
Noname manuscript No.
(will be inserted by the editor)

An Efficient Genetic Algorithm for Setup Time
Minimization in PCB Assembly

Abel Garćıa-Nájera · Carlos A. Brizuela ·
Israel M. Mart́ınez-Pérez

Manuscript submitted to The International Journal of Advanced Manufacturing Technology

Abstract A central aspect of Surface Mount Technology (SMT) systems is the
assembly of printed circuit boards (PCBs) which requires the resolution of many
optimization problems. One of these problems arises when assembling many types
of PCBs on a single machine. In this case the main goal becomes the minimization
of the setup times. That is, the time required to modify the feeder rack in order
to have all components needed by the next type of PCB to be assembled. Achiev-
ing such a minimization goal will provide the system with improved productivity
and flexibility capabilities. In order to minimize the setup time we propose a ge-
netic algorithm that uses a group-based representation with a series of specialized
genetic operators. A set of 90 instances is proposed as a test bed for the single
machine many-types of PCB problem. The proposed algorithm accomplishes the
best known result for a benchmark instance of the problem and outperforms, in
terms of assembly time, a well known heuristic on the set of proposed instances.

Keywords PCB assembly · genetic algorithms · grouping · sequencing.

1 Introduction

Flexible manufacturing systems (FMS) aim at solving production problems of mid
volume (200-20,000 parts per year) [8] and mid-variety parts. The flexibility of the
FMS is characterized by how well it responds to changes in the product design and
the production schedules, and these are a key-factor in electronics assembly, espe-
cially printed circuit board (PCB) assembly. Efficient operations in PCB assembly

Abel Garćıa-Nájera
Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana
Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05300,
México, D.F., México
E-mail: agarcian@correo.cua.uam.mx

Carlos A. Brizuela and Israel Mart́ınez-Pérez
Computer Sciences Department, CICESE, Carretera Ensenada-Tijuana No. 3918, Zona Play-
itas, C.P. 22860, Ensenada, B.C. México
E-mail: {cbrizuel, isaraelmp}@cicese.mx

2 Abel Garćıa-Nájera et al.

will result in a reduction of the production costs and an increase of the competi-
tiveness. Flexibility is therefore becoming essential for PCB assembly. Literature
identifies different types of manufacturing flexibilities [9], [11]. Among these are:
i) Machine flexibility. The number of operations that can be performed by a
machine without setup time. ii) Routing flexibility. The ability to manufacture
a product by alternating routes through the system. iii) Process flexibility. The
set of product types that can be produced by the system without major setups.
iv) Product flexibility. The ease of introducing products into an existing product
mix. v) Volume flexibility. The ability to vary production volume economically.

It is therefore not surprising that, during the past 20 years, PCB assembly liter-
ature has been driven by the desire of reducing set-up, production, and component
feed times [25] to improve production line productivity and flexibility.

The manufacturing of a single PCB type on a single machine requires the res-
olution of very important decision problems. Some of them are the slot assignment

problem (SAP) and the pick and place sequence problem (P2SP) [13]. If we consider
the manufacturing of multiple PCB types on a single machine, which we refer to as
the M1P problem, at least two additional problems are present: the PCBs group-

ing problem (PGP) and the PCB groups sequencing problem (PGSP). The last two
problems, PGP and PGSP are NP-hard [36]. We shall concentrate in this paper
on both problems.

Group Technology (GT) is a manufacturing concept which takes advantage of
parts similarities by grouping them together based on design or manufacturing
properties, thus alleviating the production problems of a proliferation of products
with decreasing life expectancy and improved quality [4]. In PCB assembly, group-
ing the boards in order to minimize the number of changes in the feeder rack, is
directly related to the minimization of the total assembly time. When a specific
PCB type is assembled, the feeder rack should contain all components needed to
perform the task. Similarly, when a group of PCB types is going to be assembled,
all needed components by all PCB types should be present in the feeder rack. Once
the assembly of a PCB group is finished, the feeder rack needs to be updated in
order to handle the assembly task for the next group of PCBs [37].

Due to its complexity, most of the solutions proposed for the M1P problem are
essentially based on heuristics. Ammons et al. [1] presented an integer lineal pro-
gramming model, in which they assume that all PCB groups are already formed
and intend to allocate the component types to the different assembly machines.
The model is solved using a branch and bound algorithm. Crama et al. [6] proposed
a solution based on a hierarchical decomposition of the problem, that is, the prob-
lem is divided in five independent subproblems, and for each of them, well-known
heuristics and local search methods are employed. Leon and Peters [27] studied
six feeder rack setup strategies, focusing in particular on the decisions associated
to feeder changes and the PCB assembly. Smed et al. [37] compared five heuristics
for grouping and sequencing problems over randomly generated instances, concen-
trating on two different paradigms for the grouping problem. Balakrishnan and
Vanderbeck [3] provided a mathematical model for the problem, and proposed
two column generation methods, one for solving the problem and the other to ob-
tain lower bounds. Salonen et al. [34] proposed several heuristics for PCB grouping
and PCB groups sequencing, based on the family setup and on the decompose and
sequence strategies, where they specify a cost function which takes into account
the number of groups and the required changes in the feeder rack. A purely the-

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 3

oretical work was presented by Crama et al. [7], where they revise and formulate
a mathematical model for all subproblems which are part of the problem. A more
recent work by Narayanaswami and Iyengar [30], suggested a heuristic for PCB
grouping, based on the similarity of each pair of PCBs, and another one for the
PCB groups sequencing, based on the similarity of the generated groups. Jeong
[23] proposed an entropy-based group setup strategy which combines component
similarity and geometric similarity simultaneously. The entropy method is used
to determine the weight of each similarity by capturing the importance of each
similarity in different production environments. Ashayeri and Selen [2] developed
a production planning and scheduling formulation to determine the component
machine allocations, as well as a PCB sequence. Two strategies were proposed:
one focusing on minimal number of changeovers and the other on minimal process
time. Most of the works previously described, completely separate the M1P prob-
lem from the others involved in the assembly of a single PCB type (i.e. P2SP and
SAP), mainly because of the increase in problem complexity [27].

One of the main approaches for solving PCB assembly problems is genetic al-
gorithms (GAs) [28,32,19,13], which are inspired by Darwin’s theory of evolution.
That means, GAs use an evolutionary process to improve solution’s quality. The
good results obtained by this kind of algorithms have inspired many researchers
to apply it for scheduling problems, including those in FMS environments, where
it has proven to be an adequate strategy [?]. In this paper, we propose a genetic
algorithm for the manufacturing of multiple PCB types on the pick-and-place ma-
chine, which is a commonly used machine in industry. The rationale for applying
this metaheuristics to the M1P problem is because it allows the representation of
groups and their sequencing in such a way that the genetic operators like crossover
and mutation explore the group and sequencing spaces in an effective and efficient
manner.

When developing a new method it is important to have a set of benchmarks
where a comparison with other approaches can be performed. However, for the
M1P model there is a lack of such instances. A few instances [30] make the excep-
tion. This fact motivates us to generate and make it publicly available 90 different
instances for comparison purposes.

The remainder of the paper is organized as follows. Section 2 reviews relevant
work for single machine scheduling with sequence-dependent setup times. Section
3 states the problem we are dealing with and describes some previous approaches
based on evolutionary algorithms for the PCB assembly problems on a single
machine. In Section 4 we explain the genetic algorithm proposed to solve the
problem. Section 5 describes the experimental setup and results. We conclude this
paper in Section 6 with a brief discussion about possible implications as well as
future directions of our work.

2 A closely related problem: Single machine scheduling with

sequence-dependent setup times

In view of the more general context of the single machine model, setup time min-
imization has been widely considered in literature for different approaches. Rubin
and Ragatz [?] proposed a Branch and Bound algorithm which was able to solve
small instances up to 45 jobs. Bigras et al. [?] designed a hybrid approach of

4 Abel Garćıa-Nájera et al.

Branch and Bound with linear programming which obtains optimal results for
larger instances than those previously employed by Rubin and Ragatz. Due to
the complexity of the problem, several heuristic approaches have been also used
to solve the problem. Tan and Narasimhan [?] developed a simulated annealing
algorithm for minimizing tardiness on a single processor with sequence-dependent
setup times. A memetic algorithm for the same problem was later proposed by
Franca et al. [?]. In this algorithm, a hierarchically structured population and sev-
eral neighborhood reduction schemas were used to obtain better computational
results than previous approaches. Gupta and Smith [?] presented a competitive
greedy randomized adaptive search procedure that uses a new cost function in the
construction phase along with variable neighborhood search in the improvement
phase. Liao and Juan [?] solved a related scheduling criterion, the weighted tardi-
ness, on a single machine environment with sequence-dependent setup times. The
proposed ACO algorithm has several features, including a novel parameter for the
initial pheromone trail and other for adjusting the timing of local search. Gagne
and coworkers [?] modeled an ant colony optimization algorithm which uses look-
ahead information in the transition rule of the algorithm for the minimization of
the total tardiness. In a later work [?], these authors introduced a hybrid algorithm
with Tabu and neighborhood search, which represents the best approach found in
literature for this problem. Evolutionary approaches have been also proposed for
sequence-dependent setup times on single machine environments. The first genetic
algorithm was presented by Rubin et al. [?], which consisted of a SGA algorithm
for minimization of the total tardiness. Armentano and Mazzini [?] proposed for
the same problem a genetic algorithm, whose control parameters were adjusted
by using a statistical method. For their part, Sioud et al. [?] introduced a genetic
algorithm that integrates the RPMX crossover operator. This operator takes into
account the relative and absolute position of a job in the sequence, outperform-
ing previous evolutionary approaches found in literature, but still less efficient
than the Tabu/NS of Gagne et al. [?]. The same authors developed a constraint-
based genetic algorithm, which uses an ILOG API C++ in the crossover operator
of the genetic algorithm [?]. Continuing their work, a novel crossover operator
that combines concepts of constraint programming, multi-objective evolutionary
algorithms, and ant colony optimization was proposed [?]. Numerical experiments
demonstrated the efficiency of the algorithm by generating competitive solutions
to those obtained by other state-of-the-art approaches.

The M1P model becomes a single machine scheduling problem if we restrict
the number of elements in each group to one. Therefore, a description of a more
general model, the M1P, is decribed next.

3 Problem Statement

The PCB assembly task consists in placing a number of electronic components of
pre-specified types at pre-specified locations on a PCB [7]. Automatic assembly
machines can be mainly classified into two categories: concurrent and sequential.
The concurrent assembly machine, such as the chip shooter (CS) machine and
multi-head (MH) machine, performs the pick-up and placement operations simul-
taneously. The sequential placement machine, such as the pick-and-place (PAP)
machine considered in this study, performs the the pick-up and placement oper-

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 5

Feeder rack

Arm

HeadTool

Conveyor belt

PCB

ATC

Slot
Reel

Fig. 1 Pick-and-place assembly machine.

ations one-by-one. The PAP machine, schematically shown in Figure 1, works as
follows.

The PCB to be manufactured is transferred through the machine on a conveyor
belt. There may be one or two feeder racks aside the conveyor belt, which have a
certain number of available slots. Reels contain components which are going to be
placed on the PCB, and each of them contains only one component type: resistors,
capacitors, transistors and integrated circuits, among others. Each slot contains
only one reel, while reels may occupy one or more contiguous slots. The machine
has a robotic arm, which has one or more heads. Heads pick up components from
the reels on the feeder racks and place them on the PCB, by means of using an
appropriate tool. Each component type can be picked up with a subset of tools,
that is, one head with a specific tool can only pick up components from a limited
set of component types. Tools are changed in the automatic tool changer (ATC)
when the next component cannot be picked up with the current tool [24].

When manufacturing a single PCB type, it is required that the time to assemble
a PCB [13] be minimized, since this is the only variable that minimizes the total
assembly time. Once the assembly of a PCB batch is done, some changes in the
feeder rack are required to manufacture the next batch of PCBs. This has to be
done for every set of PCBs to be manufactured.

When manufacturing multiple PCB types, the total assembly time can be
minimized if we propose a method to reduce:

1. The number of times that the feeder rack needs to be reconfigured. We can
appropriately group the PCB types in order to reduce this number. This is
called the PCBs grouping problem (PGP).

2. The total number of reel changes in the feeder rack. We can properly sequence
the PCB groups to decrease this number. This is known as the PCB groups
sequencing problem (PGSP).

There are some strategies to follow in order to minimize the previous objectives
[1]:

1. Single setup strategy. It tries to configure a machine to produce a family of
PCB types, using a single setup. It assumes enough capacity of the feeder rack.

6 Abel Garćıa-Nájera et al.

2. Multi-setup strategy. Since the feeder rack capacity is limited, there are occa-
sions in which the single setup strategy cannot be considered, but it is required
to do additional setups within a family.

From these strategies, the most efficient ones for small batches are decompose

and sequence [1,27,37,35,30] and partition and repeat [3,7], both belonging to the
multi-setup strategies. The decompose and sequence strategy includes both the
PGP and PGSP problems.

Let us first formulate the PGP and PGSP problems. Given N PCB types
(1, ..., N), M component types (1, ...,M), and the corresponding Mi component
types the PCB type i contains (Mi ≤M,∀ i ∈ {1, ..., N}), PGP consists in finding
a set of groups G of PCB types such that the number of resulting groups |G| is
minimized, without exceeding the number of components R that can be allocated
into the machine (number of available slots). We assume, without loss of generality,
that each component type uses only one slot and that M ≥ N .

In addition, we can define the following variables. Let aki be a data input
equals to 1 if the component type k is used in PCB type i, and 0 otherwise. Let
xij be a decision variable equals to 1 if PCB type i is assigned to group j, and 0
otherwise. Let yj be a decision variable equals to 1 if the group j is formed, and 0
otherwise.

Finally, let

zkj =

⌈
1

M

N∑
i=1

xijaki

⌉
, (1)

where zkj = 1 if the component type k is used by at least one PCB in group j,
and 0 otherwise.

With this notation, the PGP problem can be modeled as:

minimize
xij ,yj ,zkj∈ {0,1}

|G| =
N∑
j=1

yj (2)

subject to

M∑
k=1

zkjyj ≤ R, ∀ j ∈ {1, ..., N} (3)

N∑
j=1

xijyj = 1, ∀ i ∈ {1, ..., N} (4)

xij ∈ {0, 1}, ∀ i, j ∈ {1, ..., N} (5)

yj ∈ {0, 1}, ∀ j ∈ {1, ..., N} (6)

zkj ∈ {0, 1}, ∀ k ∈ {1, ...,M}, j ∈ {1, ..., N} (7)

Constraint (3) requires that the number of component types used in each PCB
group does not exceed the number of available slots (R). Constraint (4) requires
that one PCB type must be assigned to only one group.

From this model we can observe that the PGP can be seen as a bin packing

problem, which is known to be NP-hard [14]. In this case, the bins are the PCB

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 7

groups, the objects are the PCB types and the maximum capacity of bins is the
number of available slots.

Now, given the set G of non-empty PCB groups, PGSP consists in sequencing
the groups in G, in such a way that the total number of feeder changes C in the
feeder rack is minimized.

Let wjl be a decision variable equals to 1 if PCB group l is manufactured
immediately after PCB group j, and 0 otherwise.

The PGSP problem can be modeled as follows:

minimize
wjl∈ {0,1}

C =
∑
j∈G

∑
l∈G

M∑
k=1

(zkj − zkl)2wjl (8)

subject to ∑
l∈G

wjl = 1, ∀ j ∈ G (9)

∑
j∈G

wjl = 1, ∀ l ∈ G (10)

∑
j∈G

∑
j∈G

wjl ≤ |Q| − 1, ∀ Q ⊂ G (11)

wjl ∈ {0, 1}, ∀ j, l ∈ {1, ..., N} (12)

The term cil =
∑M

k=1(zkj − zkl)
2wjl in (8), indicates the number of feeder

changes in the feeder rack when finishing the manufacturing of PCB group j and
starting with PCB group l. For example, if PCB group j uses component type k
and PCB group l does not, or viceversa, the term between parenthesis becomes 1.
On the other hand, if both PCB groups either use or do not use component type
k, this term is 0.

Constraint (9) states that only one PCB group must be manufactured right
after PCB group j, while (10) stipulates that only one PCB group must be manu-
factured exactly before PCB group l. Constraint (11) requires that, for each subset
Q ⊂ G of PCB groups, the manufacturing sequence does not form a cycle.

It is not hard to show that, for the model presented above, the PGSP is equiv-
alent to the Traveling Salesman Problem, which is known to be NP-hard [33].

3.1 Related work: evolutionary approaches

To date, a number of evolutionary approaches have been employed to analyze the
PCB assembly problem on a single machine. Most of these approaches focused
on the application for only one type of assembly machine. Here, we briefly review
some of the most relevant heuristics proposed in the field.

Leu et al. [28] proposed the first genetic algorithm for solving the PCB assem-
bly problem in three different types of assembly machines: the PAP machine, the
moving board PAP machine, and the CS machine. In the case of the PAP and
CS machines, the authors divided the chromosome into two parts, the first rep-
resented the component assembly sequence, and the second one represented the
feeder assignment. During the optimization process, both parts are simultaneously

8 Abel Garćıa-Nájera et al.

optimized, that is, the genetic operators are applied to each part, and the resul-
tant chromosome is used to evaluate the cost function. The initial population is
randomly generated. The genetic operators include an order-based crossover, an
inversion operator, a rotation operator, and a mutation operator. Genetic opera-
tors are in this order applied to the population for a fixed number of generations.
The evaluation function depends on the specific characteristics of each assembly
machine, which basically evaluates the total travel distance in the assembly ma-
chine. In the case of the moving board PAP machine, the whole chromosome was
used to represent the assembly sequence, and the genetic operators remained the
same.

An application for the PCB assembly problem in the PAP machine was pre-
sented by Maimon and Braha [29]. This algorithm mainly focused on minimizing
the total number of feeder changes while manufacturing different PCB types, since
the authors estimated that the setup activities consume approximately 35-40% of
the machines’s usable time in the PCB manufacture industry. The chromosome
represented a solution as a permutation of the indices of the PCB types. The initial
population is randomly generated. For each individual, the algorithm calculates
the total number of component switches based on the Keep Tool Needed Soon-
est (KTNS) policy. Individuals are randomly chosen for reproduction via roulette
wheel selection. Two parents are selected at a time and genetic operators, order-
based crossover and mutation, are applied to generate two offspring. Crossover
operation is validated in such a way that two valid offspring (permutations) are
guaranteed. The genetic algorithm gave much better results when compared to a
benchmark heuristic based on a Traveling Salesman Problem formulation.

Ong and Khoo [32] also investigated the application of genetic algorithms for
the PAP machine. They concentrated on optimizing the sequence of component
placements onto a PCB as well as the arrangement of component types in the feeder
rack on a single machine. The objective was to minimize the traveled distance of the
placement head during the assembly of all components onto the PCB. A second
criterion allowed the duplication of component types on the reels. To this end,
the chromosome is divided into two parts. One part represented the component
assembly sequence and the second represented the reel assignment. The initial
population is randomly generated. During (order-based) crossover, two offspring
are generated and each of these offspring is subject to mutation and inversion.
Half of the population is selected based on its fitness function, which basically
calculates the total distance of the placement head from the starting point to the
feeder, picks a component and places it on the assigned location on the board and
goes back to the starting point. This process is iterated until a fixed number of
generations. The best parameters settings obtained in this work were found to be
favorable compared to those obtained by Leu et al. [28].

Hardas et al. [17] designed an experiment to determine the best representation
and crossover type, crossover rate, and mutation rate to use for solving a com-
ponent sequencing problem. They considered a PCB consisting of 10 components
which are placed on a single-headed placement machine. Three different repre-
sentations (path, ordinal, and adjacency) and six appropriate crossover operators
(partially mapped, ordered, cycle, classical, alternating edges, and heuristic) were
evaluated at three different mutation rates and at 11 crossover rates. Two algo-
rithm response variables, the total distance traveled by the placement head and
the algorithm solution efficiency (measured as number of generations and algo-

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 9

rithm solution time), were used to evaluate the different GA applications. The
combination of representation and crossover operator, along with mutation rate,
were found to be the most significant parameters in the algorithm design. In par-
ticular, path representation with order crossover was found to produce the best
solution as measured by the total distance traveled as well as the solution gener-
ation efficiency. Increasing the mutation rate led to slightly improved solutions in
terms of head travel, but also resulted in increased solution time.

Ho and Ji [21] proposed a hybrid genetic algorithm, which incorporated the
nearest neighbor heuristic, the iterated swap procedure, and the 2-opt local search
heuristic in order to improve solution quality. Each chromosome is formed of two
parts: the first representing the component sequencing and the second the feeder
arrangement. The initial population is generated so that the first part of each
chromosome is constructed by the nearest neighbor heuristic, while the second
part is generated randomly. During this initialization step, each chromosome is
improved as follows: the iterated swap procedure (ISP) is performed on the first
part, while the 2-opt local search heuristic is applied to the second part. The
roulette wheel selection method is performed to select a pair of chromosomes to
undergo a modified order crossover. Heuristic mutation and inversion mutation
are applied. After an offspring is produced, the first part of the chromosome is
improved by the ISP, while the second part is improved by the 2-opt local search
heuristic.

Neammanee and Reodecha [31] developed a memetic algorithm, which inte-
grates a genetic algorithm, the Minimum Slack Time (MST) scheduling rule, the
KTNS policy, and a local search procedure, for minimizing the PCB scheduling’s
total weighted tardiness. MST rule is used for generating the initial population.
Then, two-point crossover and shift mutation are performed. In order to improve
solution quality, a local search procedure is executed.

Some approaches have been proposed for the CS machine. For example, Dikos
et al. [10] employed a genetic algorithm to optimize the assignment of the feeder
carriage in this machine. The chromosome represented all distinct components
in their assigned locations inside the feeder carriage. The initial population is
randomly generated. A roulette wheel and tournament parent selection are used
as selection mechanisms. The fitness of each individual is simply calculated by
counting the number of additional feeder slots that the feeder carriage is moving,
which are not free, i.e., incur a cycle time penalty. The (order-based) crossover and
mutation operators are applied to the population with a probability pc and pm,
respectively. According to their experimental results, the roulette wheel selection
method generated better average solutions than tournament selection, since a less
favorable next generation provides more variety. This model was later improved
in [38], where several operators and selection schemes were investigated in order
to find a good combination within the domain of the feeder allocation problem.

In addition, Ho and Ji [18,20] proposed a hybrid genetic algorithm to optimize
the sequence of component placements as well as the arrangement of component
types to feeders for a CS machine. The objective of the problem was to minimize
the total assembly time. The developed GA hybridizes different search heuristics
including the nearest-neighbor heuristic (NNH), the 2-opt heuristic, and an iter-
ated swap procedure (ISP). To this end, a chromosome is divided into two parts,
the first one represented the assembly sequence, and the second one indicated
the sequence of feeders to be visited by the placement head. The fitness function

10 Abel Garćıa-Nájera et al.

is given by the total assembly time, which is the summation of all dominating
times of components, i.e., the longest one among the traveling time of the moving
table between two components, the traveling time of the feeder carrier between
two feeders, and the indexing time of the turret. The roulette wheel is used as
selection mechanism. The genetic operators employed in this algorithm include a
modified version of the classical order crossover operator as well as the two muta-
tions: heuristic and inversion. The algorithm works as follows. The NNH is used
to generate an initial solution for the first part of the chromosomes in the initial
population. The idea of the NNH is to start with the first component ramdomly,
then to select the next component as close as possible to the previous one from
those unselected components to form the placement sequence until all compo-
nents are selected. The second part is generated randomly. The 2-opt local search
heuristic is then performed on the second part of the chromosome. This heuristic
calculates, for one parent, all possible two swaps in order to generate offspring,
and the best offspring replaces the parent if the offspring has a shorter assembly
time than the parent. Afterwords, ISP heuristic is performed for the first part
of each initial solution generated by NNH. This heuristic simply exchanges the
positions and neighbors of two genes to create 5 different offspring. If the best
offspring is better than the parent, the parent is replaced. The whole population
is then evaluated, followed by the selection procedure, and the rest of the genetic
operators. The NNH is now applied to the second part of the chromosomes, while
the 2-opt heuristic is applied to the first one. The best chromosome is chosen at
each iteration. The performance of the HGA was superior to that of the simple
GA proposed by Leu et al. in terms of the total assembly time. This approach is
the base for the extended version of Ho and Ji [19].

Chyu and Chang [5] proposed a method that first groups the component types
that can be processed at the same machine speed. Then, the minimum spanning
tree technique is employed to perform feeder duplications, reducing the distance
effect between components of each type. Finally, a genetic algorithm with 2-opt
local search, using a feeder arrangement list as solution representation, is applied
to determine the component placement sequence.

There also exist applications for the multi-head (MH) machine. Lee et al. [26]
applied a genetic algorithm to solve the problem of minimizing the PCB assembly
time for this machine. The PCB assembly time on the MH machine is dependent
on two decision problems. First, a reel assignment problem determines which reel
is to be assigned to which slot on the feeder rack. Next, a sequencing problem
determines the sequence of pick-and-place movements of the arm, assuming that
each reel’s position on the racks is fixed by the solution of the reel assignment
problem. The chromosome consisted of four parts, each of them representing the
reel assignment, the reel-groups, the reel-group assignment, and component-cluster
sequence. The fitness function is simply defined by the resulting pick time and tool
change time. The initial population is randomly generated. Two parents are se-
lected at a time and a partial crossover operator is used to generate two offspring.
The exchange, inversion, and rotate mutation operators are used. Crossover and
mutation probabilities did not remain fixed during optimization, instead, a pa-
rameter control strategy was used depending on the fitness value of the solutions
in each generation. To evaluate the proposed algorithm, the authors compared
its performance with that of a heuristic algorithm commonly used in industry,
obtaining better results.

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 11

Jeevan et al. [22] also presented an evolutionary model for the sequencing prob-
lem in the MH machine. Unlike the previous approach, the chromosome is only
used to encode the sequence of component placements, while a constraint fitness
function takes into account component placements with and without tool changes.
The initial population is randomly generated. The individuals are then evaluated
by the fitness function, and those individuals with the best scores are selected via
tournament selection mechanism. The genetic operators, an order-based crossover
and mutation operator, are then applied to the population for a specific number
of generations. Experimental results showed significant distance reduction when
shifting from single to dual head, and from triple to quadruple head. Unfortunately,
the performance algorithm was not compared with that of Lee et al. [26].

Gyorfi and Wu [16] generalized the genetic algorithm proposed by Leu et al.

[28] for solving the P2SP and SAP problems in PAP machines. They generalized
the problem formulation to include multiple-placement tool configurations of PAP
machines and showed that the generalized model reduces to the model of Leu et

al. [28] for the single-placement tool case.

From all the reviewed approaches, only one [30] analyzed the M1P problem we
study in this paper, the rest only focused on the manufacturing of a single PCB
type on a single machine.

4 A group-based genetic algorithm for the M1P problem (GBGA-M1P

algorithm)

The combinatorial complexity behind the M1P problem can be modeled as a group-
ing problem. Falkenauer [12], describes a representation based on groups, which is
well suited for grouping in general and, for our particular case, grouping of PCBs.
To the best of our knowledge, this is one of the first works to solve this specific
problem by means of an evolutionary algorithm. This algorithm is based on the
well-known group-based representation [12], proportional selection (roulette wheel
selection), and specialized genetic operators.

4.1 Group Based Representation

The combinatorial complexity behind the M1P problem can be modeled as a group-
ing problem. Falkenauer [12] describes a representation based on groups, which is
well suited for grouping in general and, for our particular case, grouping of PCBs.

In this representation, each chromosome consists of two parts (Figure 2). In
the first part, each locus represents the object number and its allele the identifier
(label) for the group it belongs to, as it is suggested by Falkenauer [12]. The second
part of the chromosome represents the formed groups. It is important to emphasize
that, in grouping problems, the only important thing is the members of a group
not the group identifier itself.

We propose to use the second part of the chromosome as the assembly sequence,
i.e. the PCB groups assembly order is given from left to right, as illustrated in
Figure 2. In this part, the locus indicates the assembly sequence and its allele
corresponds to the group label.

12 Abel Garćıa-Nájera et al.

Objects Groups

1 2 N 1 2PCB type

Assigned group Group label

Assembly sequence

Fig. 2 Individual representation for the M1P problem consists of a two-part chromosome: the
first part corresponds to the PCB types assignment to groups and the second part corresponds
to the PCB groups assembly sequence.

4.2 Fitness Function

The proposed fitness function considers two main factors: the number of generated
groups |G| and the number of feeder changes C in the feeder rack during the
whole manufacturing process. The objective is to minimize these criteria, hence
the fitness function f is given by:

f =
α

|G| +
1

C
, (13)

where the coefficient α is introduced to equalize the orders of magnitude of 1/C
and 1/|G|.

In fact, this is a multi-objective problem because the two criteria, C and |G|,
we are trying to minimize are in conflict with each other.

4.3 Crossover

We use the crossover operator proposed by Falkenauer [12], which is only applied
to the second part of the chromosome. An example of this opeator is shown in
Figure 3. First, random groups are selected, for instance, B and D for Parent 1,
and E for Parent 2 (Figure 3(a)). Then, the PCB types assigned to the groups
selected in Parent 2 (i.e., PCB types 2 and 6 are assigned to group E) are copied
into the first part of Offspring 1, and the group itself is copied into the left most
position in the second part (Figure 3(b)). The groups and their assigned PCB
types on Parent 1 are copied into Offspring 1, if there is no interference with the
PCB types already copied from Parent 2. In our example, only groups A and C
are copied into Offspring 1, since PCB types 2 and 6 are already assigned to group
E (Figure 3(c)).

Finally, if there exist unassigned elements, assign them to the existing groups
using the heuristic known as first fit decreasing (FFD) [15], in case they fit in any
of them. For example, in view of the Figure 3(d), PCB type 1 was unassigned,
and after applying FFD, it was assigned to group C. In case the unassigned PCB
types do not fit in any of the existing groups, new groups are created.

Offspring 2 is generated in a similar manner, but with the parents’ role inverted.

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 13

BParent 1 D A C A B

��������������������
��������������������
��������������������
��������������������

B

��������������������
��������������������
��������������������
��������������������

D A C

FParent 2 E G G F E F

��������������������
��������������������
��������������������
��������������������
��������������������

E G

(a)

Parent 2 F E G G F E F

��������������������
��������������������
��������������������
��������������������

E G

Offspring 1 E E E

(b)

BParent 1 D A C A B B D A C

Offspring 1 E A C A E E A C

(c)

Offspring 1 C E A C A E E A C

(d)

Fig. 3 Crossover operator: (a) Random selection of crossover points; (b) Copy of the PCB
types assigned to the PCB groups selected in Parent 2 into Offpring 1; (c) Copy of the PCB
groups from Parent 1 into Offpring 1; and (d) FFD applied to unassigned PCB types.

4.4 Mutation

Like for crossover operator, the mutation operator is also applied to the second
part of the representation. In general, there exist three main strategies to mutate a
solution: to create a new group, to eliminate one group, or to interchange elements
between groups [12]. The proposed mutation operator works as follows.

First, randomly select a group from the second part of the chromosome. For
instance, in view of the Figure 4(a), group D is selected. Next, copy all elements
of all groups with the exception of those elements assigned to the group selected
in the previous step. In Figure 4(b) we can see that the PCB types assigned to
groups A, B and C are copied from the original individual to its mutation. Finally,
apply FFD [15] to assign the elements belonging to the group selected in the first
step. In our example, PCB type 2 was originally assigned to the selected group D,
and after applying FFD it was reassigned to group C (Figure 4(c)). However, if
the unassigned elements do not fit in the existing groups, create a new one, as in
Figure 4(d), where PCB type 2 was assigned to a new group E.

14 Abel Garćıa-Nájera et al.

BIndividual D A C A B B

�������������������
�������������������
�������������������
�������������������

D A C

(a)

BIndividual D A C A B B

�������������������
�������������������
�������������������
�������������������

D A C

BMutation A C A B B A C

(b)

BMutation C A C A B B A C

(c)

Mutation B E A C A B B A C E

(d)

Fig. 4 Mutation operator: (a) Random selection of a PCB group; (b) Copy of the PCB groups
from the original individual into the mutation, except those in the previously selected PCB
group; (c) Case where the PCB types of the selected PCB group (D) can be assigned to other
PCB groups; and (d) Case where a new PCB group needs to be created.

5 Computational results for the GBGA-M1P algorithm

In order to assess the solution quality obtained by our algorithm, we apply it
to the only one instance publicly available for this problem [30]. Narayanaswami
and Iyengar [30] described an instance consisting of 12 PCB types, each of them
containing from 10 to 17 different component types from a universe of 30 and a
feeder rack with 20 slots. They also proposed a grouping strategy that combines
the feeder rack contents into the similarity measure (Jaccard similarity index) for
efficient grouping. The groups of PCBs are then sequenced using a procedure that
resembles greedy tree traversal. We will refer to their proposed approach as the
NI heuristic.

The validation of the proposed approach is made by evaluating the number
of groups and the number of feeder rack changes the algorithm generates. This is
because the setup time is closely related to these two criteria as it is shown in the
Computational results section.

We applied our GBGA-M1P for solving the benchmark instance mentioned
above. The algorithm was run 30 times. We considered a population size of 25 in-
dividuals, 300 generations, crossover probability of 1.00, and mutation probability
of 0.05. Results are shown in Table 1. It is clear that the results produced by the
GA outperforms the ones obtained by NI heuristic in both, the number of PCB
groups formed and the number of feeder changes.

Narayanaswami and Iyengar [30] also used the KTNS policy, which tries to
keep in the feeder rack some component types that will be used in future groups,
if there are available slots for them, in order to reduce the number of changes.

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 15

Table 1 Results for the instance of Narayanaswami and Iyengar [30].

PCB NI heuristic GBGA-M1P

types Groups Changes Groups Changes

12 6 62 5 45

After applying this policy in the NI heuristic, the number of changes are reduced
to 56, and the number of groups remain the same. In this study, this policy is not
applied to the GA, but if it would be used, the number of feeder changes would
not be increased, due to the fact that this policy intends to reduce this number.

5.1 Instance Generation Method

A method to generate PCB types is described in [13]. We used this method to
generate 5 sets of 38 different PCB types, that is, 190 different PCB types. With
these PCB types we formed 90 instances1 for the problem studied here. These
instances vary from 20 to 158 PCB types, containing from 112 to 787 components,
which are from 16 to 89 types.

5.2 Results

The NI heuristic as well as the GBGA-M1P were applied to the generated in-
stances. This time, the population size was set to 100 and the GBGA-M1P run for
500 generations. Crossover and mutation rates remained the same as those used in
the previous instance. These parameters were selected after a non exhaustive trial
and error process. Results for the number of created PCB groups and the required
number of feeder changes are shown in Table 2, for instances with 20 to 78 PCB
types, and in Table 3, for instances with 100 to 158 PCB types.

Both tables 2 and 3 have three main columns. The first main column identifies
the instance and the number of PCB types the instance contains. The second
main column presents the results for the number of PCB groups formed with the
NI heuristic and with the GBGA-M1P. For the latter method, the best solution
quality obtained out of 30 runs (Best), the average quality (Avg.), the standard
deviation (SD), and the percentage of improvement (%Sav.) on the NI heuristic
are shown. The improvements are computed considering the GBGA-M1P average
results. The third main column presents the results for the number of required
feeder changes and has the same structure as the second main column.

We can observe that, in all cases, the number of formed PCB groups was
decreased between 8% and 23% with the GBGA-M1P. Considering the number
of required feeder changes, we see that, the GBGA-M1P found solutions to 17
instances which decrease the number feeder changes up to approximately 5%. For
the remaining instances, solutions found by the GBGA-M1P increase the number
of changes up to nearly 3%.

1 http://www.cicese.mx/ cbrizuel/PCB/pcb2.html

16 Abel Garćıa-Nájera et al.

Table 2 Results obtained by the NI heuristic and the GBGA-M1P.

Instance PCB groups Feeder changes

Id. PCBs NI Best Avg. SD %Sav. NI Best Avg. SD %Sav.

1 20 13 11 11.00 0.00 15.38 1611 1536 1549.33 0.36 3.83
2 20 12 10 10.00 0.00 16.67 1422 1383 1401.07 0.54 1.47
3 20 14 12 12.00 0.00 14.29 1698 1644 1660.27 0.49 2.22
4 22 17 15 15.07 1.66 11.35 2115 2039 2048.50 0.33 3.14
5 22 14 12 12.00 0.00 14.29 1817 1778 1785.83 0.24 1.72
6 22 15 12 12.00 0.00 20.00 1849 1736 1754.10 0.53 5.13
7 24 18 15 15.00 0.00 16.67 2246 2158 2172.70 0.28 3.26
8 24 17 14 14.40 3.40 15.29 2113 2044 2069.77 0.73 2.05
9 24 12 11 11.00 0.00 8.33 1682 1608 1619.93 0.35 3.69

10 26 20 17 17.00 0.00 15.00 2472 2402 2419.97 0.41 2.10
11 26 22 19 19.00 0.00 13.64 2730 2665 2682.73 0.29 1.73
12 26 18 15 15.00 0.00 16.67 2228 2142 2161.37 0.46 2.99
13 28 22 18 18.00 0.00 18.18 2620 2547 2569.60 0.38 1.92
14 28 16 14 14.00 0.00 12.50 2134 2083 2101.30 0.38 1.53
15 28 23 18 18.00 0.00 21.74 2719 2579 2608.03 0.43 4.08
16 50 34 27 27.00 0.00 20.59 4262 4148 4190.87 0.37 1.67
17 50 38 31 31.00 0.00 18.42 4771 4664 4702.00 0.38 1.45
18 50 35 30 30.00 0.00 14.29 4547 4519 4547.30 0.38 -0.01
19 52 37 29 29.50 1.69 20.27 4692 4568 4600.67 0.36 1.95
20 52 37 32 32.23 1.31 12.89 4945 4901 4946.93 0.38 -0.04
21 52 36 30 30.23 1.40 16.03 4785 4694 4735.47 0.37 1.04
22 54 41 37 37.00 0.00 9.76 5239 5259 5306.73 0.39 -1.29
23 54 36 29 29.00 0.00 19.44 4635 4537 4580.23 0.38 1.18
24 54 38 33 33.00 0.00 13.16 5023 5018 5056.37 0.32 -0.66
25 56 41 33 33.23 1.27 18.95 5169 5044 5096.20 0.48 1.41
26 56 45 38 38.07 0.66 15.40 5705 5701 5745.37 0.40 -0.71
27 56 38 30 30.00 0.00 21.05 4775 4648 4681.63 0.40 1.96
28 58 46 38 38.00 0.00 17.39 5692 5648 5683.87 0.39 0.14
29 58 40 33 33.03 0.54 17.43 5138 5110 5141.57 0.40 -0.07
30 58 39 34 34.57 1.43 11.36 5197 5195 5253.13 0.49 -1.08
31 70 54 43 43.00 0.00 20.37 6710 6647 6675.13 0.24 0.52
32 70 48 39 39.60 1.24 17.50 6302 6266 6308.63 0.36 -0.11
33 70 47 38 38.93 0.64 17.17 6150 6106 6157.20 0.39 -0.12
34 72 53 43 43.00 0.00 18.87 6690 6667 6702.83 0.31 -0.19
35 72 51 41 41.00 0.00 19.61 6554 6511 6552.37 0.28 0.02
36 72 51 40 40.57 1.22 20.45 6501 6361 6419.40 0.48 1.26
37 74 54 46 46.00 0.00 14.81 7066 7062 7133.63 0.39 -0.96
38 74 50 44 44.03 0.41 11.94 6703 6762 6811.20 0.30 -1.61
39 74 51 41 41.53 1.20 18.57 6552 6509 6567.70 0.44 -0.24
40 76 54 44 44.23 0.96 18.09 6961 6905 6949.70 0.39 0.16
41 76 52 42 42.10 0.71 19.04 6716 6653 6700.57 0.32 0.23
42 76 52 43 43.00 0.00 17.31 6774 6772 6808.63 0.32 -0.51
43 78 55 46 46.00 0.00 16.36 7220 7214 7260.07 0.39 -0.55
44 78 54 44 44.20 0.90 18.15 7052 7020 7071.57 0.37 -0.28
45 78 53 44 44.23 0.96 16.55 6971 6950 7020.27 0.35 -0.71

Continues in Table 3...

On average, when using the GBGA-M1P, there is a saving of 17.13% in the
number of PCB groups and there is a slight increase of 0.29% in the number feeder
changes compared with the results obtained by the NI heuristic.

The summary of these results is shown in figures 5 and 6, for the number of
PCB groups and the number of feeder changes, respectively. The horizontal axis in
these figures corresponds to the instance identifiers. For each instance, there is a

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 17

Table 3 Results obtained by the NI heuristic and the GBGA-M1P.

Instance PCB groups Feeder changes

Id. PCBs NI Best Avg. SD %Sav. NI Best Avg. SD %Sav.

...continued from Table 2

46 100 73 58 58.43 1.05 19.96 9269 9256 9300.77 0.32 -0.34
47 100 73 61 61.20 0.65 16.16 9538 9579 9632.63 0.27 -0.99
48 100 66 54 54.20 0.74 17.88 8656 8668 8736.73 0.38 -0.93
49 102 73 60 59.97 0.68 17.85 9439 9466 9541.53 0.36 -1.09
50 102 70 59 59.20 0.68 15.43 9318 9369 9426.50 0.28 -1.16
51 102 71 57 57.23 0.74 19.39 9069 9097 9147.87 0.30 -0.87
52 104 74 62 62.60 0.78 15.41 9749 9829 9886.83 0.35 -1.41
53 104 72 62 62.03 0.29 13.85 9738 9887 9932.27 0.27 -1.99
54 104 70 60 60.00 0.00 14.29 9345 9484 9529.97 0.25 -1.98
55 106 70 58 58.17 0.64 16.90 9249 9285 9364.23 0.33 -1.25
56 106 77 63 63.40 0.77 17.66 9977 9978 10057.23 0.31 -0.80
57 106 77 62 61.40 0.80 20.26 9729 9720 9800.37 0.35 -0.73
58 108 73 58 58.97 0.53 19.22 9562 9519 9583.70 0.34 -0.23
59 108 77 63 63.07 0.40 18.09 10007 10008 10074.77 0.30 -0.68
60 108 74 61 61.93 0.40 16.31 9792 9885 9948.93 0.30 -1.60
61 120 81 70 70.87 0.48 12.51 10931 11177 11230.23 0.23 -2.74
62 120 81 65 65.33 0.82 19.35 10529 10615 10668.37 0.31 -1.32
63 120 87 72 72.20 0.55 17.01 11358 11436 11513.93 0.31 -1.37
64 122 85 68 68.03 0.26 19.96 10923 10951 11015.90 0.29 -0.85
65 122 89 70 70.27 0.63 21.04 11178 11213 11279.07 0.32 -0.90
66 122 88 72 72.20 0.55 17.95 11365 11502 11559.20 0.31 -1.71
67 124 86 68 68.80 0.58 20.00 11036 11061 11181.10 0.33 -1.31
68 124 85 70 70.70 0.74 16.82 11177 11272 11363.93 0.40 -1.67
69 124 86 70 70.93 0.35 17.52 11187 11338 11389.03 0.26 -1.81
70 126 88 73 73.77 0.57 16.17 11547 11720 11786.47 0.25 -2.07
71 126 83 71 71.10 0.42 14.34 11239 11406 11478.90 0.31 -2.13
72 126 91 72 72.13 0.47 20.74 11514 11532 11621.17 0.33 -0.93
73 128 93 72 72.40 0.68 22.15 11451 11505 11565.73 0.26 -1.00
74 128 92 75 75.13 0.45 18.34 11900 12061 12113.13 0.30 -1.79
75 128 89 73 73.47 0.68 17.45 11466 11658 11715.77 0.26 -2.18
76 150 102 85 84.93 0.42 16.74 13428 13721 13783.33 0.24 -2.65
77 150 102 85 84.70 0.54 16.96 13446 13627 13700.40 0.25 -1.89
78 150 110 87 87.60 0.56 20.36 13862 14036 14122.23 0.27 -1.88
79 152 108 86 85.87 0.58 20.49 13821 13902 14002.27 0.28 -1.31
80 152 104 83 83.60 0.59 19.62 13447 13597 13678.83 0.28 -1.72
81 152 111 92 92.20 0.43 16.94 14389 14672 14729.43 0.22 -2.37
82 154 108 88 88.40 0.55 18.15 13952 14172 14245.27 0.29 -2.10
83 154 108 90 90.13 0.38 16.55 14181 14418 14502.93 0.29 -2.27
84 154 108 89 89.60 0.62 17.04 14118 14379 14460.13 0.30 -2.42
85 156 106 86 86.87 0.49 18.05 13902 14144 14193.03 0.28 -2.09
86 156 112 92 91.97 0.34 17.88 14489 14711 14802.47 0.23 -2.16
87 156 110 89 89.63 0.61 18.52 14297 14459 14550.00 0.24 -1.77
88 158 107 89 89.47 0.63 16.38 14198 14450 14529.67 0.33 -2.34
89 158 111 90 90.93 0.39 18.08 14489 14670 14769.57 0.30 -1.94
90 158 109 88 88.90 0.45 18.44 14227 14448 14504.20 0.28 -1.95

Average 17.13 -0.29

bar which represents the savings percentage of the PCB groups and the number of
feeder changes, respectively, obtained by the GBGA-M1P over the NI heuristic. It
is clear that, in the case of the number of PCB groups, the GBGA-M1P obtained
favorable results when they are compared with those obtained by the NI heuristic.

18 Abel Garćıa-Nájera et al.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
0

5

10

15

20

25

Benchmark instance

%
 P

C
B

 g
ro

u
p

s
 s

a
v
in

g
s

Fig. 5 Savings percentage of the number of formed PCB groups using the GBGA-M1P over
the NI heuristic.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
−4

−2

0

2

4

6

Benchmark instance

%
 f
e
e
d
e
r

c
h

a
n
g

e
s
 s

a
v
in

g
s

Fig. 6 Savings percentage of the number of required feeder changes using the GBGA-M1P
over the NI heuristic.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
−2

0

2

4

6

8

Benchmark instance

%
 A

s
s
e
m

b
ly

 t
im

e
 s

a
v
in

g
s

Fig. 7 Savings percentage of the assembly time using the GBGA-M1P over the NI heuristic.

On the other hand, for the number of feeder changes, the GBGA-M1P obtained
positive results for the majority of the first half instances.

Given that the GBGA-M1P did not obtain solutions that reduce the number
of feeder changes for all instances, we are going to further analyze these results.

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 19

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
0

1000

2000

3000

4000

5000

6000

7000

Benchmark instance

E
x
e
c
u

ti
o
n

 t
im

e
 (

s
)

Fig. 8 Average execution time of the GBGA-M1P.

According to Salonen et al. [36], a single component feeder of a placement
machine can be changed typically in 1-2 minutes, however it may take, for instance,
15-25 minutes to prepare the machine for the component setup operations, because
the starting of one or several component changes requires extra manual work by
the personnel. Therefore, they propose a cost function of the setup operations for
a set of PCB assembly jobs on a single machine as a weighted sum of the number
of PCB groups (|G|) and the number of feeder changes (C), that is

T (G, C) = tg|G|+ tcC (14)

where tg and tc are time factors for the number of PCB groups and for the number
of feeder changes, respectively. For the experiments we set tg = 2.0 and tc = 25,
following what is observed in the work of Salonen et al. [36].

Table 4 shows the total assembly time of the set of PCBs for both the NI
heuristic and the GBGA-M1P, which has the following structure. The first two
columns identify the instance and the number of PCB types the instance contains,
respectively. The second column presents the assembly time given by the solutions
from the NI heuristic. Fourth and fifth columns show the best and the average
assembly time given by the solutions found with the GBGA-M1P. Finally, the
last columns presents the per cent improvement of the GBGA-M1P over the NI
heuristic. The improvements are computed considering the GA average assembly
times.

We can observe that the GBGA-M1P was able to find solutions which definitely
reduce the assembly time, since, for all but instance 61, results are positive. These
savings represent up to nearly 8% in time and, on average, there is an assembly
time reduction of approximately 2.5%. These results are graphically represented
in Figure 7.

Thus, even though the proposed approach was not capable of finding solu-
tions which reduce the number of feeder changes for all instances, those solutions
actually lead to a faster assembly operation of the sets of PCBs.

It is also important to know what the execution time of the proposed GA is.
To this end, Figure 8 shows the average execution time of the GBGA-M1P for
each problem instance.

As it might be expected, the execution time of the GBGA-M1P increases as the
size of the benchmark instance increases. For the smallest instances, the GBGA-

20 Abel Garćıa-Nájera et al.

Table 4 Assembly time, in hours, obtained by the NI and the GBGA-M1P.

Instance Proposed GA Instance Proposed GA

Id. PCBs NI Best Avg. %Sav. Id. PCBs NI Best Avg. %Sav.

1 20 32.27 30.18 30.41 5.77 46 100 184.90 178.43 179.36 3.00
2 20 28.70 27.22 27.52 4.12 47 100 189.38 185.07 186.04 1.76
3 20 34.13 32.40 32.67 4.28 48 100 171.77 166.97 168.20 2.08
4 22 42.33 40.23 40.42 4.52 49 102 187.73 182.77 184.01 1.98
5 22 36.12 34.63 34.76 3.75 50 102 184.47 180.73 181.78 1.46
6 22 37.07 33.93 34.24 7.64 51 102 180.73 175.37 176.31 2.45
7 24 44.93 42.22 42.46 5.50 52 104 193.32 189.65 190.86 1.27
8 24 42.30 39.90 40.50 4.26 53 104 192.30 190.62 191.38 0.48
9 24 33.03 31.38 31.58 4.39 54 104 184.92 183.07 183.83 0.59

10 26 49.53 47.12 47.42 4.27 55 106 183.32 178.92 180.31 1.64
11 26 54.67 52.33 52.63 3.73 56 106 198.37 192.55 194.04 2.18
12 26 44.63 41.95 42.27 5.29 57 106 194.23 187.83 188.92 2.73
13 28 52.83 49.95 50.33 4.74 58 108 189.78 182.82 184.30 2.89
14 28 42.23 40.55 40.86 3.26 59 108 198.87 193.05 194.19 2.35
15 28 54.90 50.48 50.97 7.16 60 108 194.03 190.17 191.62 1.24
16 50 85.20 80.38 81.10 4.81 61 120 215.93 215.45 216.70 -0.35
17 50 95.35 90.65 91.28 4.26 62 120 209.23 204.00 205.03 2.01
18 50 90.37 87.82 88.29 2.30 63 120 225.55 220.60 221.98 1.58
19 52 93.62 88.22 88.97 4.96 64 122 217.47 210.85 211.94 2.54
20 52 97.83 95.02 95.88 2.00 65 122 223.38 216.05 217.26 2.74
21 52 94.75 90.73 91.52 3.41 66 122 226.08 221.70 222.74 1.48
22 54 104.40 103.07 103.86 0.52 67 124 219.77 212.68 215.02 2.16
23 54 92.25 87.70 88.42 4.15 68 124 221.70 217.03 218.86 1.28
24 54 99.55 97.38 98.02 1.53 69 124 222.28 218.13 219.37 1.31
25 56 103.23 97.82 98.78 4.31 70 126 229.12 225.75 227.18 0.85
26 56 113.83 110.85 111.62 1.95 71 126 221.90 219.68 220.94 0.43
27 56 95.42 89.97 90.53 5.12 72 126 229.82 222.20 223.74 2.64
28 58 114.03 109.97 110.56 3.04 73 128 229.60 221.75 222.93 2.91
29 58 102.30 98.92 99.46 2.78 74 128 236.67 232.27 233.19 1.47
30 58 102.87 100.75 101.96 0.88 75 128 228.18 224.72 225.88 1.01
31 70 134.33 128.70 129.17 3.84 76 150 266.30 264.10 265.11 0.45
32 70 125.03 120.68 121.64 2.71 77 150 266.60 262.53 263.63 1.11
33 70 122.08 117.60 118.84 2.66 78 150 276.87 270.18 271.87 1.80
34 72 133.58 129.03 129.63 2.96 79 152 275.35 267.53 269.15 2.25
35 72 130.48 125.60 126.29 3.21 80 152 267.45 261.20 262.81 1.73
36 72 129.60 122.68 123.89 4.40 81 152 286.07 282.87 283.91 0.75
37 74 140.27 136.87 138.06 1.57 82 154 277.53 272.87 274.25 1.18
38 74 132.55 131.03 131.87 0.52 83 154 281.35 277.80 279.27 0.74
39 74 130.45 125.57 126.77 2.82 84 154 280.30 276.73 278.34 0.70
40 76 138.52 133.42 134.26 3.07 85 156 275.87 271.57 272.75 1.13
41 76 133.60 128.38 129.22 3.28 86 156 288.15 283.52 285.03 1.08
42 76 134.57 130.78 131.39 2.36 87 156 284.12 278.07 279.85 1.50
43 78 143.25 139.40 140.17 2.15 88 158 281.22 277.92 279.44 0.63
44 78 140.03 135.33 136.28 2.68 89 158 287.73 282.00 284.05 1.28
45 78 138.27 134.17 135.43 2.05 90 158 282.53 277.47 278.78 1.33

Average 2.54

M1P executed in minutes, while for the largest instances, it run in less than two
hours.

One last question that emerges is that if the execution time of the GBGA-
M1P is significant for the overall process duration, that is, computing solutions
plus assembly process. Table 5 shows this information, which structure is the
following. The first column identifies the problem instance. The second column is

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 21

the assembly time related to the solutions found by the NI heuristic. The third
and fourth columns are the assembly time related to the solutions found by the
GBGA-M1P and its corresponding execution time. The fifth column corresponds
to the overall process duration, that is the addition of the assembly time plus
the execution time, values in the third and fourth columns, respectively. Finally,
the last column is the reduction in time for the overall process obtained with the
GBGA-M1P over the NI heuristic.

We can see that the execution time of the GBGA-M1P only affects instances
71 and 76, for which there is an increase in the overall process duration. Instance
61 also presents an increase in the overall process duration, however, it is affected
because of the assembly time (see Table 4). For the remaining 87 instances, the
solutions found by the GBGA-M1P obtained a reduction in the overall process du-
ration of up to nearly 8% compared to the assembly time found by the NI heuristic.
On average, there is a saving in the overall process duration of approximately 2.2%.

It is worth mentioning at this point that, improving the NI heuristic does not
guarantee that our proposed method is the best over all existing methods, the
GBGA-M1P achieves a relative superiority over the NI algorithm, regarding the
total assembly time and the number of groups generated.

6 Conclusions and Future Work

We have introduced a genetic algorithm for the manufacturing of multiple PCB
types on the pick-and-place machine. The objective function was to minimize the
PCB assembly time, which implies the simultaneous minimization of the number
of formed PCB groups and the number of feeder changes. This ensures the min-
imization of the setup times and allows the system to be machine and product
flexible. The genetic algorithm was run for solving a publicly available instance as
well as a set of 90 instances proposed here. The obtained solutions were compared
with those achieved by the NI heuristic previously reported in the literature.

Results show that, when our approach is used for solving the benchmark in-
stance, the number of PCB groups is reduced from 6 to 5 and the number of feeder
changes is reduced from 62 to 45, i.e. the proposed GA achieves the best known
result to date for this particular instance. When the genetic algorithm is run for
solving the set of 90 instances, the number of formed PCB groups is reduced by
17.13% while the number of required feeder changes slightly increases by 0.29%,
on average. If we consider the assembly time then the improvement of the GA
over the NI heuristics is of 2.54%. Therefore, it can be deduced that, the proposed
algorithm may help to accomplish the goal of SMT systems, particularly PCB
assembly, since the time to change a product type is minimized. We make the
instances used in this work publicly available for future comparisons.

Future work is aimed at studying another feeder rack setup strategies and other
manufacturing machine types, as well as the comparison with other heuristics.
Furthermore, we look forward to tackle the multi-objective problem, considering
the two objectives, PCB groups and feeder changes in two independent objective
functions.

22 Abel Garćıa-Nájera et al.

Table 5 Overall process duration, computing time plus assembly time, in hours, obtained by
the NI and the GBGA-M1P.

Inst. NI Proposed GA Inst. NI Proposed GA

Id. proc. Asm. Comp. Proc. %Sav. Id. proc. Asm. Comp. Proc. %Sav.

1 32.27 30.41 0.02 30.43 5.69 46 184.90 179.36 0.75 180.11 2.59
2 28.70 27.52 0.02 27.54 4.05 47 189.38 186.04 0.79 186.84 1.35
3 34.13 32.67 0.03 32.70 4.20 48 171.77 168.20 0.66 168.86 1.69
4 42.33 40.42 0.04 40.46 4.42 49 187.73 184.01 0.78 184.79 1.57
5 36.12 34.76 0.03 34.80 3.66 50 184.47 181.78 0.76 182.54 1.04
6 37.07 34.24 0.03 34.27 7.56 51 180.73 176.31 0.73 177.04 2.04
7 44.93 42.46 0.05 42.51 5.40 52 193.32 190.86 0.84 191.70 0.84
8 42.30 40.50 0.04 40.54 4.17 53 192.30 191.38 0.84 192.23 0.04
9 33.03 31.58 0.03 31.61 4.31 54 184.92 183.83 0.78 184.61 0.16

10 49.53 47.42 0.06 47.47 4.16 55 183.32 180.31 0.76 181.07 1.23
11 54.67 52.63 0.07 52.70 3.61 56 198.37 194.04 0.86 194.90 1.75
12 44.63 42.27 0.05 42.32 5.19 57 194.23 188.92 0.83 189.75 2.31
13 52.83 50.33 0.06 50.39 4.63 58 189.78 184.30 0.79 185.09 2.47
14 42.23 40.86 0.04 40.90 3.16 59 198.87 194.19 0.87 195.06 1.91
15 54.90 50.97 0.06 51.03 7.05 60 194.03 191.62 0.85 192.47 0.81
16 85.20 81.10 0.16 81.26 4.62 61 215.93 216.70 1.07 217.77 -0.85
17 95.35 91.28 0.20 91.48 4.06 62 209.23 205.03 0.98 206.00 1.54
18 90.37 88.29 0.19 88.48 2.09 63 225.55 221.98 1.13 223.11 1.08
19 93.62 88.97 0.19 89.16 4.76 64 217.47 211.94 1.04 212.98 2.06
20 97.83 95.88 0.22 96.10 1.77 65 223.38 217.26 1.08 218.34 2.26
21 94.75 91.52 0.20 91.72 3.19 66 226.08 222.74 1.13 223.87 0.98
22 104.40 103.86 0.25 104.11 0.28 67 219.77 215.02 1.07 216.09 1.67
23 92.25 88.42 0.19 88.62 3.94 68 221.70 218.86 1.10 219.96 0.78
24 99.55 98.02 0.23 98.25 1.31 69 222.28 219.37 1.10 220.48 0.81
25 103.23 98.78 0.23 99.01 4.09 70 229.12 227.18 1.18 228.36 0.33
26 113.83 111.62 0.29 111.91 1.69 71 221.90 220.94 1.12 222.06 -0.07
27 95.42 90.53 0.20 90.72 4.92 72 229.82 223.74 1.15 224.89 2.15
28 114.03 110.56 0.28 110.85 2.79 73 229.60 222.93 1.14 224.07 2.41
29 102.30 99.46 0.24 99.69 2.55 74 236.67 233.19 1.24 234.43 0.94
30 102.87 101.96 0.25 102.20 0.65 75 228.18 225.88 1.16 227.04 0.50
31 134.33 129.17 0.39 129.56 3.56 76 266.30 265.11 1.62 266.72 -0.16
32 125.03 121.64 0.35 121.99 2.43 77 266.60 263.63 1.59 265.22 0.52
33 122.08 118.84 0.33 119.18 2.38 78 276.87 271.87 1.68 273.55 1.20
34 133.58 129.63 0.39 130.02 2.66 79 275.35 269.15 1.66 270.81 1.65
35 130.48 126.29 0.38 126.67 2.92 80 267.45 262.81 1.58 264.40 1.14
36 129.60 123.89 0.36 124.26 4.12 81 286.07 283.91 1.82 285.72 0.12
37 140.27 138.06 0.44 138.50 1.26 82 277.53 274.25 1.71 275.96 0.57
38 132.55 131.87 0.41 132.27 0.21 83 281.35 279.27 1.77 281.04 0.11
39 130.45 126.77 0.38 127.15 2.53 84 280.30 278.34 1.76 280.09 0.07
40 138.52 134.26 0.42 134.68 2.77 85 275.87 272.75 1.71 274.46 0.51
41 133.60 129.22 0.40 129.61 2.98 86 288.15 285.03 1.84 286.87 0.45
42 134.57 131.39 0.41 131.80 2.06 87 284.12 279.85 1.78 281.63 0.88
43 143.25 140.17 0.46 140.63 1.83 88 281.22 279.44 1.78 281.22 0.00
44 140.03 136.28 0.44 136.72 2.37 89 287.73 284.05 1.84 285.88 0.64
45 138.27 135.43 0.43 135.87 1.74 90 282.53 278.78 1.78 280.55 0.70

Average 2.18

Acknowledgment

This work was supported by Mexican CONACYT under grant C01-45811.

An Efficient Genetic Algorithm for Setup Time Minimization in PCB Assembly 23

References

1. Ammons, J.C., Carlyle, M., Crammer, L.L., DePuy, G., Ellis, K., McGinnis, L.F., Tovey,
C.A., Xu, H.: Component allocation to balance workload in printed circuit card assembly
systems. IIE Transcations 26, 265–275 (1997)

2. Ashayeri, J., Selen, W.: A planning and scheduling model for onsertion in printed circuit
board assembly. European Journal of Operational Research 183(2), 909–925 (2007)

3. Balakrishnan, A., Vanderbeck, F.: A tactical planning model for mixed-model electronics
assembly operations. Operations Research 47(3), 395–409 (1999)

4. Bellman, R.: Intelligent heuristic for fms scheduling using grouping. Journal of Intelligent
Manufacturing 2, 387–395 (1991)

5. Chyu, C.C., Chang, W.S.: A genetic-based algorithm for the operational sequence of a high
speed chip placement machine. The International Journal of Advanced Manufacturing
Technology 36(9), 918–926 (2008)

6. Crama, Y., Flippo, O.E., van de Klundert, J., Spieksma, F.C.R.: The assembly of printed
circuit boards: A case with multiple machines and multiple board types. European Journal
of Operational Research 98(3), 457–472 (1997)

7. Crama, Y., van de Klundert, J., Spieksma, F.C.R.: Production planning problems in
printed circuit boards assembly. Discrete Applied Mathematics 123(1-3), 339–361 (2002)

8. Crama, Y., Spieksma, A.O.F.: Production Planning in Automated Manufacturing.
Springer-Verlag (1994)

9. Das, S.: The measurement of flexibility in manufacturing systems. International Journal
of Flexible Manufacturing Systems 8, 67–93 (1996)

10. Dikos, A., Nelson, P.C., Tirpak, T.M., Wang, W.: Optimization of high-mix printed circuit
card assembly using genetic algorithms. Annals of Operations Research 75(1), 303–324
(1997)

11. ElMaraghy, H.A.: Flexible and reconfigurable manufacturing systems paradigms. The
International Journal of Flexible Manufacturing Systems 17, 261–276 (2006)

12. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics
2, 5–30 (1996)

13. Garcia-Najera, A., Brizuela, C.A.: PCB assembly: An efficient genetic algorithm for slot
assignment and component pick and place sequence problems. In: Proceedings of the 2005
IEEE Congress on Evolutionary Computation, vol. 2, pp. 1485–1491 (2005)

14. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-
Completeness. W. H. Freeman and Company (1999)

15. Gen, M., Cheng, R.: Genetic algorithms and engineering optimization. John Wiley &
Sons, Inc. (2000)

16. Gyorfi, J.S., haur Wu, C.: An efficient algorithm for placement sequence and feeder assign-
ment problems with multiple placement-nozzles and independent link evaluation. IEEE
Transactions on Systems, Man, and Cybernetics, Part A 38(2), 437–442 (2008)

17. Hardas, C.S., Doolen, T.L., Jensen, D.H.: Development of a genetic algorithm for com-
ponent placement sequence optimization in printed circuit board assembly. Computers &
Industrial Enginbeering 55(1), 165–182 (2008)

18. Ho, W., Ji, P.: Component scheduling for chip shooter machines: a hybrid genetic algorithm
approach. Computers & Operations Research 30(14), 2175–2189 (2003)

19. Ho, W., Ji, P.: A genetic algorithm to optimise the component placement process in PCB
assembly. The International Journal of Advanced Manufacturing Technology 26(11), 1397–
1401 (2005)

20. Ho, W., Ji, P.: A genetic algorithm approach to optimising component placement and
retrieval sequence for chip shooter machines. The International Journal of Advanced
Manufacturing Technology 28, 556–560 (2006)

21. Ho, W., Ji, P.: An integrated scheduling problem of pcb components on sequential pick-
and-place machines: Mathematical models and heuristic solutions. Expert Systems with
Applications 36(3), 7002–7010 (2009)

22. Jeevan, K., Parthiban, A., Seetharamu, K.N., Azid, I.A., Quadir, G.A.: Optimization of
PCB component placement using genetic algorithms. Journal of Electronics Manufacturing
11(1), 69–79 (2002)

23. Jeong, I.J.: An entropy based group setup strategy for pcb assembly. In: 2006 International
Conference on Computational Science and Its Applications, pp. 698–707. Springer (2006)

24. van Laarhoven, P.J.M., Zijm, W.H.M.: Production preparation and numerical control in
PCB assembly. International Journal of Flexible Manufacturing Systems 5(3), 187–207
(1993)

24 Abel Garćıa-Nájera et al.

25. Lambert, S., Abdulnor, G., Drolet, J., Cyr, B.: Flexbility analysis of a surface mount tech-
nology electronic assembly plant: An integrated model using simulation. The International
Journal of Flexible Manufacturing Systems 17, 151–167 (2006)

26. Lee, W., Lee, S., Lee, B., Lee, Y.: A genetic optimization approach to operation of a multi-
head surface mounting machine. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E83-A(9), 1748–1756 (2000)

27. Leon, V.J., Peters, B.A.: A comparison of setup strategies for printed circuit board assem-
bly. Computers & Industrial Engineering 34(1), 219–234 (1998)

28. Leu, M.C., Wong, H., Ji, Z.: Planning of component placement/insertion sequence and
feeder setup in PCB assembly using genetic algorithm. Transactions of the ASME 115,
424–432 (1993)

29. Maimon, O., Braha, D.: A genetic algorithm approach to scheduling pcbs on a single
machine. International Journal of Production Research 36(3), 761–784 (1998)

30. Narayanaswami, R., Iyengar, V.: Setup reduction in printed circuit board assembly by
efficient sequencing. International Journal of Advanced Manufacturing Technology 26(3),
276–284 (2004)

31. Neammanee, P., Reodecha, M.: A memetic algorithm-based heuristic for a scheduling
problem in printed circuit board assembly. Computers & Industrial Engineering 56(1),
294–305 (2009)

32. Ong, N., Khoo, L.P.: Genetic algorithm approach in PCB assembly. Integrated Manufac-
turing Systems 10(5), 256–265 (1999)

33. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complex-
ity. Dover Publications, Inc. (1998)

34. Salonen, K., Johnsson, M., Smed, J., Johtela, T., Nevalainen, O.: A comparison of group
and minimum setup strategies in PCB assembly. In: Proceedings of Group Technol-
ogy/Cellular Manufacturing World Symposium, vol. 1, pp. 95–100 (2000)

35. Salonen, K., Smed, J., Johnsson, M., Nevalainen, O.: Job grouping with minimum setup
in PCB assembly. In: Proceedings of Group Technology/Cellular Manufacturing World
Symposium, vol. 1, pp. 221–225 (2003)

36. Salonen, K., Smed, J., Johnsson, M., Nevalainen, O.: Grouping and sequencing pcb assem-
bly jobs with minimum feeder setups. Robotics and Computer-Integrated Manufacturing
22(4), 297–305 (2006)

37. Smed, J., Johnsson, M., Puranen, M., Leipälä, T., Nevalainen, O.: Job grouping in surface
mounted component printing. Tech. Rep. 196, Turku Centre for Computer Science (1998)

38. Wang, W., Nelson, P.C., Tirpak, T.M.: Optimization of high-speed multi-station SMT
placement machines using evolutionary algorithms. IEEE Transactions on Electronics
Packaging Manufacturing 22(2), 137–146 (1999)

View publication statsView publication stats

https://www.researchgate.net/publication/268078712

