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Departamento de Matemáticas Aplicadas y Sistemas

UAM-Cuajimalpa
Mexico City, Mexico

olsen.mika@gmail.com

Christian Rubio-Montiel
División de Matemáticas e Ingenieŕıa
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Abstract

We consider the extension to directed graphs of the concept of the achromatic
number in terms of acyclic vertex colorings. The achromatic number has been
intensely studied since it was introduced by Harary, Hedetniemi and Prins in 1967.
The dichromatic number is a generalization of the chromatic number for digraphs
defined by Neumann-Lara in 1982. A coloring of a digraph is an acyclic coloring
if each subdigraph induced by each chromatic class is acyclic, and a coloring is
complete if for any pair of chromatic classes x, y, there is an arc from x to y and an
arc from y to x. The dichromatic and diachromatic numbers are, respectively, the
smallest and the largest number of colors in a complete acyclic coloring. We give
some general results for the diachromatic number and study it for tournaments. We
also show that the interpolation property for complete acyclic colorings does hold
and establish Nordhaus-Gaddum relations.

Mathematics Subject Classifications: 05C15, 05C20, 05C60
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1 Introduction

A complete coloring of an undirected graph G is a vertex coloring of G such that for
every pair of colors there is at least one edge in G whose endpoints are colored with this
pair of colors. The chromatic and achromatic numbers of G are the smallest and the
largest number of colors in a complete proper coloring of G, respectively. The concept
of achromatic number has been intensely studied in graphs since it was introduced by
Harary, Hedetniemi and Prins [14] in 1967, for more references of results related to this
parameter see for instance [2, 3, 1, 5, 8, 15, 26]. The achromatic number has been extended
to digraphs with two different colorings one by Edwards [11] and another by Sopena [24].
Edwards considered colorings such that the underlying graph is proper colored and the
completeness such that for each ordered pair (c, c′) of distinct colors, there is at least
one arc xy such that x has color c and y has color c′, and he proved that a directed
graph does not necessarily have a complete coloring and that determining whether one
exists is an NP-complete problem. Sopena proposed another extension of the achromatic
number, the oriented achromatic number, using the oriented chromatic number defining
a completeness that corresponds to complete homomorphisms of oriented graphs. He
proved that for every integers a and b with 2 6 a 6 b, there exists an oriented graph Ga,b

with oriented chromatic number a and oriented achromatic number b. He also studied
the behavior of the oriented achromatic number adding or deleting a vertex or an arc. In
both extensions of the achromatic number for digraphs, it is proven that the interpolation
property does not hold. In this paper, we propose yet another extension of the achromatic
number to digraphs in terms of acyclic colorings. We stress that with our extension, the
interpolation property does hold.

A vertex coloring of a digraph D is called acyclic if each chromatic class induces a
subdigraph with no directed cycles. The dichromatic number dc(D) of a digraph D is the
smallest k such that D admits an acyclic coloring, it was introduced by Neumann-Lara
in [20] as a generalization of the chromatic number, for more references of results related
to this parameter see for instance [4, 12, 16, 17, 18, 19, 21, 22]. A coloring of a digraph
D is called complete if for every ordered pair (i, j) of different colors there is at least one
arc (u, v) such that u has color i and v has color j [11]. It is not hard to see that any
acyclic coloring of D with dc(D) colors is a complete coloring. We define the diachromatic
number dac(D) of a digraph D as the largest number of colors for which there exists a
complete and acyclic coloring of D. Hence, the dichromatic and diachromatic numbers of
a digraph D are, respectively, the smallest and the largest number of colors in a complete
acyclic coloring of D. The pseudoachromatic number ψ(D) of a digraph D is the largest
number k for which there exists a complete coloring of D using k colors (see [11, 13]).

Since the dichromatic number of a symmetric digraph is equal to the chromatic num-
ber of the underlying graph, the diachromatic number of a symmetric digraph is equal
to the achromatic number of the underlying graph; and the pseudoachromatic number of
a symmetric digraph is equal to the pseudoachromatic number of the underlying graph,
the dichromatic number, the diachromatic number and the pseudoachromatic number
of a digraph generalizes the chromatic number, the achromatic number and the pseu-
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doachromatic number of a graph; recall that the underlying graph GD of a digraph D is
obtained from D changing all symmetric and asymmetric arcs by edges. Note that the
chromatic number of the underlying graph is an upper bound for the dichromatic number
of a digraph and the pseudoachromatic number of a digraph is a lower bound for the
pseudoachromatic number of the underlying graph, but this kind of relation can not be
established between the diachromatic and the achromatic numbers.

This paper is organized in six sections: the second section contains general results for
the diachromatic number of a digraph, in the third section we study the diachromatic
number of tournaments; in the fourth and fifth sections we generalize some results on
graphs, given in Chapter 12 of [10], for digraphs; also in section four, we define the concept
of dihomorphisms and show that the interpolation property does hold for complete acyclic
colorings; and section five establishes the Nordhaus-Gaddum relations. Finally, the last
section has some conclusions and future work.

2 Definitions and basic results

In this paper, we consider finite digraphs. The arc uv ∈ A(D) is symmetric if vu ∈ A(D)
and asymmetric if vu /∈ A(D). A digraph is symmetric (resp. asymmetric) if every
arc of D is symmetric (resp. asymmetric); for general concepts see [9]. Let k be a
natural number. A vertex coloring ς of a digraph D with k colors is a surjective function
that assigns to each vertex of D a color of [k] := {1, . . . , k}. For each i ∈ [k], the
set ς−1(i) ⊆ V (D) will be called chromatic class. The coloring ς of D with k colors is
called acyclic if no chromatic class induces a subdigraph with a directed cycle. An acyclic
coloring with k colors is denoted (for short) as k-coloring. The dichromatic number dc(D)
of a digraph D is the smallest k such that D admits an acyclic coloring [20]. An acyclic
coloring of a digraph D with k colors is called complete if for every ordered pair (i, j) of
different colors there is at least one arc (u, v) such that u has color i and v has color j
[11]. It is not hard to see that any dc(D)-coloring of D is a complete coloring. We define
the diachromatic number dac(D) of a digraph D as the largest number k for which there
exists a complete and acyclic k-coloring of D. Recall that the order (or the size) of a
digraph is the number of its vertices (or its arcs).

From the definition, we obtain the following for any digraph D of order n:

1 6 dc(D) 6 dac(D) 6 ψ(D) 6 n. (1)

The converse digraph Dop of D is obtained replacing each arc (u, v) of D by the arc
(v, u). The complement Dc of a digraph D is that digraph whose vertex set is V (D) and
where (u, v) is an arc of D if and only if (u, v) is not an arc of D. It is not difficult to
prove the following remark.

Remark 1. If G is a graph, and
−→
G is an orientation of G we have that

dc(
−→
G) = dc(

−→
G op), dac(

−→
G) = dac(

−→
G op), and ψ(

−→
G) = ψ(

−→
G op).
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The following theorem gives a rather simple (and sharp) bound for the diachromatic
number of a digraph in terms of its size.

Theorem 2. Let D be a digraph of size m. Then ψ(D) 6
⌊
1+
√
1+4m
2

⌋
. Moreover, if

−→
M

is an oriented matching of size m, then dac(
−→
M) =

⌊
1+
√
1+4m
2

⌋
.

Proof. Since m > 2
(
ψ(D)
2

)
= ψ(D)(ψ(D)− 1), we obtain ψ(D) 6 1+

√
1+4m
2

and the result

follows. Let
−→
M be an oriented matching of size m. We exhibit a k-complete and acyclic

coloring of
−→
M for m = k(k − 1) and k > 1. Let A(

−→
M) = {(xi, yi) : i ∈ {1, . . . , n}} and

Yj :=
{
yi ∈ V (

−→
M) : (j − 1)(k − 1) + 1 6 i 6 j(k − 1)

}
for 1 6 j 6 k. Notice that the

coloring φi : Yj −→ {1, 2, . . . , j − 1, j + 1, . . . , k} that assigns different colors to different
elements of Yj is bijective because Yj has exactly k − 1 elements.

We define φ : V (
−→
M) −→ {1, . . . , k} as φ(xi) = l and φ(yi) = φl(yi) for (l−1)(k−1)+1 6

i 6 l(k−1) and l ∈ {1, . . . , k}. The k-coloring is complete because for any pair of different
colors a and b all the vertices xi for (a−1)(k−1)+1 6 i 6 a(k−1) satisfy that φ(xi) = a
and, by construction, always exists exactly one vertex in Ya of color b. Furthermore, if
m > k(k−1) and m′ = k(k−1), we can repeat some colors used previously on the vertices
{xi, yi} for i ∈ {m′ + 1, . . . ,m} preserving the property of φ.

Finally, it is not difficult to prove that if k =
⌊
1+
√
1+4m
2

⌋
then m > k(k − 1) and we

have a
⌊
1+
√
1+4m
2

⌋
-complete and acyclic coloring of

−→
M . By the upper bound given in this

theorem, we complete the proof.

The following theorems give some results related to the diachromatic number of di-
graphs in terms of their dichromatic number and structural properties.

Theorem 3. For every asymmetric digraph D of order n, dac(D) 6
⌈
n
2

⌉
.

Proof. Since every complete coloring of D has at most one chromatic class of cardinality
1, the result follows.

Since the dichromatic number of a non acyclic digraph is at least 2, we obtain the
following corollary, which is a generalization of a theorem given by Shaoji Xu [25]. It
establishes an upper bound for dac(D) − dc(D) in terms of the order of D. Recall that
N+(v) and N−(v) are the out-neighbourhood and in-neighbourhood of a vertex v of D.

Corollary 4. For every non acyclic digraph D of order n,

dac(D)− dc(D) 6
n− 3

2
.

Let D be a digraph of order n whose n vertices are listed in some specified order.
In a greedy coloring of D, the vertices are successively colored with positive integers
according to an algorithm that assigns to the vertex under consideration the smallest
available color. Hence, if the vertices of D are listed in the order v1, v2, . . . , vn, then the
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resulting greedy coloring ς assigns the color 1 to v1, that is, ς(v1) = 1. If v1 and v2 are
not a 2-cycle, then assign ς(v2) = 1, else ς(v2) = 2. In general suppose that the first j
vertices v1, v2, . . . , vj, where 1 6 j < n, in the sequence have been colored with the colors
1, . . . , t− 1. Let {Ci}t−1i=1 be the set of chromatic classes. Consider the vertex vj+1, if there
exists a chromatic class Ci for which, either N+(vj+1) ∩ Ci = ∅ or N−(vj+1) ∩ Ci = ∅,
then ς(vj+1) = i, else ς(vj+1) = t. When the algorithm ends, the vertices of D have been
assigned colors from the set [k] for some positive integer k. Thus,

dc(D) 6 k 6 dac(D)

and so k is an upper bound for the dichromatic number of D and a lower bound for the
diachromatic number of D.

It is useful to know how the diachromatic number of a digraph can be affected by the
removal of a single vertex.

Theorem 5. For each vertex u in a nontrivial digraph D,

dac(D)− 1 6 dac(D − u) 6 dac(D).

Proof. Let dac(D) = l, and let ς be a complete l-coloring of D where the set of vertices
colored l is U and suppose that u ∈ U . Therefore, the partial l-coloring of ς of D restricted
to D−U is a complete (l−1)-coloring. We can obtain a complete coloring using a greedy
coloration for the remaining vertices x ∈ U −u. Hence, dac(D−u) > l− 1 = dac(D)− 1.

Let dac(D − u) = k, and consider a complete k-coloring of D − u. We can obtain
a complete coloring of D using a greedy coloration for u. Therefore, dac(D) > k =
dac(D − u).

The following result is an immediate consequence of Theorem 5.

Corollary 6. For every induced subdigraph H of a digraph D,

dac(H) 6 dac(D).

Corollary 7. Every digraph D with a vertex partition (X, Y ), such that for every x ∈ X
and y ∈ Y , (x, y) ∈ A(D) has

dac(D) > min{|X|, |Y |}.

Proof. Let X = {x1, . . . , xr} and Y = {y1, . . . , ys}. Suppose that r 6 s and color the
vertices xi and yi with i if i ∈ [r]. The digraph D′ = D[X∪{yi}i6r] is an induced digraph of
D with diachromatic number r. By Corollary 6, dac(D) > dac(D′) = min{|X|, |Y |}.

By Theorem 5, the removal of a single vertex from a digraph D can result in a digraph
whose diachromatic number is either one less than or is the same as the diachromatic
number of D; whereas there exist three possibilities when a single edge is removed.
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Theorem 8. For each arc f = (u, v) in a nonempty digraph D,

dac(D)− 1 6 dac(D − f) 6 dac(D) + 1.

Proof. Let dac(D) = k, then there exists a complete k-coloring of D, where the colors
assigned to u and v are the same or distinct. If u and v have the same color assigned, the
complete k-coloring of D is also a complete k-coloring of D − f . Hence, dac(D − f) >
dac(D) > dac(D)− 1 then dac(D− f) > dac(D)− 1. Assume that u and v have different
colors, say u is colored k − 1 and v is colored k. If the resulting k-coloring of D − f is
not a complete k-coloring, then no directed cycle in D − f is bicolored with the colors k
and k − 1. Hence, every vertex colored k may be recolored k − 1, resulting in a complete
(k − 1)-coloring of D − f . In any case, dac(D − f) > k − 1 = dac(D)− 1.

Let dac(D − f) = l, then there exists a complete l-coloring ς of D − f . Note that
the complete l-coloring of D − f is also a complete coloring of D with l colors. Assume
that any l-coloring of D has a has monochromatic directed cycle, otherwise dac(D) + 1 >
dac(D) > l = dac(D − f). Then, for the induced l-coloring of D by ς, f is an arc of a
monochromatic cycle and then u and v are either assigned the same color, say l.

Case 1) If there is a chromatic class Cj for some j ∈ [l − 1], such that Cj ∪ u (resp.
Cj∪v) induces an acyclic digraph, then by recoloring the vertex u (v resp.) with the color
j, we obtain an acyclic complete coloring with l-colors of D. Then, for each i ∈ [l − 1]
the vertex set Ci ∪ u y Ci ∪ v contains a directed cycle, then recoloring v with the color
l + 1. The resulting coloring is an acyclic complete (l + 1)-coloring of D.

Case 2) If for exactly one of u and v, say u, there is a set of vertices Ui colored i
for each i ∈ [l − 1] such that Ui and u lie on a common directed cycle, therefore, the
induced subdigraph of D by v and the vertices colored j for some j ∈ [l − 1] is acyclic.
By recoloring v with the color j, a complete k-coloring of D is produced.

Case 3) Suppose that the induced subdigraph of D by u and the vertices colored i
for some i ∈ [l − 1] is acyclic and, respectively, for v and the chromatic class j for some
j ∈ [l− 1]. Then by recoloring u by i, a (l− 1)-coloring of D results. If the coloring is not
complete, we can obtain a complete coloring using a greedy coloration for the remaining
vertices x colored l.

In any case, dac(D) > l − 1 = dac(D − f)− 1.

A digraph D is k-minimal (with respect to diachromatic number) if dac(D) = k and
dac(D − f) < k for every arc f of D. By Theorem 8, if D is a k-minimal digraph, then
dac(D − f) = dac(D) − 1. Since k-minimal digraphs have diachromatic number k, the
size of every such graph is at least k(k− 1) and every chromatic class induces an arc-less
digraph, else if f is an arc of an induced subdigraph of a chromatic class, the complete
k-coloring of D is also a complete k-coloring of D − f . Hence, dac(D − f) > dac(D) >
dac(D) − 1, contradicting that D is a k-minimal digraph. The following theorem is a
generalization of a result given by Bhave [7] characterized graphs that are k-minimal in
terms of their size.

Theorem 9. Let D be a digraph with diachromatic number k. Then D is k-minimal if
and only if its size is k(k − 1).
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Proof. Assume first that the size of D is k(k − 1). Then for every arc f of D, the
size of D − f is k(k − 1) − 1. Since the size of D − f is less than k(k − 1), it follows
that dac(D − f) < k = dac(D) and that D is k-minimal. We now verify the converse.
Assume, to the contrary, that there is a k-minimal graph H whose size m is not k(k− 1).
Since dac(H) = k, it follows that m > k(k − 1). Since m 6= k(k − 1), it follows that
m > k(k − 1) + 1. Let φ be a complete k-coloring of H. For every two distinct colors
i, j ∈ [k], there exists an arc such that its vertices are colored i and j. Since there are
only

(
k
2

)
pairs of two distinct colors from the set [k] and two arcs for each pair, there are

two distinct arcs f = (u, v) and f ′ = (u′, v′) such that φ(u) = φ(u′) and φ(v) = φ(v′),
then φ is also a complete k-coloring of H − f , contradicting the assumption that H is
k-minimal.

3 Tournaments

A tournament T of order n is an orientation of the complete graph Kn. An acyclic
tournament T is transitive, the vertex set V (T ) = {v1, . . . , vn} of a transitive tournament
has a unique (acyclic) order (v1, . . . , vn), where N−(v1) = ∅ and N−(vi) = {v1, . . . vi−1}
for 1 < i 6 n.

Let T = (V,A) be a tournament. A transitive subtournament T ′ = (V ′, A′) of T (with
V ′ ⊆ V and A′ ⊆ A) is discordant if for every x ∈ V \ V ′ there is a pair {z, w} ⊆ V ′ such
that {xz, wx} ⊆ A. Let Ξ2(T ) be the minimum order of a discordant subtournament of T .

Lemma 10. Let T be a tournament of order n > 3. Then

Ξ2(T ) 6 2 log2

(2n+ 2

3

)
.

Proof. For every xy ∈ A let C3(xy) be the number of directed triangles of T with xy as
an arc, and TT ∗(xy) be the number of transitive triangles C of T such that x is the source
and y is the sink of C. Let x0y0 ∈ A such that C3(x0y0) + TT ∗(x0y0) is maximum.
Claim 1 C3(x0y0) + TT ∗(x0y0) > n−2

3
.

Let C3(T ) and TT3(T ) be the number of directed triangles and transitive triangles in T ,
respectively. Observe that∑

xy∈A

(C3(xy) + TT ∗(xy)) = 3C3(T ) + TT3(T ) =

(
n

3

)
+ 2C3(T ),

by an average argument there exists zw ∈ A such that

C3(zw) + TT ∗(zw) >

(
n
3

)
+ 2C3(T )(

n
2

) >
n− 2

3
+

2C3(T )(
n
2

)
and the claim follows.

Let B+ = {z ∈ V : {x0z, y0z} ⊆ A} and B− = {z ∈ V : {zx0, zy0} ⊆ A}. By
definition, it follows that |B+|+ |B−| = n− 2− C3(x0y0)− TT ∗(x0y0).
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Let B+
0 = B+ and let z0 ∈ B+

0 be a vertex with maximum in-degree in T [B+
0 ]. For each

i > 1 let B+
i = B+

i−1\N−[zi−1] and zi ∈ B+
i be a vertex with maximum in-degree in T [B+

i ].
Let j be the minimum integer such that B+

j+1 = ∅. Observe that j 6 log2(|B+|+ 1)− 1
and that V ′ = {zj, zj−1, . . . , z0, x0, y0} induces a transitive subtournament of T such that
for every w ∈ V \ (B− ∪ V ′) there is a pair {x, y} ⊆ V ′ such that {xw,wy} ⊆ A.

Let B∗ = {w ∈ B− : {wzj, wzj−1, . . . , wz0, wx0, wy0} ⊆ A}, B−0 = B∗ and w0 ∈ B−0
be a vertex with maximum out-degree in T [B−0 ]. As before, for each i > 1 let B−i =
B−i−1 \ N+[wi−1] and wi ∈ B−i be a vertex with maximum out-degree in T [B−i ]. Let
q be the minimum integer such that B−q+1 = ∅. Observe that q 6 log2(|B∗| + 1) −
1 6 log2(|B−| + 1) − 1 and that V ′ = {zj, zj−1, . . . , z0, x0, y0, w0, w1, . . . , wq} induces a
discordant subtournament of T of order

2 + log2(|B+|+ 1) + log2(|B−|+ 1) = 2 + log2 ((|B+|+ 1)(|B−|+ 1))
= log2 (4(|B+|+ 1)(|B−|+ 1)) .

Since |B+|+ |B−| = n− 2− C3(x0y0)− TT ∗(x0y0) we see that

log2

(
4(|B+|+ 1)(|B−|+ 1)

)
6 log2

(
4

(
n− C3(x0y0)− TT ∗(x0y0)

2

)2
)

= 2 log2 (n− C3(x0y0)− TT ∗(x0y0)) .
From here, and by Claim 1, the result follows.

Theorem 11. Let T be a tournament of order n > 3. Hence,

n

2 log2(
2n+2

3
)
6 dac(T ) 6

⌈n
2

⌉
.

Proof. Given any complete vertex coloring Γ of T , it follows that there is no pair of colors
i, j such that |Γ−1(i)| = |Γ−1(j)| = 1, otherwise either there is no Γ−1(i)Γ−1(j)-arc or there
is no Γ−1(j)Γ(i)−1-arc. Thus, except for at most one color, every color appears at least
twice in V . Therefore, dac(T ) 6 dn

2
e. For the lower bound, let {V1, . . . , Vk} be a partition

of V such that, for every i ∈ [k−1], T [Vi] is a discordant subtournament of T [V \
⋃

j∈[i−1]
Vj],

and k is maximum. Let Γ : V → [k] be the vertex coloring of T such that Γ(x) = j if
and only if x ∈ Vj. On the one hand, for every pair i, j ∈ [k], if i < j, since T [Vi] is a
discordant subtournament of T [V \

⋃
j∈[i−1]

Vj], it follows that in T there are ViVj-arcs and

VjVi-arcs, and therefore Γ is a complete coloring of T . On the other hand, by Lemma 10,
there is a partition {V ′1 , . . . , V ′k′} of V such that for every i ∈ [k′−1], T [V ′i ] is a discordant

subtournament of T [V \
i−1⋃
j=1

V ′j ], with |V ′i | 6 2 log2

2

(
n−

∑
j∈[i−1]

|V ′j |
)
+2

3

 6 2 log2

(
2n+2

3

)
,

and |V ′k′ | 6 2. Since 2 6 2 log2

(
2n+2

3

)
,

dac(T ) > k > k′ >
n

2 log2(
2n+2

3
)

and the result follows.
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Let Z2m+1 be the cyclic group of integers modulo 2m+ 1 (m > 1) and J a nonempty
subset of Z2m+1 \ {0} such that |{−j, j} ∩ J | = 1 for every j ∈ J . The circulant tour-

nament
−→
C 2m+1(J) has vertex-set V (

−→
C 2m+1(J)) = Z2m+1 and arc-set A(

−→
C 2m+1(J)) =

{(i, j) : i, j ∈ Z2m+1, |J | = m and j − i ∈ J}.

Corollary 12. Let T be a circulant tournament or a transitive tournament of order n.
Then

dac(T ) = ψ(T ) = dn/2e .

Proof. Let
−→
C n(J) be a circulant tournament, with n = 2m + 1, the coloring ς(0) = 0

and ς(i) = ς(2m+ 1− i) = i for i ∈ [m] defines a complete m + 1-coloring of
−→
C 2m+1(J)

and m + 1 = d(2m+ 1)/2e = dn/2e. For a transitive tournament T of order n with
the acyclic order of its vertex set (v1, v2, . . . , vn), the coloring ς(vi) = ς(vn+1−i) = i for
i ∈ {1, . . . ,

⌈
n
2

⌉
} defines a complete

⌈
n
2

⌉
-coloring of T . The upper bound in Theorem 11

completes the proof.

Corollary 13. If T is a tournament of order n, then n/2 6 dc(T )dac(T ).

Proof. Let ς be a dc(T )-coloring and x the order of the largest chromatic class i, therefore,
n 6 xdc(T ). By Corollaries 6 and 12, we obtain x

2
6 dac(T ) because the subdigraph

induced by ς−1(i) is a transitive tournament.

Recall that a digraph is strongly connected if for every pair of vertices u and v there
exist a directed u − v walk. The strongly connected components of a digraph D form
a partition ∼ into subdigraphs that are themselves strongly connected. Such partition
induces the digraph D̃ := D/ ∼.

Theorem 14. [9] If T is a tournament with (exactly) k strongly connected components,
then T̃ is the transitive tournament of order k.

Corollary 15. If T is a tournament with (exactly) k strongly connected components, then
dk/2e 6 dac(T ).

Proposition 16. Every digraph D that admits two vertex disjoint transitive tournaments
Tr of order r and Ts of order s has dac(D) > min{r, s}+ b s−r

2
c.

Proof. Let V (Tr) = {x1, . . . , xr} and V (Ts) = {y1, . . . , ys}. Suppose that r 6 s and let
k = b s−r

2
c. Color the vertices xi and yk+r+1−i with i if i ∈ {1, . . . , r}, color the vertices

{yk+i, yk+r+1−i} with i if i ∈ {r + 1, . . . , r + k} and color the remaining vertices using a
greedy coloration. The coloring is complete since for the pair of distinct colors (i, j), with
i, j 6 r, there are at least an arc (xi, xj) or (yi, yj) such that xi or yi has the color i and
xj or yj has the color j; and for each integer j, with r < j 6 r + k and i < j there are
at least the arcs (yi′ , yk+j) and (yk+r+1−j, yi′) such that yi′ has the color i and the vertices
yk+j and yk+r+1−j have the color j.

Theorem 17. If T is a tournament of order n, then
√
n− 1/2 6 dac(T ).
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Proof. Let ς be a dac(T )-coloring and let x be the order of the largest chromatic class
i. Since the subdigraph induced by ς−1(i) is a transitive tournament, by Corollary 12 we
obtain x

2
6 dac(T ), and −x > −2dac(T ). By Proposition 16, dac(T ) > y where y is the

order of the second largest chromatic class j. Since y > n−x
dac(T )−1 , we obtain

dac(T )(dac(T )− 1) > n− x > n− 2dac(T ).

Finally, we solve dac(T )2 + dac(T ) − n > 0 obtaining dac(T ) >
√
1+4n−1

2
and the result

follows.

Let F be a digraph. The digraph D is F -free if D has no subdigraph isomorphic to
F . A tournament F is a hero if and only if there exists c > 0 such that every F -free
tournament D has a transitive subset of cardinality at least c|V (D)|, see [6]. Let us say
a tournament F is a hero, if there exists c′ (depending on F ) such that every F -free
tournament has dichromatic number at most c′.

Corollary 18. If T is a hero then dac(T ) ∈ θ(n).

In the following sections, we generalize some results on graphs, given in Chapter 12
of [10], for digraphs; in Section 4, we define the concept of dihomorphisms and show that
the interpolation property does hold for complete acyclic colorings; and in Section 5, we
establish the Nordhaus-Gaddum relations.

4 The interpolation theorem

Recall that two vertices are adjacent if they are the vertices of a 2-cycle. An elementary
dihomomorphism of a digraph D is obtained by identifying two nonadjacent vertices u
and v of D. The vertex obtained by identifying u and v may be denoted by either u
or v. Thus the resulting dihomomorphic image D′ can be considered to have vertex set
V (D) \ {u} and arc set

A(D′) = {(x, y) : (x, y) ∈ A(D), x, y ∈ V (D) \ {u}}
∪ {(v, x) : (u, x) ∈ A(D), x ∈ V (D) \ {u, v}}
∪ {(x, v) : (x, u) ∈ A(D), x ∈ V (D) \ {u, v}}.

Alternatively, the mapping ε : V (D)→ V (D′) defined by

ε(x) =

{
x if x ∈ V (D) \ {u, v};
v if x ∈ {u, v};

is an elementary dihomomorphism from D to D′. The dihomomorphic image ε(D) of
a digraph D obtained from an elementary dihomomorphism ε is also referred to as an
elementary dihomomorphic image. Not only is D′ a dihomomorphic image of D, a digraph
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F is a dihomomorphic image of a digraph D if and only if F can be obtained by a sequence
of elementary dihomomorphisms beginning with D.

The fact that each dihomomorphic image of a digraph D can be obtained from D by a
sequence of elementary dihomomorphisms tells us that we can obtain each dihomomorphic
image of D by an appropriate partition

P = {V1, V2, . . . , Vk}

of V (D) into acyclic sets such that V (F ) = {v1, v2, . . . , vk}, where vi is adjacent to vj if
and only if some vertices u and u′ in Vi and some vertices v and v′ in Vj are arcs (u, v)
and (v′, u) of D. The partition P of V (D) then corresponds to the coloring ς of D in
which each vertex in Vi is assigned the color i (1 6 i 6 k). In particular, if the coloring ς
is a complete k-coloring, then F is the complete symmetric digraph of order k.

Therefore, if a digraph F is a dihomomorphic image of a digraph D, then there is
a dihomomorphism φ from D to F and for each vertex v in F , the set φ−1(v) of those
vertices of D having v as their image is acyclic in D. Consequently, each coloring of F
gives rise to a coloring of D by assigning to each vertex of D in φ−1(v) the color that is
assigned to v in F . For this reason, the digraph D is said to be F -colorable. This provides
us the following remark:

Remark 19. If F is a dihomomorphic image of a digraph D, then

dc(D) 6 dc(F ).

Theorem 20. Let ε be an elementary dihomomorphism of a digraph D, then

dc(D) 6 dc(ε(D)) 6 dc(D) + 1.

Moreover, dc(ε(D)) = dc(D) if and only if there exists a dc(D)-coloring of D in which
the identified vertex shares the color.

Proof. Suppose that ε identifies the nonadjacent vertices u and v of D. We have already
noted the inequality dc(D) 6 dc(ε(D)). Let dc(D) = k and consider a k-coloring ς of D.
Define a coloring ς ′ of ε(D) by

ς ′(x) =

{
ς(x) if x ∈ V (D) \ {u, v};
k + 1 if x ∈ {u, v}.

Since ς ′ is a (k + 1)-coloring of ε(D),

dc(ε(D)) 6 k + 1 = dc(D) + 1.

Clearly, if there exists a dc(D)-coloring of D in which u and v are assigned the same
color, we have that:

ς ′(x) =

{
ς(x) if x ∈ V (D) \ {u, v};
ς(u) = ς(v) if x ∈ {u, v};

Conversely, if dc(ε(D)) = dc(D) = k. Let ς ′ be a k-coloring of ε(D), then the coloring of
D that assigns to ε−1(x) the color of x is a coloring with the required property.
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Beginning with a noncomplete digraph D, we can always perform a sequence of elemen-
tary dihomomorphisms until arriving at some complete graph. As we saw, a complete
graph Kk obtained in this manner corresponds to a complete k-coloring of D. Conse-
quently, we have the following.

Corollary 21. The largest order of a complete graph that is a dihomomorphic image of
a digraph D is the diachromatic number of D.

The following theorem is a generalization of The Homomorphism Interpolation The-
orem due to Harary, Hedetniemi, and Prins [14] and is an immediate consequence of
Theorem 20 (see also [10]).

Theorem 22. Let D be a digraph. For every integer l with dc(D) 6 l 6 dac(D) there is
a dihomomorphic image F of D with dc(F ) = l.

Proof. The theorem is certainly true if l = dc(D) or l = dac(D). Hence, we may assume
that dc(D) < l < dac(D). Suppose that dac(D) = k. Then there is a sequence

D = D0, D1, . . . , Dt = Kk

of digraphs where Di = εi(Di−1) for some elementary dihomomorphism εi of Di−1 for
i ∈ {1, . . . , t}. Since dc(D0) < l < dc(Dt) = k, there exists a largest integer j with
j ∈ {0, . . . , t− 1} such that dc(Dj) < l. Hence, dc(Dj+1) > l. By Theorem 20,

dc(Dj+1) 6 dc(Dj) + 1 < l + 1.

Hence, dc(Dj+1) = l.

The Dihomomorphism Interpolation Theorem can be rephrased in terms of complete
colorings, namely:

For a digraph D and an integer l, there exists a complete l-coloring of D if and only
if dc(D) 6 l 6 dac(D).

We bound the diachromatic number of an elementary dihomomorphism of a digraph
D in terms of dac(D).

Theorem 23. If ε is an elementary dihomomorphism of a digraph D, then

dac(D)− 2 6 dac(ε(D)) 6 dac(D).

Moreover, for every noncomplete digraph D, there is an elementary dihomomorphism ε
of D such that dac(ε(D)) = dac(D).

Proof. Let ε be an elementary dihomomorphism of a digraph D that identifies the two
nonadjacent vertices u and v and let the vertex in ε(D) obtained by identifying u and v be
denoted by v. Let dac(ε(D)) = k and consider a complete k-coloring ς of ε(D). Assigning
the vertices u and v in D the color ς(v) in ε(D) produces a complete k-coloring of D, and
dac(D) > k = dac(ε(D)).
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Let dac(D) = l. Then dac(D− u− v) > l− 2 by Theorem 5. Furthermore, D− u− v
is an induced subgraph of ε(D). By Corollary 6, dac(ε(D)) > dac(D − u − v) > l − 2.
Hence, dac(ε(D)) > dac(D)− 2.

For every noncomplete digraph D, there is an elementary dihomomorphism ε of D
such that dac(ε(D)) = dac(D).

Suppose that dac(D) = k. Hence, there exists a sequence

D = D0, D1, . . . , Dt = Kk

of digraphs, where εi(Di−1) = Di for an elementary dihomomorphism εi of Di−1 (1 6 i 6
t). Thus,

k = dac(Dt) 6 dac(Dt−1) 6 . . . 6 dac(D1) 6 dac(D) = k.

Therefore, dac(Di) = k for all i ∈ [t] and the result follows.

5 Nordhaus-Gaddum relations

The Nordhaus-Gaddum Theorems [13, 23] state

χ(G) + χ(Gc) 6 α(G) + χ(Gc) 6 n+ 1

χ(G)χ(Gc) 6 α(G)χ(Gc) 6

(
n+ 1

2

)2

for every graph G of order n and α(G) is its achromatic number. For digraphs, we have
the following results:

We have seen that for every digraph D of order n (see Equation 1),

dc(D) 6 dac(D) 6 n.

With the aid of Theorem 20, we show that dac(D) can never be closer to n than to dc(D).

Theorem 24. For every digraph D of order n,

dac(D) 6
dc(D) + n

2
.

Proof. Let dac(D) = k. Then there is a sequence D = D0, D1, . . . , Dt = Kk of graphs
where Di = εi(Di−1) for 1 6 i 6 t = n − k (since t + k = n) and an elementary
dihomomorphism εi of Di−1. By Theorem 20, dc(εi(Di−1)) 6 dc(Di−1)+1 and so dc(Di) 6
dc(Di−1) + 1 for 1 6 i 6 t. Therefore,

t∑
i=1

dc(Di) 6
t∑
i=1

(dc(Di−1) + 1)

and so k 6 dc(D) + t = dc(D) + (n − k). Hence, 2k = 2dac(D) 6 dc(D) + n and the
result follows.
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The following result is the analogue of Theorem 20 for complementary graphs.

Theorem 25. If ε is an elementary dihomomorphism of a digraph D, then

dc(Dc)− 1 6 dc(ε(D)c) 6 dc(Dc) + 1.

Proof. We first show that dc(Dc)− 1 6 dc(ε(D)c). Let dc((ε(D))c) = k for some elemen-
tary dihomomorphism ε of D that identifies two nonadjacent vertices u and v in D, where
the vertex in ε(D) obtained by identifying u and v is denoted by v. Let there be given
a k-coloring of ε(D)c. We may assume that the vertex v in ε(D) is assigned the color k.
Remember that, if v and a vertex w in ε(D)c lie on a (directed) common cycle, w has a
different color to k. Assign to each vertex in Dc distinct from u the same color assigned
to that vertex in ε(D)c and assign u the color k + 1. Since no vertex in Dc on a common
cycle with v is assigned the color k, this produces a (k + 1)-coloring of D and so

dc(Dc) 6 k + 1 = dc(ε(D)c) + 1.

Therefore, dc(Dc)− 1 6 dc(ε(D)c).
Next, we show that dc(ε(D)c) 6 dc(Dc) + 1. Let dc(Dc) = k and consider a k-coloring

ς of Dc. Define a coloring ς ′ of ε(D)c by

ς ′(x) =

{
ς(x) if x ∈ V (D) \ {u, v};
k + 1 if x ∈ {u, v}.

Since ς ′ is a (k + 1)-coloring of ε(D)c,

dc(ε(D)c) 6 k + 1 = dc(Dc) + 1.

Theorem 26. ( Nordhaus-Gaddum relations) If D is a digraph of order n, then

dc(D) + dc(Dc) 6

⌈
4n

3

⌉
and dc(D)dc(Dc) 6

(
2n+ 1

3

)2

, (2)

dac(D) + dac(Dc) 6

⌈
3n

2

⌉
and dac(D)dac(Dc) 6

(
3n+ 1

4

)2

. (3)

Proof. Let dac(D) = k. Then there exists a sequence

D = D0, D1, . . . , Dt = Kk

of graphs, where Di = εi(Di−1) for an elementary dihomomorphism εi of Di−1 (i ∈ [t]).
Then t = n− k. By Theorem 25, dc(Dc

i−1) 6 dc(εi(Di−1)
c) + 1 6 dc(Dc

i ) + 2. Thus,

t∑
i=1

dc(Dc
i−1) 6

t∑
i=1

(dc(Dc
i ) + 2)

the electronic journal of combinatorics 25(3) (2018), #P3.51 14



and so dc(Dc) 6 dc(Dc
t )+2t = dc(Kc

k)+2(n−k). Hence, 2k+dc(Dc) = 2dac(D)+dc(Dc) 6
2n+ 1.

On one hand, since dc(D) 6 dac(D), it follows that dc(D) + dc(Dc) 6
⌊
4n+2

3

⌋
=
⌈
4n
3

⌉
and the geometric mean of two positive real numbers never exceeds their arithmetic mean

dc(D)dc(Dc) 6
(
2n+1

3

)2
.

On the other hand, since 2dac(Dc) 6 dc(Dc) + n by Theorem 24, it follows that

dac(D) + dac(Dc) 6
⌊
3n+1

2

⌋
=
⌈
3n
2

⌉
and then dac(D)dac(Dc) 6

(
3n+1

4

)2
, completing the

proof.

6 Conclusions and Future work

As we state in the introduction, the diachromatic number generalizes the achromatic
number and as it turned out, several classic results for the achromatic number are extended
to results for the diachromatic number. To future work we propose to extend other known
results to the diachromatic number as well as to study proper results for digraphs, and
study the diachromatic number in fixed families of digraphs or oriented graphs. For
instance, inspired in the definition of the dichromatic number of a graph, the diachromatic
number of a graph can be defined as the minimum diachromatic number over all possible
orientations of the graph. On the other hand, we also propose study the diGrundy number,
defined as the the maximum positive integer k for which a digraph D has a greedy k-
coloring, extending the results of undirected graphs to directed and oriented graphs and
find this parameter for some families of digraphs. Also, we wish to improve the Nordhaus-
Gaddum bounds or to find an infinite family of graphs to establish the sharpness of such
bound.
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