{aligned}
& A(D)=\left\{u_{i} u_{j}: j<i\right\} \cup\left\{v_{i} v_{j}: j<i\right\} \cup\left\{v_{1} u_{2}, u_{1} v_{2}\right\} \cup A^{\prime} \\
& A^{\prime} \subset\left\{u_{i} v_{j}: j \leq i\right\} \cup\left\{v_{i} u_{j}: j<i\right\} \backslash\left\{v_{2} u_{1}, u_{2} v_{1}\right\}
\end{aligned}
$$

The only cycles of D are the cycles in $D\left[u_{1}, u_{2}, v_{1}, v_{2}\right]$. Since there are no other cycles, we can color each arc outside $D\left[u_{1}, u_{2}, v_{1}, v_{2}\right]$ with a different color and still have an arc coloring of D, with all cycles of length 3,4 and 5 monochromatic. If D is a tournament, then D has $\binom{k+l}{2}$ arcs. There are $6-\operatorname{arcs}$ in $D\left[u_{1}, u_{2}, v_{1}, v_{2}\right]$, so the maximum number of colors of D is

$$
\binom{k+l}{2}-5
$$

So, we have k-colored digraphs in the family \mathfrak{D} with any cycle of length 3,4 and 5 monochromatic, such that the D is not a tournament nor a nearly complete digraphs, and $m=A(D)-6$.

Example 2. Let D be the digraph in Fig. 7(a). Note that the 4 -cycle $\left(u_{1}, v_{3}, u_{4}, u_{2}, u_{1}\right)$ is not monochromatic. We show that D has no m-kernel. First observe that the only vertex that absorbs the vertex v_{2} is v_{1}. If D has a kernel K, then v_{1} or v_{2} are vertices of K, but not both. Suppose that $v_{1} \in K$. Since (v_{1}, u_{3}, u_{1}) is a monochromatic path, $u_{1} \notin K$. The only vertices that absorbs the vertex u_{1} are the vertices u_{4} and v_{3}, but v_{3} is not independent to v_{1} and u_{4} does not absorb the vertex u_{2}; then $v_{1} \notin K$ and $v_{2} \in K$. In this case, v_{1} is not absorbed by v_{2}. The vertices of D that absorb the vertex v_{1} are u_{1} and u_{3}, but u_{1} is not independent to v_{2} and u_{3} does not absorb the vertex u_{2}, so $v_{2} \notin K$. Therefore, D has no kernel.

Example 3. Let D be the digraph in Fig. 7(b). Note that the 3 -cycle $\left(u_{2}, v_{3}, u_{3}, u_{2}\right)$ and the 5 -cycle $\left(u_{2}, v_{3}, u_{3}, v_{4}, u_{4}, u_{2}\right)$ are not monochromatic. We show that D has no m-kernel. First observe that there is no vertex $x \in V(D)$ such that x absorbs every vertex from $V(D) \backslash x$. Thus, if D has a kernel K, then $|K| \geq 2$ and $K \cap\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\} \neq \emptyset$ and $K \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \neq \emptyset$. Any vertex of the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ absorbs all the vertices of D except the vertices u_{3}, u_{4}. If $\left\{v_{1}, v_{2}, v_{3}\right\} \cap K \neq \emptyset$, then $u_{3} \notin K$, because there is a monochromatic path from any of the vertices v_{1}, v_{2}, v_{3} to the vertex u_{3}. Thus, $u_{4} \in K$, but the vertex u_{4} does not absorb the vertex u_{3}. Therefore, $\left\{v_{1}, v_{2}, v_{3}\right\} \cap K=\emptyset$ and $v_{4} \in K$. The vertex v_{4} absorbs all the vertices except the vertex u_{4}, but $v_{4} u_{4}$ is a directed monochromatic path. So, the digraph D has no m-kernel.

In Fig. 7 there are two digraphs, 3- and 4-colored respectively, with the colors.

In Fig. 7(a) the 3-cycles are all monochromatic, but there are 4 -cycles and 5 -cycles, which are not monochromatic (for instance ($\left.u_{1}, v_{3}, u_{4}, u_{2}, u_{1}\right)$). In Fig. 7(b) the 4 -cycles are all monochromatic, but there are 3 -cycles and 5 -cycles which are not monochromatic. In both cases, the digraph has no m-kernel. These digraphs shows that monochromatic 3 -cycles are not sufficient and that monochromatic 4 -cycles are not sufficient.

Fig. 7. Digraphs without a m-kernel.

Acknowledgements

We thanks the anonymous referees for their comments, which improved substantially the rewriting of this paper.

References

[1] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2001.
[2] C. Berge, Graphs, North-Holland, Amsterdam, 1985.
[3] C. Berge, P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27-31.
[4] M. Blidia, P. Duchet, F. Maffray, On kernels in perfect graphs, Combinatorica 13 (2)(1993) 231-233.
[5] M. Blidia, P. Duchet, F. Maffray, On the orientation of meyniel graphs, J. Graph Theory 18 (7) (1994) 705-711.
[6] E. Boros, V. Gurvich, Perfect graphs, kernels and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354.
[7] G. Chartrand, L. Lesniak, Graphs and Digraphs, 3rd ed., Chapman and Hall, London, 1996.
[8] A.S. Fraenkel, Combinatorial game theory foundations applied to digraph kernels, Electron. J. Combin. 4 (1997) 17.
[9] A.S. Fraenkel, succinctsuccint gourmet introduction, Electron. J. Combin. 14 (2007) \#DS2.
[10] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) $103-112$.
[11] H. Galeana-Sánchez, Kernels in edge-coloured digraphs, Discrete Math. 184 (1998) 87-99.
[12] H. Galeana-Sánchez, Kernels in digraphs with covering number at most 3, Discrete Math. 259 (2002) 121-135.
[13] H. Galeana-Sánchez, Kernels in edge-coloured orientations of nearly complete graphs, Discrete Math. 308 (2008) 4599-4607.
[14] H. Galeana-Sánchez, Xueliang Li, Kernels in a special class of digraphs, Discrete Math. 178 (1998) 73-80.
[15] H. Galeana-Sánchez, R. Rojas-Monroy, A counterexample to a conjecture on edge-coloured tournaments, Discrete Math. 282 (2004) $275-276$.
[16] H. Galeana-Sánchez, R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318.
[17] H. Galeana-Sánchez, R. Rojas-Monroy, Monochromatic paths and monochromatic cycles in edge-colored k-partite tournaments, Ars Combin. 97A (2010).
[18] G. Hahn, P. Ille, R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99.
[19] T.W. Haynes, T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs, Advanced Topics, Marcel Dekker Inc., 1998.
[20] T.W. Haynes, T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
[21] J.M. Le Bars, Counterexample of the 0-1 law for fragments of existential second-order logic; an overview, Bull. Symbolic Logic 9 (2000) 67-82.
[22] J.M. Le Bars, The 0-1 law fails for frame satisfiability of propositional model logic, in: Proceedings of the 17th Symposium on Logic in Computer Science, 2002, pp. 225-234.
[23] F. Maffray, Sur l existence de noyaux dans les geaphes parfaits, Thése de 3-ém3 cycle, Univ. P. et M Curie, Paris.
[24] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory Ser. B 45 (1988) 108-111.
[25] B. Sands, N. Sauer, R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982) $271-275$.
[26] J. von Leeuwen, Having a grundy numbering is NP-complete, Report 207 Computer Science Department Pennsylvania State University University Park, PA, 1976.
[27] I. Wloch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93-99.
[28] I. Wloch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (4) (2008) 537-542.

[^0]: *) Research supported by CONACyT-México under project 83917.

 * Corresponding author.

 E-mail addresses: olsen@correo.cua.uam.mx, olsen@correo.cua.mx (M. Olsen).

