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Abstract

A [z, r; g]-mixed cage is a mixed graph z-regular by arcs, r-regular by edges, with girth g and minimum
order. Let n[z, r; g] denote the order of a [z, r; g]-mixed cage.

In this paper we prove that n[z, r; g] is a monotonicity function, with respect of g, for z ∈ {1, 2}, and
we use it to prove that the underlying graph of a [z, r; g]-mixed cage is 2-connected, for z ∈ {1, 2}. We also
prove that [z, r; g]-mixed cages are strong connected. We present bounds of n[z, r; g] and constructions
of [z, r; 5]-mixed graphs and show a [10, 3; 5]-mixed cage of order 50.

Keywords: Mixed cages, monotonicity, connectivity, projective planes, cages and directed cages.

1 Introduction

In this paper we consider graphs which are finite and mixed, that is, they may contain (directed) arcs as
well as (undirected) edges. We don’t allow multiple edges and arcs.

The mixed regular graphs were introduced in [5]. A mixed regular graph is a simple and finite graph G,
such that for every v ∈ V (G), v is the head of z arcs, the tail of z arcs and is incident with r edges. The
directed degree of a vertex v is equal to z, while the undirected degree is equal to r. We set d = z + r to
be the degree of v. We will consider walks of the form (v0, . . . , vn), where eihter vivi+1 is an edge of G or
(vi, vi+1) is an arc of G, for i ∈ {0, . . . , n − 1}. In other words, the walks could contain edges and arcs,
provided that all the arcs are traversed in the same direction. The girth of G is the length of the shortest
cycle of G, we denote the length of a cycle C as `(C). The distance between two vertices u and v denoted by
d(u, v) is defined as the shortest length of all uv-paths. If G has girth equal to g, then G is a [z, r; g]-mixed
graph of directed degree z, undirected degree r and girth g. A [z, r; g]-mixed cage is a [z, r; g]-mixed graph
of minimum order. Through this paper we use n[z, k; g] to denote the order of a [z, r; g]-mixed graph.

The Cage Problem is to find the smallest number, n(k, g), of vertices for a k-regular graph of girth g.
It has been widely studied since cages were introduced by Tutte [14] in 1947 and after Erdös and Sachs
[10] proved, in 1963, their existence. A complete survey about this topic and its relevance can be found in
[11]. Moreover, there exists a lot of results, related with this problem that studied structural properties of
cages as monotonicity and connectivity. For instance, Fu, Huang and Rodger [12] proved that if k ≥ 2 and
3 ≤ g1 < g2, then n(k, g1) < n(k, g2). Concerning the connectivity, it is known that if G is a (k, g)-cage, then
λ(G) = k [13, 15], and for every odd girth g ≥ 7, κ(G) ≥ bk/2c + 1 [6]. For even girth g ≥ 6, (k, g)-cages
with k ≥ 3 are (t+ 1)-connected, t being the largest integer such that t2 + 2t2 ≤ k [7].

In this paper we are interested in the Mixed Cage Problem, that is, find constructions of [z, r; g]-mixed
regular graphs, with specified degrees z, r, girth g and minimum order. The work concerning constructions
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†Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Juriquilla,
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of [z, r; 5]-mixed cages starts in [5] and continue in [2] where the authors give constructions of small [z, r; 5]-
mixed cages with similar techniques than used in [1] to construct small regular graphs of girth five.

The paper is organized as follows: in Section 2 we study structural properties of mixed cages. We prove
that n[z, r; g] is a monotonicity function with respect of g, for z ∈ {1, 2}. As a consequence of this result we
show that the underlying graph of a [z, r; g]-mixed cages is 2-connected, for z ∈ {1, 2}. We also show that
every [z, r; g]-mixed cage is strong connected.

In Section 3, we present a lower bound for n[z, r; g], specifically we show that if g ≥ 5, then n[z, r; g] ≥
n0(r, g) + 2z, where n0(r, g) is the More bound. We give two different constructions that provide us new
upper bounds for n[z, k; g]. In the first construction we use the incident finite graph of a partial plane
defined over any finite field generated by a prime. This construction was also used in previous papers, for
example, to construct regular graphs of girth 5 [3] and to construct Mixed Moore graphs of diameter 2
[4]. With this construction we state that n[z, r; 5] ≤ 10zr. In the second construction, we establish that
n[z, r; g] ≤ gn0(r, g). In particular, we construct a (10, 3; 5)-mixed graph of order 50, that results on a
(10, 3; 5)-mixed cage.

2 Monotonicity and connectivity

This section is divided into two parts. In the first one we focus on the study of the monotonicity. In the
second part we study the connectivity of mixed cages.

2.1 Monotonicity

Let G be a mixed graph. Let E∗(G) = A(G)∪E(G) and, if v is a vertex of G, let N∗(v) = N(v)∪N+(v)∪
N−(v)

Lemma 1. Let z ∈ {1, 2}. Every [z, r; g]-mixed cage contains a cycle of length g with either two consecutive
arcs or two consecutive edges.

Proof. Let G be a [z, r; g]-mixed cage with z ∈ {1, 2}. Suppose that every cycle of G of length g is alternating
by arcs and edges. Let C be a cycle of length g. Let −→xu ∈ A(C) and uv ∈ E(C). Since C is an induced cycle,
there exists an arc −→uy with y ∈ V (G)\V (C). Let N(y) = {v1, . . . , vr} and u′ ∈ N+(y). If w ∈ N(y)∪N+(y),
then w 6∈ V (C). Otherwise, G would contains a cycle of length g with either two consecutive arcs or with
two consecutive edges, a contradiction.

We divide the proof into two cases. In each case we construct a [z, r; g]-mixed graph with less vertices
than G, giving a contradiction.

Case 1) Suppose z = 1. If r is even, let E′ = {v2i−1v2i : 1 ≤ i ≤ r/2} ∪ {
−→
uu′}. We define G′ as

G′ = G− y + E′ (see Figure 1). Observe that G′ is a mixed graph 1-regular in arcs and r-regular in edges.
Moreover, the cycle C is totally contained in G′. Hence, G′ is a [1, r; g′]-mixed graph with g′ = g(G′) ≤ g.
Let C ′ be a cycle of G′ such that `(C ′) = g′.

If |E∗(C ′)∩E′| = 0, then C ′ is totally contained in G. Thus, g ≤ `(C) = g′, a contradiction. Suppose that
|E∗(C ′)∩E′| = 1. Let {αiαj} = E∗(C ′)∩E′. Observe that C ′−αiαj is totally contained in G. Hence, either
`(C ′) ≥ dG−y(αi, αj) + 1 ≥ g or `(C ′) ≥ dG−y(αj , αi) + 1 ≥ g, giving a contradiction. Continue assuming
that |E(C ′) ∩ E′| ≥ 2. Since E′ is an independent set of arcs and edges, there exist e1, e2 ∈ E∗(C) ∩ E′
such that C ′ contains an αiαj-path totally contained in G − y. Therefore, `(C ′) ≥ dG−y(αi, αj) + 2 > g, a
contradiction.

If r is odd, let w = vr, N(w) = {v′1, . . . , v′r}, where v′r = y, N−(w) = {x′} and N+(w) = {y′}. Let

E′ = {v2i−1v2i, v′2i−1v′2i : 1 ≤ i ≤ (r−1)/2}∪{
−→
uu′,
−−→
x′y′}. Define the mixed graph G′ as G′ = G−{y, w}+E′.

By a similar analysis to the previous case, we conclude that g(G) = g. Therefore, G′ is a [1, r; g]-mixed graph
with two vertices less than G, yielding a contradiction.

Case 2) Suppose z = 2. Let N−(y) = {u, s} and N+(y) = {u′, s′}. If r is even, let E′ = {v1v2, v3v4, . . . ,
vr−1vr}. Since d−(u′) = d−(s′) = 2, it follows that |N−(u′) ∩ {u, s}| ≤ 1 and |N−(s′) ∩ {u, s}| ≤ 1. Next,
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Figure 1: Construction of G′ from a [1, r; g]-mixed cage with r even.

we define a set A′ depending on the the sets N−(u′) and N−(s′). If u ∈ N−(u′) or s ∈ N−(s′), then

A′ = {
−→
us′,
−→
su′}. In other case, A′ = {

−→
uu′,
−→
ss′}. Define G′ as G′ = G − y + E′ + A′ (see Figure 2). By a

similar analysis to that of Case 1), G′ is a [2, r; g]-mixed graph with less order than G, a contradiction.

Figure 2: Construction of G′ from a [2, r; g]-mixed cage with r even and
−→
su′ ∈ A(G).

If r is odd, let w = vr, N(w) = {v′1, . . . , v′r}, where v′r = y, N−(w) = {x′, x′′} and N+(w) = {y′, y′′}. Let
E′ = {v2i−1v2i, v′2i−1v′2i : 1 ≤ i ≤ (r− 1)/2}. Since d−(u′) = d−(s′) = 2, it follows that |N−(u′)∩{u, s}| ≤ 1
and |N−(s′) ∩ {u, s}| ≤ 1. Define a set Ay depending on the sets N−(u′) and N−(s′). If u ∈ N−(u′) or

s ∈ N−(s′), then Ay = {
−→
su′,
−→
us′}. In other case, Ay = {

−→
uu′,
−→
ss′}. Analogously, we define Aw depending

on the sets N−(y′) and N−(y′′). If x′ ∈ N−(y′) or x′′ ∈ N−(y′′), then Aw = {
−−→
x′y′′,

−−→
x′′y′}. In other case,

Aw = {
−−→
x′y′,

−−−→
x′′y′′}.

Define G′ as G′ = G − {y, w} + E′ + Ay + Aw. Again, by a similar analysis to that of Case 1), a
contradiction is obtained.

Therefore, every [z, r; g]-mixed cage have at less one cycle of length g with two consecutive arcs or two
consecutive edges.

In [5], Araujo-Pardo, Hernández-Cruz and Montellano-Ballesteros, calculated a general lower bound for
a [z, r; g]-mixed cage in the following theorem:

Theorem 2. If n[1, r; g] is the order of a [1, r; g]-mixed cage, then

n[1, r; g] ≥ n0[1, r; g] =

 2
(

1 +
∑(g−3)/2
i=1 n0(r, 2i+ 1)

)
+ n0(r, g) if g is odd;

2
(

1 +
∑(g−2)/2
i=1 n0(r, 2i+ 1)

)
if g is even.

Now, we can prove the main theorem of this section.

Theorem 3. Let z ∈ {1, 2}, r ≥ 1 and 3 ≤ g1 < g2 be integers, then

n[z, r; g1] < n[z, r; g2].
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Proof. It suffices to show that if z ∈ {1, 2}, r ≥ 1 and g ≥ 3, then n[z, r; g] < n[z, r; g + 1]. Let G be
a [z, r; g + 1]-mixed cage. Let C be a cycle of G such that `(C) = g + 1. By Lemma 1, C contains two
consecutive arcs or two consecutive edges. Let u ∈ V (C). Suppose that N(u) = {v1, . . . , vr}, x1 ∈ N−(u)
and y1 ∈ N+(u).

We divide the proof in cases depending on the value of z and the parity of r. However, the general
reasoning for all cases is the same: from the graph G, by deleting a set of vertices and adding a set of arcs
and a set of edges, a [z, r; g′]-mixed graph G′ with girth g′ < g + 1 and |V (G′)| < n[z, r; g] is constructed.

Case 1) Suppose z = 1. If g = 3, by Theorem 2, n[1, r; 3] = 2+n0(r, 3) = r+3, n[1, r; 4] ≥ 2(1+n0(r, 3)) =
2r + 4, and the result follows. Continue assuming g ≥ 4.

Case 1.1) Suppose that r is even. If C has two consecutive edges v1u and uv2 (see Figure 3), let
E′ = {v2i−1v2i : 1 ≤ i ≤ r/2} ∪ {−−→x1y1}.

Figure 3: Operation in a [1, r; g + 1]-mixed cage with r even, in a cycle with two edges consecutive.

Let G′ = G− u+ E′. Observe that g(G′) ≤ g, since G′ contains the cycle C − u+ v1v2. We claim that
g(G′) = g. Let C ′ be a cycle of G′ such that `(C ′) = g(G′) ≤ g. If E(C ′) ∩ E′ = ∅, then E∗(C ′) ⊆ E(G),
implying that `(C ′) ≥ g + 1, a contradiction. Hence, E∗(C ′) ∩ E′ 6= ∅. If |E∗(C ′) ∩ E′| = 1, then
E∗(C ′) ∩ E′ = {αiαj}, which implies that C ′ − αiαj is an αiαj-path or an αjαi-path totally contained
in G of length at least g − 1. Therefore, g ≤ dG−u(αi, αj) + 1 ≤ `(C ′) = g(G′) ≤ g. Suppose that
|E∗(C ′) ∩ E′| ≥ 2. Since E′ is an independent set of edges and arcs, there exist e1, e2 ∈ E∗(C ′) ∩ E′
such that there is an αiαj-path in C ′ totally contained in G − u, where αi is a vertex of e1 and αj is
a vertex of e2. Since αi, αj ∈ N∗(u), the length of every αiαj-path in G − u is at least g − 1. Hence,
g < dG−u(αi, αj) + 2 ≤ `(C ′) ≤ g, a contradiction.

Therefore, g(G′) = g and G′ is a [1, r; g]-mixed graph. Thus,

n[1, r; g] ≤ |V (G′)| = |V (G)| − 1 < n[1, r; g + 1],

and the result follows.
The case in which C contains two consecutive arcs is analogous.
Case 1.2) Suppose that r is odd. If v1u, uv2 ∈ E(C) (see Figure 4), let w = vr, N(w) = {v′1, . . . , v′r}, where

v′r = u, N−(w) = {x′} and N+(w) = {y′}. Let E′ = {v2i−1v2i, v′2i−1v′2i : 1 ≤ i ≤ (r − 1)/2} ∪ {−−→x1y1,
−−→
x′y′}.

Let G′ = G − {u,w} + E′. Notice that G′ contains a cycle of length g, therefore g(G′) ≤ g. Let
C ′ be a cycle of G′ such that `(C ′) = g(G′). By a similar analysis to the Case 1.1), it follows that
`(C ′) ≥ dG−{u,w}(αi, αj)+ |E∗(C ′)∩E′| ≥ g, where αi and αj are vertices of the edges or arcs in E∗(C ′)∩E′.

Therefore, G′ is a [1, r; g]-mixed graph with n[1, r; g + 1]− 2 vertices. Thus

n[1, r; g] ≤ |V (G′)| = |V (G)| − 1 < n[1, r; g + 1].
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Figure 4: Operation in a [1, r; g + 1]-mixed cage with r odd, in a cycle with two arcs consecutive.

The case in which C contains two consecutive arcs is analogous.
Case 2) Suppose z = 2. Let N−(u) = {x1, x2} and N+(u) = {y1, y2}.
Case 2.1) Suppose that r is even. If v1u, uv2 ∈ E(C), let E′ = {v2i−1v2i : 1 ≤ i ≤ r/2}. Next, we define

a set A′ depending on the sets N−(y1) and N−(y2). If x1 ∈ N−(y1) or x2 ∈ N−(y2), then A′ = {−−→x1y2,−−→x2y1}.
In other case, A′ = {−−→x1y1,−−→x2y2}. Let G′ = G − u + E′ + A′ (see Figure 5). Proceeding as in Case 1.1), it
follows that g(G′) = g and the result follows.

The case in which −−→x1u,−→uy1 ∈ A(C) and y2 6∈ N+(x2) is proved in a similar way.

Figure 5: Operation in a [2, r; g+ 1]-mixed cage with r even, in a cycle with two edges consecutive and there
is no the arc −−→x1y1 or −−→x2y2.

Suppose now that −−→x1u,−→uy1 ∈ A(C) and y2 ∈ N+(x2). If y′ ∈ N+(y2) ∩ V (C), let E′ = {v2i−1v2i : 1 ≤
i ≤ r/2} ∪ {−−→x1y2,−−→x2y1}. Let G′ = G − u + E′ (see Figure 6). We claim that g(G′) = g. Since G′ contains

the cycle C − u+−−→x1y2 +
−−→
y2y
′, it follows that g(G′) ≤ g + 1. If g(G′) = g + 1, then G′ is a [2, r; g + 1]-mixed

graph with n[2, r; g + 1]− 1 vertices, a contradiction. Therefore g(G′) ≤ g and by a similar analysis to that
in Case 1.1), it follows that n[2, r; g] ≤ |V (G′)| < |V (G)|.

IfN+(y2)∩V (C) = ∅, letN+(y2) = {y3, y4}, N(y2) = {w1, . . . , wr}. Set E′ = {w1w2, w3w4, . . . , wr−1wr}∪
{−→uy3,−−→x2y4}. Let G′ = G− y2 + E′, note that G′ is a [2, r, g′]-mixed graph, with one vertex less than G and
g′ = g(G′) < g + 1, since the cycle C is contained in G′. Let C ′ be a cycle such that `(C ′) = g′, similarly to
Case 1.1), we conclude that `(C ′) ≥ g. Thus, g′ = g and G′ is a [2, r; g]-mixed graph with n[2, r; g + 1]− 1
vertices and n[2, r; g] ≤ |V (G′)| < n[2, r; g + 1].

Case 2.2) Suppose that r is odd. Let s = vr, N(s) = {v′1, . . . , v′r}, where v′r = u, N−(s) = {x′1, x′2} and
N+(s) = {y′1, y′2}.

Suppose that v1u, uv2 ∈ E(C). Let E′ = {v2i−1v2i, v′2i−1v′2i : 1 ≤ i ≤ (r − 1)/2} ∪ Au ∪ As, where Au
and As are defined depending on the sets N−(yi) and N−(y′i) for i ∈ {1, 2}. Since d−(yi) = 2, it follows
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Figure 6: Operation in a [2, r; g + 1]-mixed cage with r even, in a cycle with two arcs consecutive and there
is no the arc −−→x2y2.

that |N−(yi) ∩ {x1, x2}| ≤ 1. If either x1 ∈ N−(y1) or x2 ∈ N−(y2), then Au = {−−→x1y2,−−→x2y1}. In other

case set Au = {−−→x1y1,−−→x2y2}. If either x′1 ∈ N−(y′1) or x′2 ∈ N−(y′2), then As = {
−−→
x′1y
′
2,
−−→
x′2y
′
1}. In other case

As = {
−−→
x′1y
′
1,
−−→
x′1y
′
1}. Let G′ = G− {u, s}+E′. Proceeding as in Case 1.1), it follows that g(G′) = g, and the

result follows.
The case in which −−→x1u,−→uy1 ∈ A(C) and y2 6∈ N+(x2) is proved in a similar way.
Next, suppose that−−→x1u,−→uy1 ∈ A(C), and y2 ∈ N+(x2). If y′ ∈ N+(y2)∩V (C), let E′ = {v2i−1v2i, v′2i−1v′2i :

1 ≤ i ≤ (r − 1)/2} ∪ {−−→x1y2,−−→x2y1} ∪ As. If either x′1 ∈ N−(y′1) or x′2 ∈ N−(y′2), then As = {
−−→
x′1y
′
2,
−−→
x′2y
′
1}.

In other case, As = {
−−→
x′1y
′
1,
−−→
x′2y
′
2}. Let G′ = G − {u, s} + E′ (see Figure 7). Since G′ contains the cycle

C−u+−−→x1y2 +
−−→
y2y
′, therefore g(G′) ≤ g+1. If g(G′) = g+1, it follows that G′ is a [2, r; g+1]-mixed graph, a

contradiction. Hence, g(G′) ≤ g and proceeding as in Case 1.1), it follows that n[2, r; g] ≤ |V (G′)| < |V (G)|.
If N+(y2) ∩ V (C) = ∅, let N+(y2) = {y3, y4}, N(y2) = {w1, . . . , wr}, with wr = t. Let N(t) =

{w′1, . . . , w′r}, with w′r = y2, N−(t) = {x′1, x′2} and N+(t) = {y′1, y′2}. Let E′ = {w2i−1w2i, w
′
2i−1w

′
2i : 1 ≤

i ≤ (r − 1)/2} ∪ {−→uy3,−−→x2y4} ∪ At, where At = {
−−→
x′1y
′
2,
−−→
x′2y
′
1} if either x′1 ∈ N−(y′1) or x′2 ∈ N−(y′2), and

At = {
−−→
x′1y
′
1,
−−→
x′2y
′
2} in any other case.

Let G′ = G − {y2, t} + E′. Since C is contained in G′, it follows that g(G′) < g + 1. Let C ′ a cycle
such that `(C ′) = g(G′), proceeding as in Case 1.1), it can be concluded that g(G′) = g. Hence, G′ is a
[2, r; g]-mixed graph with n[2, r; g + 1] − 2 vertices. Therefore n[2, r; g] ≤ |V (G′)| < n[2, r; g + 1], and the
theorem is proved.

2.2 Connectivity of a mixed cage

In this subsection we give some results on the connectivity of a mixed cage. A mixed graph G is strong if
for every two vertices u and v of G there exists a uv-path and a vu-path. Clearly, if G is a [z, r; g]-mixed
cage, then the underlying graph of G is connected.

Theorem 4. If G is a [z, r; g]-mixed cage, then G is strongly connected.

Proof. Let G be a [z, r; g]-mixed cage. Suppose to the contrary that G is not strong. Let H1, . . . ,Hk be
the strong components of G. Note that there are no edges between the strong components of G. Let
H∗ = ∪ki=2Hi. Since the underlying graph of G is connected, there is at least one arc between H1 and H∗.
Furthermore, all the arcs between H1 and H∗ have the same direction. Suppose without lose of generality
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Figure 7: Operation in a [2, r; g + 1]-mixed cage with r odd, in a cycle with two consecutive arcs and there
is the arc −−→x2y2.

that [V (H1), V (H∗)] 6= ∅. The number of arcs of G is

|A(G)| = |V (G)|z = (|V (H1)|+ |V (H∗)|)z.

On the other hand, for every vertex v ∈ V (H1) it follows that d−(v) = z, and for every vertex u ∈
V (H∗), d+(u) = z. Hence, |A(H1)| = |V (H1)|z and |A(H∗)| = |V (H∗)|z. Therefore, |A(G)| = |A(H1)| +
|A(H∗)|+ |[V (H1), V (H∗)]| = |V (H)|z + |V (H∗)|z + |[V (H1), V (H∗)]|, implying that |[V (H1), V (H∗)]| = 0,
a contradiction.

Theorem 5. The underlying graph of a [z, r; g]-mixed cage is 2-connected, for z ∈ {1, 2}.
Proof. Let G be a [z, r; g]-mixed cage, z ∈ {1, 2}. Suppose that there exists a vertex v ∈ V (G) such that the
underlying graph of G− v is not connected. Let H be a connected component of G− v of minimum order.

Observe that |V (H)| < |V (G)|/2. Let
←−
H be the reverse graph of H and let u′ denote the corresponding

vertex of u in
←−
H . We construct a new graph G∗ formed by the disjoint union of H and

←−
H , an edge set

E′ = {uu′ : u ∈ V (H)∩N(v), u′ ∈ V (
←−
H )} and an arc set A′ = {

−→
uu′ : u ∈ V (H)∩N−(v), u′ ∈ V (

←−
H )}∪{

−→
u′u :

u ∈ V (H) ∩N+(v), u′ ∈ V (
←−
H )}. Observe that G∗ is a [z, r, g(G∗)]-mixed graph. Let C be a cycle of length

g(G∗). Since |V (G∗)| = 2|V (H)| < |V (G)|, by Theorem 3, g(G∗) < g. Hence (E(C)∪A(C))∩ (E′ ∪A′) 6= ∅.
Thus, there exists at least two vertices u1 and u2 of H which are the endings of those edges or arcs belonging
to C. Notice that u1 and u2 are at distance at least g− 2 in G− v. Hence, g(G∗) ≥ 2(g− 2) > g. Therefore,
G∗ is a [z, r; g∗]-mixed cage with g∗ ≥ g. By Theorem 3, n[z, r; g′] ≤ |V (G∗)| < |V (G)| = n[z, r; g], a
contradiction.
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3 Construction of mixed graphs

In this section some constructions of families of mixed graphs are presented.

3.1 Lower bounds

In this subsection we give a lower bound for n[z, r; g]. Let G be a mixed graph. Given a vertex u of G,

we define the projection of u as
−→
N (u) = N+(u) ∪ N(u). Similarly, the injection of u is the set

←−
N (u) =

N−(u) ∪N(u).

Proposition 6. The order of a [z, r; g]-mixed cage is at least n0(r, g) + 2z.

Proof. Let G be a [z, r; g]-mixed cage. By deleting the arcs of G we obtain an (r, g′)-graph with g′ ≥ g.
Hence by the Moore bound and the monotonocity it follows that |V (G)| ≥ n0(r, g). In addition, since every
vertex of G has z ex-neighbors and z in-neighbors, it follows that |V (G) ≥ n0(r, g) + 2z.

Next we improve the previous lower bound for some specific parameters.

Theorem 7. The order of a [10, 3; 5]-mixed cage is at least 50.

Proof. Let G be a [10, 3; 5]-mixed cage. By Proposition 6, it follows that |V (G)| ≥ 30. Let G′ = G−A(G).
Observe that G′ is a (3, g′)-graph with g′ ≥ 5. Let u ∈ V (G) and let N2(u) be the set of vertices of G′ at
distance at most 2 from u. Observe that N+(u) ∩N2(u) = ∅ and N−(u) ∩N2(u) = ∅.

Claim. There exists a vertex v ∈ N+(u) such that |
−→
N (v) ∩N+(u)| ≤ 3.

Suppose that for every v ∈ N+(u), |
−→
N (v) ∩ N+(u)| ≥ 4. Therefore, there exists a vertex w ∈ N+(u)

such that |N(w) ∩ N+(u)| ≤ 2. Otherwise the mixed graph induced by N+(u) would contains a cycle of
length at most 4. Let y ∈ N+(u) and suppose that |N(y) ∩ N+(u)| = 2. Let x1, x2 ∈ N(y) ∩ N+(u) and

let z ∈ N+(y) ∩ N+(u). Since |
−→
N (z) ∩ N+(u)| ≥ 4 and G has girth 5, it follows that x1, x2 /∈

−→
N (z). Let

Z =
−→
N (z) ∩N+(u) (see Figure 8).

Figure 8: Structure with two adjacent edges.

Notice that if we want maximize the number of edges and the arcs in G[Z] (the subgraph induced graph
by Z), there are only nine possibilities for G[Z] (see Figure 9). If there is a vertex w ∈ Z such that

|
−→
N (w) ∩ Z| = 1, then w is incident with an edge of G[Z] (see Figure 9). Hence, w cannot be adjacent to z
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with an edge, because the girth of G is 5. Therefore |
−→
N (w) ∩ (N+(u) \ Z)| ≥ 3 and since x1, x2, y /∈

−→
N (w),

a contradiction is obtained.

Figure 9: The nine configurations of G[Z].

Similarly, in the possibilities of G[Z] that have a vertex w with |
−→
N (w) ∩ Z| = 0, it follows that |

−→
N (w) ∩

(N+(u) \ {z})| ≥ 3. Since x1, x2, y /∈
−→
N (w), a contradiction is obtained. Consequently, there are no two

incident edges in N+(u).

Let x ∈ N(y) ∩N+(u) and z ∈ N+(y) ∩N+(u) (see Figure 10). Observe that |
−→
N (z) ∩N+(u)| ≥ 4 and

Figure 10: Structure with at least 11 vertices in N+(u).

x, y /∈ (
−→
N (z) ∩ N+(u)). Let Z =

−→
N (z) ∩ N+(u). In this case we only have five possibilities for G[Z] (see

Figure 11).

Observe that in each one of the possible graphs of G[Z] there is a vertex w with either |
−→
N (w) ∩ Z| = 0

or |
−→
N (w) ∩ Z| = 1. Let w ∈ Z and suppose that |

−→
N (w) ∩ Z| = 0. Since |

−→
N (w) ∩ N+(u)| ≥ 4, it

follows that |N+(u)| ≥ 11, a contradiction. If |
−→
N (w) ∩ Z| = 1, then |N(w) ∩ Z| = 1. Moreover, since

there are no two incident edges in N+(u), it follows that w ∈ N+(z) and there are at least three vertices

w1, w2, w3 ∈ (N+(w) ∩ (N+(u) \ {x, y, z})). Since |
−→
N (w1) ∩ N+(u)| ≥ 4 and |N+(u)| = 10, it follows that
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Figure 11: The five configurations of four vertices with the maximum number of edges and arcs preserving
the five girth and without two adjacent edges.

|
−→
N (w1) ∩ (Z ∪ {y, z})| ≥ 1. Therefore a cycle of length at most 4 is obtained. A contradiction.

Therefore, there is a vertex w ∈ N+(u) such that |
−→
N (w) ∩N+(u)| ≤ 3. By a similar reasoning, there is

a vertex w∗ ∈ N−(u) such that |
←−
N (w∗) ∩N−(u)| ≤ 3.

Hence (
−→
N (w) \ N+(u)) ∩ (N−(u) ∪ N2(u)) = ∅ and (

←−
N (w∗) \ N−(u)) ∩ (N+(u) ∪ N2(u)) = ∅. Since

|
−→
N (w)| = |

←−
N (w∗)| = 13, it follows that |V (G)| ≥ 50, and the result follows.

3.2 Upper bounds

3.2.1 A family of [z, r; 5]-mixed graph

To construct this family of mixed graphs we use the incidence graph of a partial plane. A partial plane is
defined as two finite sets P and L called points and lines, respectively, where L consists of subsets of P,
such that any line is incident with at least two points, and two points are incident with at most one line.
The incidence graph of a partial plane is a bipartite graph with partite sets P and L where a point of P
is adjacent to a line of L if they are incident. Observe that the incidence graph of a partial plane has even
girth g ≥ 6. In Remark 8 we describe a biaffine plane.

Remark 8. [8].
Let Fq be the finite field of order q.

(i) Let L = Fq × Fq and P = Fq × Fq denoting the elements of L and P using “brackets” and “paren-
thesis”, respectively. The following set of q2 lines define a biaffine plane:

[m, b] = {(x,mx+ b) : x ∈ Fq} for all m, b ∈ Fq. (1)

(ii) The incidence graph of the biaffine plane is a bipartite graph Bq = (P,L ) which is q-regular, has
order 2q2, diameter 4 and girth 6, if q ≥ 3; and girth 8, if q = 2.

(iii) The vertices mutually at distance 4 are the vertices of the sets Lm = {[m, b] : b ∈ Fq}, and Px =
{(x, y) : y ∈ Fq} for all x,m ∈ Fq.

Next, we describe two operations that we perform on the graph Bq: reduction and amalgam.
The reduction operation refers to delete the last pairs of blocks (Pi, Li) from Bq. Let γ ∈ {1, . . . , q − 1},

define Bq(γ) = Bq −
⋃γ
i=1(Pq−i ∪ Lq−i).

Lemma 9. [3] Let γ ∈ {1, . . . , q− 1}. Then, the graph Bq(γ) is (q− γ)-regular of order 2(q2− qγ) and girth
g ≥ 6.

Now, we describe the amalgam operation. Let Γ1 and Γ2 be two graphs of the same order and with the
same labels on their vertices. The amalgam of Γ1 into Γ2 is a graph obtained adding all the edges of Γ1 to
Γ2.

We will show how we apply the operations of reduction and amalgam to the graph Bq to build a family
of [z; r; 5] -mixed graph.
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Let z 6= 2 be a positive integer. Let p be the smallest prime number such that 4z + 1 ≤ p ≤ 5z.

Consider Fp = Zp and let Bp be the incidence graph of the biaffine plane with this field. Let
−→
C p(1, . . . , z)

the circulant digraph of order p. Recall that a circulant digraph over Zp, denoted by
−→
C p(1, . . . , z) is a

digraph whose set of vertices are the elements of Zp and the set of arcs in
−→
C p(1, . . . , z) are defined as

A(
−→
C p(1, . . . , z)) = {−→ij |(j − i) ∈ {1, . . . , z} mod p}. Let {1, . . . , z} be the weight or the Cayley color of the

arcs on
−→
C p(1, . . . , z).

We define B∗p(γ) to be the amalgam of
−→
C p(1, . . . , z) into Pi and Li for i ∈ {0, . . . , p − γ − 1} and

γ ∈ {1, . . . , p − 2}. To simplify notation, we assume that the labelling of
−→
C p(1, . . . , z) corresponds to the

second coordinate of Pi and Li for i ∈ {1, . . . , p− γ − 1}.
To prove Theorem 10, we use a result due to Dusart [9]. For any integer z ≥ 3275, there always exists a

prime number between n and (1 + 1/(2ln2n))n. Since (1 + 1/(2ln2(4z + 1)))(4z + 1) < 5z, we ensure that
for any integer z ≥ 3275, there always exists a prime number between 4z + 1 and 5z. And, it is not difficult
to obtain, using simple computer calculations, the same result for 1 ≤ z ≤ 3275 and z 6= 2.

Theorem 10. Let p be the smallest prime number such that 4z + 1 ≤ p ≤ 5z, for every positive integer
z 6= 2. Then n[z, r; 5] ≤ 2pr, for r ∈ {1, . . . , p}.

Proof. Let p be the smallest prime number such that 4z + 1 ≤ p ≤ 5z, for every positive integer z other

than 2. Let
−→
C p(1, . . . , z) be the circulant digraph. Observe that

−→
C p(1, . . . , z) has girth 5. Let B∗p(γ) be the

amalgam of
−→
C p(1, . . . , z) into Pi and Li for i ∈ {0, . . . , p−γ−1} and γ ∈ {1, . . . , p−2}. Let r = p−γ. Notice

that |B∗p(γ)| = 2p(p − γ) = 2pr, also each vertex v ∈ V (B∗p(γ)) is r-regular in edges and z-regular in arcs.
Let C be a shortest cycle in B∗p(γ). Suppose by contradiction, that |V (C)| ≤ 4. Therefore, C = (w, x, y, w)

or C = (v, w, x, y, v). Notice that C cannot be completely contained in
−→
C p(1, . . . , z) or in Bp(γ). With

out loose of generality suppose that w, x ∈ Pi and y ∈ Lm for some i,m ∈ {0, 1, . . . , r}, that is, w = (i, a),
x = (i, b) and y = [m, k]. Since −→wx ∈ A(B∗p(γ)[Pi]), then b = a+ s, for some s ∈ {1, . . . , z}. Since the edges
between Pi and Lm induces a matching, then wy /∈ E(Bp(γ)), and hence wy /∈ E(B∗p(γ)). Thus |V (C)| > 3,
and we can assume |V (C)| = 4 and C = (v, w, x, y, v). By the same argument, v /∈ Pi. Since there are
no edges between Pi and Pj in B∗p(γ), for j ∈ {0, 1, . . . , r} \ {i}, neither between Lm and Ln in B∗p(γ), for
n ∈ {0, 1, . . . , r}\{m}. Thus v = [m, l] ∈ Lm and −→yv ∈ A(B∗p(γ)[Lm]), then l = k+ t, for some t ∈ {1, . . . , z}.
If xy ∈ E(Bp), then x = (i, b) = (i, a+s) and y = [m, k]. Hence, a+s = mi+k, implying y = [m, a+s−mi].
Since vw ∈ E(Bp), v = [m, l] and w = (i, a) it follows that a = mi+ l, that is, v = [m, a−mi]. By definition

of
−→
C q(1, . . . , z), we have that −→vy ∈ A(

−→
C p(1, . . . , z)) instead of −→yv, a contradiction. Hence g(B∗p(γ)) = 5 and

B∗p(γ) is a [z, r; 5]-mixed graph of order 2pr. Therefore, n[z, r; 5] ≤ 2pr.

If r = p, then simply amalgam
−→
C p(1, . . . , z) in each Pi and Li of Bp, and by a similar analysis we verify

that g(B∗p) = 5, it follows that n[z, r; 5] ≤ 2pr.

In Figure 12 is depicted an example of a [3, 13; 5]-mixed graph that is an amalgam of the circulant digraph
−→
C 13(1, 2, 3) in B13.

3.2.2 Other bounds for different girth

In this subsection we present an upper bound for n[z, r; g].

Theorem 11. Let r ≥ 2 and g ≥ 3 be integers. Then n[z′, r; g] ≤ gn0(r, g), for 1 ≤ z′ ≤ n0(r, g).

Proof. We present a construction of a [z′, r; g]-mixed graph of order gn0(r, g), for every z′ ∈ {1, 2, . . . , n0}. Let
H be an (r, g)-cage. Suppose that V (H) = {1, 2, . . . , n0(r, g)}. Let Hi be a copy of H, for i ∈ {0, 1, . . . , g−1},
with V (Hi) = {1i, 2i, . . . , n0,i}. Let G =

⋃g−1
i=0 Hi. Notice that G is a disconnected r-regular graph with

girth g and order gn0(r, g). Let B(Hi, Hi+1) be the complete bipartite directed graph that is obtained by
adding all the arcs from V (Hi) to V (Hi+1), for i ∈ {0, . . . , g − 1} (mod g). Let Ai = {A1, A2, . . . , An0(r,g)}
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Figure 12: A [3, 13; 5]-mixed graph.

be a 1-factor (oriented) of B(Hi, Hi+1). Let
−→
Ai(j) =

⋃j
i=1Ai and let G∗ = G+

⋃g−1
i=0

−→
Ai(z′). Observe that

we can always get that Ai ∩ Aj = ∅, it follows that G∗ is a [z′, r; g]-mixed graph.
In the following we will prove that G∗ has girth g. Suppose that C is a cycle such that |V (C)| < g, hence

it cannot contain edges only. Neither can it consist only of arrows, by the cycles formed of arcs have length
a multiple of g. Therefore C consists of edges and arcs, that is, if it contains vertices of the copy i, then
it contains at least one vertex of the copy i + 1, and according to the direction of the arcs, the minimum
distance of the vertices of the copy i + 1 to any of the copy i is g − 1, which is a contradiction. Therefore
G∗ has a girth g and is a [z′, r; g]-mixed graph with gn0 vertices, that is, n[z′, r; g] ≤ gn0(r, g).

Corollary 12. There exists a [10, 3; 5]-mixed cage of order 50.

Proof. Let G be a [10, 3; 5]-mixed cage. By Theorem 7 and Theorem 11, it follows that |V (G)| = 50. The
mixed graph depicted in Figure 13 is a [10, 3; 5]-mixed cage.

Figure 13: A [10, 3; 5]-mixed cage of order 50.

4 Future work

The problem of find a mixed cage and study their properties is very recently. As a suggestion to continue
with the topic we propose two problems:
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1. The study of the monotonocity for [z, r; g]-mixed cages with z ≥ 3.

2. Find better lower upper bounds for n[z, r; g], specially for g = 5 and also find new constructions of
[z, r; g]-mixed graphs with few vertices for any g ≥ 5. A natural suggestion should be study the case
for g = 6.
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