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Abstract

A microscopic formulation of the definition of both the heat flux and the viscous stress

tensor is proposed in the framework of kinetic theory for relativistic gases emphasizing on

the physical nature of such fluxes. A Lorentz transformation is introduced as the link be-

tween the laboratory and local comoving frames and thus between molecular and chaotic

velocities. With such transformation, the dissipative effects can be identified as the aver-

ages of the chaotic kinetic energy and the momentum flux out of equilibrium, respectively.

Within this framework, a kinetic foundation of the ensuing transport equations for the

relativistic gas is achieved. To our knowledge, this result is completely novel.
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I. INTRODUCTION

Relativistic kinetic theory is not a new subject, however it now finds itself in

a spotlight due to the increasing interest in relativistic thermodynamics triggered

by recent heavy ion collisions experiments, electron-positron plasma generation, and

the traditional astrophysical applications of relativistic hydrodynamics. The theory

has its roots in original works by Jüttner [1] for the equilibrium case while the first

kinetic theory treatment was formulated by Israel [2]. In such work, the author

finds an expression for the stress energy tensor by solving the Boltzmann equation

using a Chapman-Enskog expansion. However, since the systematic (hydrodynamic)

and chaotic (or peculiar) components of the total velocity of a given molecule are not

explicitly distinguished, the different contributions to this tensor cannot be identified

in the same fashion as in the non-relativistic case [3, 4]. Instead, projections in

parallel and orthogonal directions with respect to the hydrodynamic velocity of the

stress energy tensor are used and the interpretations of the different contributions

agree with those that follow from the phenomenological counterpart as developed by

Eckart [5]. This procedure is essentially followed by most authors [6, 7].

On the other hand, in non-relativistic kinetic theory, a clear distinction can be

made between the effects caused by the “bulk”, or mechanical, properties of the fluid

and its microscopic ones. This permits the identification of dissipative fluxes, i.

e. heat and viscosity effects, as averages of chaotic quantities [4]. In particular, the

interpretation of heat flux as the average of the chaotic kinetic energy flux, as defined

more than a century ago by R. Clausius [8, 9] and J. C. Maxwell [10], is asserted. This

concept is absent in the relativistic case, as was clearly noted in Ref. [11]. In that

work, a first proposal of how to introduce the chaotic velocity concept in relativistic

kinetic theory was put forward. In this work, we follow the same line of thought and

take it a step forward by explicitly introducing Lorentz transformations in the stress-
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energy tensor integral in order to separate mechanical and chaotic effects. By doing

so, we are able to clearly define the heat flux and the viscous stress tensor as the

average of chaotic energy and momentum fluxes in an arbitrary frame, respectively.

To accomplish this task we have divided this work as follows. In Section II, we

briefly review the non-relativistic setup for calculating the dissipative fluxes. The

relativistic framework is introduced in Section III where Lorentz transformations

are used in order to introduce the chaotic velocity and obtain the corresponding

expressions for the heat flux and viscous stress tensor. A brief discussion of the

results and final remarks are included in Section IV.

II. NON-RELATIVISTIC KINETIC THEORY

Kinetic theory serves as the microscopic foundation of irreversible thermodynam-

ics and is capable of producing both the system of transport equations as well as

the constitutive equations needed in order to make it a complete set describing the

dynamics of fluids [3, 4]. As usual, the distribution function f (~r, ~v, t) is such that

f (~r, ~v, t) d~rd~v is the number of molecules contained in a 6-box in the phase space

corresponding to position ~r and molecular velocity ~v. The local variables are thus de-

fined as averages weighted by this function. The local particle density, hydrodynamic

velocity and energy density are thus defined as

n =

∫

f (0)d3v (1)

~u =
1

n

∫

~vf (0)d3v (2)

e =
1

n

∫

1

2
mv2f (0)d3v (3)
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respectively, where f (0) is the local equilibrium distribution function:

f (0) (~r, ~v, t) = n

(

m

2πkBT

)3/2

exp

(

−
m (~v − ~u)2

2kBT

)

(4)

T being the temperature, m the molecular mass and kB the Boltzmann constant.

The evolution of the distribution function is given by the Boltzmann equation. For

a simple (one component), non-degenerate, diluted gas in the absence of external

fields the kinetic equation reads

df

dt
= J (ff ′) (5)

where, if g and σ are the relative velocity and cross section for a collision between

two particles respectively, the collision term is given by

J (f, f ′) =

∫ ∫

{f ′f1
′ − f f1} gσdΩdv

3
1 (6)

Primes denote quantities after the interaction and Ω is the solid angle. The well

known Maxwell-Boltzmann distribution function given in Eq. (4) is precisely the

solution of J (f, f ′) = 0, namely the homogeneous Boltzmann equation. The solu-

tion to the inhomogeneous, out of equilibrium, case is in general obtained via the

Chapman-Enskog method in which the general solution is written as

f = f (0) + f (1) (7)

where the second term contains corrections to the equilibrium solution to first order

in the gradients of the local variables and gives rise to the dissipative fluxes. This

term includes only dissipative effects once the solubility constraints
∫

f (1)d3v =

∫

~vf (1)d3v =

∫

v2f (1)d3v = 0 (8)

are introduced such that the local variables are defined through the local equilibrium

distribution solely.
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In this framework, the transport equations are obtained by multiplying Eq. (5)

by a collision invariant and integrating over ~v. Such procedure yields the Maxwell-

Enskog transport equation

∂

∂t

∫

ψfd3v +∇ ·

∫

ψ~vfd3v = 0 (9)

which accounts for particle, momentum and energy balances for ψ = 1, ~v, v2, respec-

tively. Indeed, taking ψ = 1 in Eq. (7) yields the continuity equation

∂n

∂t
+∇ · (n~u) = 0 (10)

For ψ = ~v one obtains
∂ (n~u)

∂t
+∇ ·

←→
T = 0 (11)

where we introduced the stress tensor

←→
T =

∫

~v~vfd3v (12)

Finally, the energy balance is obtained for ψ = v2:

∂ne

∂t
+∇ · ~Je = 0 (13)

where we have defined the total energy flux as ~Je =
∫

v2~vfd3v.

In order to isolate the purely dissipative contributions in
←→
T and ~Je, one decom-

poses the molecular velocity in its two basic components, usually written as

~v = ~u+ ~k (14)

where ~k is the chaotic or peculiar component. In this case such expression arises in a

very natural way by observing the argument of the exponential function in Eq. (4).

It is clear that
∫

~kfd3v = 0 in view of Eqs. (4) and (10) and thus

e =
1

2
u2 + ε (15)
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←→
T = n~u~u+ nkBT I+

←→τ (16)

~Je =
1

2
nu2~u+ n~uε+ n~u · (nkBT I+

←→τ ) + ~q (17)

where

nε =

∫

k2

2
f (0)d3k =

3

2
kBT (18)

is the internal energy density per particle and the dissipative fluxes are given by

←→τ =

∫

~k~kf (1)d3k (19)

~q =

∫

k2

2
~kf (1)d3k (20)

Introducing these definitions in the transport equations and using the local equilib-

rium assumption, one obtains the well known set of hydrodynamic equations for the

non-relativistic fluid.

In the next section, it will be shown how these ideas can be extrapolated in a

very natural way to the relativistic framework. In order to make the transition more

clear we want to point out at this stage the key role of the transformation ~v = ~u+~k

in the formalism. Notice that such a transformation can also be expressed in terms

of a Galilean matrix in space-time, that is

vµ = Gµνkν (21)

where the Galilean transformation is given by

Gµν =















1 0 0 ux/c

0 1 0 uy/c

0 0 1 uz/c

0 0 0 1















(22)
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and

vµ =















vx

vy

vz

c















kµ =















kx

ky

kz

c















(23)

Whence, the decomposition ~v = ~u+~k can be viewed as a change in reference frames

where an observer comoving with the volume element of the fluid whose hydrody-

namic velocity is ~u will measure a given molecule’s velocity as ~k while an observer

in the laboratory sees the molecule moving at velocity ~v as given by Eq. (21).

III. RELATIVISTIC KINETIC THEORY

In this section we will address the properties of a dilute, neutral, non-degenerate

gas within the realms of special relativity. This system is thus described in a

Minkowsky space-time whose metric is given by ds2 = dx2 + dy2 + dz2 − cdt2. For

the molecules in this gas, the molecular four-velocity is given by

vµ = γw (~w, c) (24)

where

γw ≡ γ (w) =

(

1−
w2

c2

)−1/2

(25)

and ~w is the velocity. The distribution function has the same interpretation as

above, being f (xν , vν) d3xd3v the occupation number of a phase space cell. The

special relativistic Boltzmann equation in the absence of external forces is given by

vαf,α = ḟ = J(ff ′) (26)

where the collision term is defined as

J (f, f ′) =

∫ ∫

{f ′f1
′ − f f1}FσdΩdv

∗

1 (27)
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Here F is an invariant particle flux [7] which plays the role of the relative velocity,

σ is the collision cross section and the invariant differential volume in velocity space

is dv∗ = cd3v
v4

.

Here, as in our previous works, the proposed solution method for the kinetic

equation is the Chapman-Enskog procedure to first order in the gradients [12]. As

has been shown elsewhere [13], this solution leads to a constitutive equation for the

heat flux in terms of gradients of the state variables. This is consistent with Onsager’s

regression of fluctuations hypothesis and thus predicts no pathological behaviors in

the system of hydrodynamic equations [14]. Additionally, this system of equations

to first order in the gradients, as predicted by kinetic theory, has been shown to

present no causality issues both in the non-relativistic and relativistic cases [14]. In

this case, the local equilibrium function is the Jüttner function

f (0) =
n

4πc3zK2

(

1
z

) exp

(

Uβvβ
zc2

)

(28)

where Uβ = γu (~u, c) is the hydrodynamic four-velocity, z = kBT/mc
2 is the relativis-

tic parameter and Kn is the n-th order modified Bessel function of the second kind.

As in the non-relativistic case, the transport equations are obtained by multiplying

Eq. (26) by collision invariants, in this case ψ = 1, vµ. Indeed, the corresponding

transport equation in the absence of external forces is
[
∫

vαψfdv∗
]

;α

= 0 (29)

which yields the continuity equation for ψ = 1, the energy-momentum balance equa-

tion for ψ = mvβ; that is, the momentum balance in the absence of external forces

for β = 1, 2, 3 and the energy balance for β = 4. Equation (29) can be expressed in a

more conventional form as a general conservation law for four-flows by defining the

particle and stress-energy fluxes as

Nν =

∫

vνfdv∗ (30)
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T µν = m

∫

vµvνfdv∗ (31)

respectively. Thus, the transport equations are given by Nν
;ν = 0 and T µν

;ν = 0. It is

then appealing to write the integrals in Eqs. (30) and (31) in terms of systematic

and chaotic quantities in order to separate the different contribution to the fluxes,

as done in the previous section (see Eqs. (15) to (20)). To accomplish this, an

appropriate transformation law has to be assigned in order to introduce the chaotic

velocity. It is important to recall at this point that the hydrodynamic velocity is a

local equilibrium quantity and is thus only defined in each differential volume where

local equilibrium is assumed. If we fix our attention in a single random molecule,

we can consider two reference frames, one in the laboratory (S) and one fixed in

the volume where the molecule is contained. This second frame (S̄), in which the

molecules would be seen static on the average, is moving with a speed ~u as seen by an

observer fixed in S. Thus, observers in S̄ and S would report that the corresponding

velocities are given by

v̄α = γk

(

~k, c
)

(32)

and

vβ = Lβ
αv̄

α = Lβ
αK

α (33)

respectively. Here Lβ
α is a Lorentz boost with velocity ~u and Kα = γk

(

~k, c
)

is

the chaotic four-velocity [11]. We wish to remind the reader at this point that

the contravariant transformation given in Eq. (33) is equivalent to the relativistic

velocity addition law.

With the transformation given in Eq. (33), Eqs. (30) and (31) can be written as

Nµ = Lµ
α

∫

KαfdK∗ (34)

T µν = mLµ
αL

ν
β

∫

KαKβfdK∗ (35)
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where use has been made of the fact that, since dv∗ is an invariant quantity, dv∗ =

dK∗. Also the equilibrium distribution function given in Eq. (28) can be written in

terms of the chaotic speed by use of the invariant γk = U
βvβ/c

2 in a similar fashion as

in the the non relativistic case where the argument of the Maxwellian is proportional

to k2. These two properties which allow the calculation of integrals in terms of K

are verified in the Appendix. In order to obtain a general expression for T µν , we

introduce an irreducible decomposition relative to the hydrodynamic four-velocity

direction. That is, in this 3+1 representation a second rank tensor can be expressed

as [5]

T µν = τUµUν + τµUν + τ νUµ + τµν (36)

where τµUµ = 0 and τµνUν = 0. The scalar, first and second rank tensors introduced

can be expressed in terms of T µν as

τ = T µνUµUν
c4

(37)

τµ = −
1

c2
hµαT

αβUβ (38)

τµν = hµαh
ν
βT

αβ (39)

respectively. Here hµν = gµν + UµUν/c2 is the well known projector which satisfies

Uµh
µ
ν = 0. It is important to point out in this stage that in the phenomenological

treatment, the quantities above are identified as the internal energy, heat flux and

stress tensor without a kinetic theory based justification [5]. These definitions are

in turn used in most kinetic treatments [2, 4, 6]. It is precisely the aim of this work

to deduce, from purely kinetic grounds, that these quantities are indeed related to

internal energy, heat flux and stress interpreted as averages over chaotic velocities in

a similar fashion as in Eqs. (18)-(20).

The scalar τ can be calculated as

τ = m
UµUν
c4

∫

vµvνfdv∗ = m

∫

γ2kfdK
∗ (40)
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which is the internal energy per particle. To see that this is so, consider Eq. (29)

with ψ = mv4

∂

∂t

(

m

∫

v4v4fdv∗
)

+
∂

∂xℓ

(

m

∫

v4vℓfdv∗
)

= 0 (41)

where here, as in the rest of this work, latin indices run from 1 to 3 only. It is clear

from Eq. (41) that the integral in the first term is indeed the total energy while the

second integral is the energy flux. Thus, the equivalent to the total energy moment

calculated in a rest frame yields the internal energy only, that is

nε = mc2
∫

γ2kfdK
∗ (42)

and thus,

τ =
nε

c2
= nm

(

3z +
K3

(

1
z

)

K2

(

1
z

)

)

(43)

For the vector quantity τµ we have

τµ = −
1

c2
hµαUβ

∫

vαvβfdv∗ (44)

which, using again the fact that Uβv
β = −c2γk can be expressed as an integral over

the chaotic velocities as follows

τµ = hµαL
α
β

∫

γkK
βfdK∗ (45)

It can be shown (see the Appendix) that the contraction of the projector with the

Lorentz transformation yields a tensor Rµ
ν = hµαL

α
ν given by

Rµ
4 = 0 (46)

Rµ
a = Lµ

a for a = 1, 2, 3 (47)

and thus

τµ = Rµ
β

∫

γkK
βfdK∗ (48)
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We now introduce the Chapman-Enskog expansion

τµ = Rµ
β

∫

γkK
βf (0)dK∗ +Rµ

β

∫

γkK
βf (1)dK∗ (49)

and notice that the first terms vanishes since, for β = 1, 2, 3 the integral

Rµ
β

∫

γkK
βf (0)dK∗ is odd in k and the β = 4 term in the sum is zero because

Rµ
4 = 0 for any µ. Thus, only the integral with f (1) survives and we can write

τµ = Rµ
β

∫

γkK
βf (1)dK∗ (50)

In order to re-introduce the Lorentz transformation, we notice that
∫

γkK
4f (1)dK∗ = 0 (51)

since the internal energy, as all state variables, is obtained only through the equi-

librium solution. That is, the subsiadiary condition, which the solution f (1) will be

enforced to satisfy, requires
∫

γ2kf
(i)dK∗ = 0 for i 6= 0 (52)

Using Eq. (51), one can write Eq. (50) back in terms of Lµ
β which yields

τµ = Lµ
β

∫

γkK
βf (1)dK∗ (53)

By inspection of Eq. (41) one concludes that the integral
∫

γkK
bf (1)dK∗ is the heat

flux in a rest frame where vα = Kα, and thus

qβ[0] = c2
∫

γkK
βf (1)dK∗ (54)

This expression is analogous to the one found in the non-relativistic case and full of

physical content. The heat flux is physically the average flux of the chaotic energy,

and Eq. (54) is completely consistent which this idea. Now, in an arbitrary frame

τµ =
1

c2
Lµ

νq
ν
[0] (55)
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which is, to the authors’ knowledge, the first time that the heat flux is obtained only

from a kinetic theory standpoint as the average of the peculiar kinetic energy flux of

the molecules.

For the second rank tensor in the stress-energy tensor decomposition, we calculate

from Eq. (39)

τµν = mhµαh
ν
βL

α
ηL

β
δ

∫

KηKδfdK∗ (56)

or

τµν = mRµ
ηR

ν
δ

∫

KηKδ
(

f (0) + f (1)
)

dK∗ (57)

For the local-equilibrium term we have

mRµ
ηR

ν
δ

∫

KηKδf (0)dK∗ = mRµ
aR

ν
b

∫

KaKbf (0)dK∗ (58)

Since f (0) is even in k, only the a = b terms survive and thus

mRµ
ηR

ν
δ

∫

KηKδf (0)dK∗ = phµν (59)

where we have introduced the well known result for the hydrostatic pressure

p = m

∫

(

K1
)2
f (0)dK∗ = m

∫

(

K2
)2
f (0)dK∗ = m

∫

(

K3
)2
f (0)dK∗ (60)

and

p = nkBT (61)

together with the identity

Rµ
aR

ν
b δ

ab = Lµ
aL

ν
bδ

ab = hµν (62)

Equation (59) was obtained in a similar fashion (using Lorentz transformations) by

Weinberg [15], nevertheless he did not address the dissipative case following a kinetic

theory approach.
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For the dissipative term in Eq. (57), which we write as Πµν , we have

Πµν = mRµ
ηR

ν
δ

∫

KηKδf (1)dK∗ = mLµ
aL

ν
b

∫

KaKbf (1)dK∗ (63)

If Παβ
[0] is the Navier-Newton tensor calculated in a frame where the fluid is at rest

Πµν
[0] = mhµαh

ν
β

∫

KαKβfdK∗ = mδµaδ
ν
b

∫

KaKbfdK∗

since in such frame hµ4 = 0 and hµa = δµa . Thus, the second rank tensor introduced in

the stress-energy tensor is

τµν = phµν +Πµν

where

Πµν = Lµ
αL

ν
βΠ

αβ
[0] (64)

is the Navier-Newton tensor in an arbitrary frame.

IV. SUMMARY AND FINAL REMARKS

In the previous section, the different contributions to the stress-energy tensor

for a single component, dilute gas in the framework of special relativity have been

calculated by separating hydrodynamic and chaotic contributions to the molecular

velocities. This has been accomplished by introducing Lorentz transformations to

relate the velocity of a molecule as measured by an arbitrary observer with the one

measured within a differential volume moving at the corresponding hydrodynamic

velocity, an idea introduced by two of us in Ref. [11], combined with Eckart’s de-

composition [5].

The main results of this work can be summarized in the fact that all quantities

appearing in Eq. (36) have been obtained strictly from kinetic theory using the

concept of chaotic velocity. The first two terms are the equilibrium parts of the stress-

energy tensor and are well known. The main accomplishment of the calculation here
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shown are the dissipative terms which appear here in a natural way as averages over

kinetic energy and momentum fluxes once the transformation between molecular and

peculiar velocities is introduced. Also it has been shown that the heat flux transforms

as a first rank tensor.

A kinetic derivation of the stress-energy tensor for a dissipative fluid from first

principles in kinetic theory has been lacking for some time and thus hindering a clear

derivation of the relativistic Navier-Stokes equations. Equations (34) and (35) satisfy

both needs and, in turn, pose a new question. Since both heat and momentum fluxes

in Eq. (36) are given by Eqs. (55) and (64) respectively, the hydrodynamic velocity

factors introduced by the Lorentz transformations will induce new non-linearities in

the system of hydrodynamic equations. This could yield new relativistic effects for

the relativistic gas which may be measurable. This question and will be addressed

in the future.

Appendix

In this appendix the relations

dv∗ = dK∗ (65)

and

Uνvν = γk (66)

are shown to hold where Uµ, vµ and Kµ are the hydrodynamic, molecular and chaotic

four-velocities respectively. Also, we verify that the tensor quantity Rµ
ν is indeed

given by Eqs. (46) and (47).

To verify Eqs. (65) and (66), we consider two reference frames S and S̄ with

a relative speed ~u with respect to each other. That is, S may be considered the

laboratory frame while S̄ is a frame fixed to a volume element in the fluid. For the

16



sake of simplicity, we take the x direction parallel to ~u. In this situation, we have

three four-vectors related to a given molecule in such fluid element

Kν = γk

(

~k, c
)

velocity of the molecule as measured by an observer in S̄

vν = γv (~w, c) velocity of the molecule as measured by an observer in S

Uν = γu (u, 0, 0, c) relative velocity between S and S̄

The relationship between tensors in both references frames given by the Lorentz

transformation

Lµ
ν =











γu 0 0 u
c
γu

0 1 0 0

u
c
γu 0 1 γu











(67)

then

Aµ = Lµ
ν Ā

ν (68)

Since the molecule’s velocity, as measured in S̄, is v̄ν = Kν we have

vµ = Lµ
νK

ν = γk

(

γu (u+ k1) , k2, k3, γuc

(

1 +
uk1
c2

))

(69)

In order to show the invariance of the volume element dv∗ = cd3v/v4 we start

from

d3v = Jd3K (70)

where the Jacobian is given by

J = det

[

∂va

∂Kb

]

(71)
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and is calculated as follows

∂va

∂Kb
=

∂

∂Kb
[La

νK
ν ] = La

ν

∂

∂Kb
[Kν ] =











γu

(

δ1b −
u
c
K1

K4

)

a = 1

δab a 6= 1

where use has been made of the fact that, since Kµ is a four-velocity, KµKµ = −c2

and thus

0 = Kµ
∂Kµ

∂Kb
= K4

∂K4

∂Kb
+Ka

∂Ka

∂Kb
= K4

∂K4

∂Kb
+Kb (72)

Then, the Jacobian is

J = γu

(

1−
u

c

K1

K4

)

=
1

K4
γu

(

K4 −
u

c
K1

)

=
1

K4
γuγk

(

c+
u

c
k1

)

= v4 (73)

and thus
d3v

v4
=
d3K

K4
(74)

Regarding the scalar product Uνvν we have

Uνv
ν = UνL

ν
µK

µ (75)

which can be readily calculated using that

Uν = γu (u, 0, 0,−c) (76)

and the transformation given in Eq. (67) as follows

Uνv
ν = γuuL

1
µK

µ − cγuL
4
µK

µ = γ2u

[

uK1 +
u2

c
K4 − uK1 − cK4

]

= γ2u

[

u2

c2
− 1

]

cK4

(77)

and thus

Uνv
ν = −cK4 (78)

The results in Eqs. (74) and (78) allow the calculation of moments of the distribution

function in terms of the chaotic velocity in as similar way as in the non-relativistic

case:
∫

exp

(

Uβvβ
zc2

)

J dv∗ =

∫

exp
(

−
γk
c

)

J dK∗ (79)
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where J is an arbitrary tensor.

Now we turn to the proof of Eqs. (46) and (47). Firstly, since Lα
4 = Uα

c
,

Rµ
4 = hµαL

α
4 = hµα

Uα

c
= 0 (80)

To obtain Eq. (47), we separate two cases. For µ = 4, since h44 = 1−γ2 and h4b = γ Ub

c

R4
a = h4αL

α
a =

(

1− γ2
) Ua
c

+ γ
Ub
c
Lb

a (81)

For the second term we use that

Ub
c
Lb

a =
Ub
c

(

δba +
UaU

b

c2 (γ + 1)

)

= γ
Ua
c

(82)

and thus

R4
a =
Ua
c

= L4
a (83)

Finally, for µ = ℓ = 1, 2, 3

Rℓ
a = hℓαL

α
a = hℓbL

b
a + hℓ4L

4
a (84)

or, using that hℓ4 = −γ
Uℓ

c

Rℓ
a =

(

δℓb +
UbU

ℓ

c2

)

Lb
a − γ

U ℓUa
c2

(85)

Now, by introducing Eq. (82) in Eq. (85) one obtains

Rℓ
a = L

ℓ
a (86)

This completes the proof.
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