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Abstract

We disprove the following conjecture due to Vı́ctor Neumann-Lara: for every pair
(r, s) of integers such that r > s > 2, there is an infinite set of circulant tournaments
T such that the dichromatic number and the cyclic triangle free disconnection of T
are equal to r and s, respectively. Let Fr,s denote the set of circulant tournaments T
with dc(T ) = r and −→ω 3 (T ) = s. We show that for every integer s > 4 there exists a
lower bound b(s) for the dichromatic number r such that Fr,s = ∅ for every r < b(s).
We construct an infinite set of circulant tournaments T such that dc(T ) = b(s) and
−→ω 3(T ) = s and give an upper bound B(s) for the dichromatic number r such that
for every r > B(s) there exists an infinite set Fr,s of circulant tournaments. Some
infinite sets Fr,s of circulant tournaments are given for b(s) < r < B(s).

Keywords: Circulant tournaments; dichromatic number; acyclic disconnection

1 Introduction

The dichromatic number and the acyclic (respectively, cyclic triangle free) disconnection
were introduced as measures of the complexity of the cyclic structure of digraphs. A large
value of the dichromatic number and, oppositely, a small value of the acyclic disconnection
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express a more complex cyclic structure of a given digraph. Among other papers, see
[1, 5, 7, 8, 11, 12, 13, 14, 15] for old and recent results on the study of these parameters
as well as open problems. Many variations of colorings of digraphs have been extensively
studied as the oriented chromatic number and the oriented game chromatic number. See
for example [10] and [18].

We define the dichromatic number of a digraph D, denoted by dc(D), as the minimum
number of colors in a coloring of the vertices of D such that each chromatic class induces
an acyclic subdigraph of D (that is, a subdigraph containing no directed cycles). In this
terminology, the notion was introduced by V. Neumann-Lara in [12]. Even before, the
dichromatic number for graphs and digraphs is defined by P. Erdős in [4] (pp. 16–20)
reporting some results obtained in a joint work with V. Neumann-Lara. In this earlier
paper, article [12] is mentioned to be in preparation.

On the other hand, the acyclic (respectively, cyclic triangle free or briefly, the
−→
C 3-free)

disconnection of a digraph D, denoted by −→ω (D) (respectively, −→ω 3(D)), is defined to be
the maximum number of colors in a coloring of the vertices of D such that no directed
cycle is properly colored (respectively, no directed 3-cycle is 3-colored). We recall that in
a proper coloring of the vertices of a digraph D, consecutive vertices of a directed cycle
receive different colors. A digraph D (in particular, a tournament T ) is said to be tight if
−→ω 3(D) = 2 (respectively, −→ω 3(T ) = 2). These definitions first appeared in [13].

In 1999, V. Neumann-Lara posed the following

Conjecture 1 ([13], Conjecture 5.8). For every pair (r, s) of integers such that r > s > 2,
there is an infinite set of regular (circulant) tournaments T such that dc(T ) = r and
−→ω 3(T ) = s (respectively, −→ω (T ) = s).

Let T be a regular tournament. We define

Fr,s = {T : dc(T ) = r,−→ω 3 (T ) = s} and

F̃r,s = {T : dc(T ) = r,−→ω (T ) = s}.

The following theorem will be useful to simplify the proofs.

Theorem 2 ([6], Theorem 19 and Corollary 22). Every prime circulant tournament T is
tight. Moreover, −→ω 3(T ) = −→ω (T ) for every circulant tournament T .

In this paper, we only deal with circulant tournaments. We notice that in virtue
of Theorem 2, it suffices to consider −→ω 3(T ) for every circulant tournament T . If some
statement is valid for −→ω 3(T ) or for a family of type Fr,s, it holds for −→ω (T ) or for a family

of type F̃r,s.
In [8], the authors positively answer the conjecture for the special case when r = 3 and

s = 2 giving an infinite family of 3-dichromatic tight regular not circulant tournaments.
However, in this paper the conjecture is disproved in general. We show that for every
integer s > 4 there exists a lower bound b(s) for the dichromatic number r such that
Fr,s = ∅ for every r < b(s). We construct an infinite set of circulant tournaments T such
that dc(T ) = b(s) and −→ω 3(T ) = s. All this is summarized in the main theorem of this
paper (see the proof in Section 4).
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Theorem 3. Let T be a circulant tournament such that dc(T ) = r and −→ω 3(T ) = s
(2 6 s 6 r). Let b (s) = Ds−1, where Ds =

⌈
3
2
Ds−1

⌉
(s > 2 and D1 = 2). Then

r > b(s) =

⌈
3

2
Ds−2

⌉
=

⌊
K

(
3

2

)s−1
⌋
,

where K ≈ 1.62227 is an irrational number. Moreover,
{−→
C s−2

3 [α] , α ∈ F2,2

}
is an infinite

set of r-dichromatic circulant tournaments such that −→ω 3

(−→
C s−2

3 [α]
)

= s and r = b(s).

We give an upper bound B(s) for the dichromatic number r such that for every
r > B(s) there exists an infinite set Fr,s of circulant tournaments (see Proposition 23).
Some infinite sets Fr,s of circulant tournaments are given for b(s) < r < B(s). The
construction of the remaining cases in this interval is an open problem since the tools
used in the paper do not apply for them.

Our proofs are strongly based on the techniques developed in [14]. For the usual
terminology on digraphs and tournaments used in the paper, see [2, 3, 17].

An extended abstract of some parts of this work, with no proofs, appeared in [9].

2 Preliminaries

Let D = (V,A) be a digraph. For any v ∈ V (D) we denote by N+(v) or N+(v,D) and
N−(v) or N−(v,D) the out- and in-neighborhood of v in D, respectively. A digraph D is
said to be acyclic if D contains no directed cycles. A subset S ⊆ V (D) is acyclic if the
induced subdigraph D〈S〉 of D by the set S is acyclic. The maximum cardinality of an
acyclic set of vertices of D is denoted by β(D).

An r-coloring ϕ : V (D) → {1, 2, . . . , r} of a digraph D is a surjective function. A
subdigraph D′ of D is heterochromatic or rainbow if every pair of vertices of D′ receive
different colors under ϕ. A subdigraph D′ of D is properly colored if every pair of adjacent
vertices of D′ receive different colors under ϕ. A subset S of vertices of D that receive the
same color under ϕ is called a chromatic class and it is a singleton if |S| = 1. We say that

a r-coloring ϕ of a digraph D is
−→
C 3-free (respectively,

−→
C -free) if D contains no rainbow

cyclic triangles (respectively, no properly colored directed cycles).
Let D and F be digraphs and {Fv}v∈V (D) a family of mutually disjoint isomorphic

copies of F . The composition (or lexicographic product D ◦ F ) D[F ] of the digraphs D
and F is defined by V (D[F ]) =

⋃
v∈V (D) V (Fv) and

A(D[F ]) =
[ ⋃
v∈V (D)

A(Fv)
]
∪
{

(i, j) : i ∈ V (Fv), j ∈ V (Fw) and (v, w) ∈ A(D)
}
.

It is easy to prove (and left to the reader) that the composition of digraphs is an
associative but not a commutative operation.

Let Z2m+1 be the cyclic group of integers modulo 2m+ 1 (m > 1) and J a nonempty
subset of Z2m+1 \ {0} such that |{−j, j} ∩ J | = 1 for every j ∈ Z2m+1 \ {0} (and therefore
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|J | = m). A circulant (or rotational) tournament
−→
C 2m+1(J) is defined by V (

−→
C 2m+1(J)) =

Z2m+1 and

A(
−→
C 2m+1(J)) = {(i, j) : i, j ∈ Z2m+1 and j − i ∈ J} .

Recall that the circulant tournaments are regular and their automorphism groups are

vertex–transitive. Let [m] = {1, 2, . . . ,m}. We denote by
−→
C 2m+1 〈∅〉 and

−→
C 2m+1 〈j〉 the

circulant tournaments
−→
C 2m+1(J) where J = [m] and J = ([m]�{j})∪{−j}, respectively.

Observe that
−→
C 3 =

−→
C 3 〈∅〉. Moreover,

−→
C 3 ∈ F2,2.

Proposition 4 ([13], Proposition 3.3). The composition of two circulant tournaments is
a circulant tournament.

The above proposition holds for circulant digraphs in general. A (circulant) tour-
nament T is prime (or simple) if it is not isomorphic to a composition of (circulant)
tournaments.

Proposition 5 ([15], Theorem 1). Let m ∈ N. Then dc(
−→
C 2m+1 〈∅〉) = 2.

Proposition 6 ([13], Proposition 4.4(i), Theorem 4.11). Let m ∈ N.

(i) −→ω 3(
−→
C 2m+1 〈∅〉) = −→ω (

−→
C 2m+1 〈∅〉) = 2.

(ii) −→ω 3(
−→
C 2m+1 〈m− 1〉) = −→ω (

−→
C 2m+1 〈m− 1〉) = 2.

We use the following definition taken from [13]. A digraph D will be said to be −→ω -
keen (respectively, −→ω 3-keen) if there is an optimal coloring ϕ of V (D) (that is, it uses
the maximum number of colors), with no properly colored directed cycles (respectively,

with no 3-colored
−→
C 3) of D, having exactly one singleton chromatic class. Notice that no

optimal coloring ϕ of V (D) leaves more than one such a class.

Lemma 7 ([6], Theorems 17,18). Every circulant tournament is −→ω 3-keen (respectively,
−→ω -keen).

This lemma was an important tool to prove Theorem 2 in [6]. It will be later used in
other proofs of the paper.

3 Infinite sets of r-dichromatic circulant tournaments for every
r > 2 and s = 2

This section is devoted to the construction of infinite families of circulant tournaments T
such that dc(T ) = r and −→ω 3(T ) = 2 (that is, tight circulant tournaments), where r > 2.

Let
−→
C n(p+1)+1 (J) be the set of circulant tournaments defined in [1], where

J = {1, 2, . . . , p} ∪ {p+ 2, p+ 3, . . . , 2p− t} ∪
{2p+ 3, . . . , 3p− 2t} ∪ . . . ∪ {(n− 1) p+ n}

=
n−1⋃
i=0

{
ip+ (i+ 1), . . . , ip+ p− it

}
the electronic journal of combinatorics 24(4) (2017), #P4.5 4



◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 4
◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 4 · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 4 · · · · · ·
◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ • • • • • 4 · · · · · · · · ·
• • • • • • • ◦ • • 4 · · · · · · · · · · · ·
• • • • ◦ ◦ ◦ 4 · · · · · · · · · · · · · · ·
• ◦ ◦ ◦ 4 · · · · · · · · · · · · · · · · · ·
◦ 4 · · · · · · · · · · · · · · · · · · · · ·

Figure 1: The tournament H22,2 and the out-neighborhood of mij = m4,8.

and p = (n− 1) (t+ 1) + 1, n > 2, t > 0.
To understand the structure of these tournaments it is convenient to establish a one

to one correspondence between the out-neighborhood of a vertex and the following subset
Hp,t of entries mij in a Mn×(p+1) matrix:

Hp,t =
{
mij ∈Mn×(p+1) : (i− 1) (t+ 1) + j 6 p

}
.

Let v ∈ V (
−→
C n(p+1)+1 (J)), and i, j ∈ N such that v = (p+ 1) (i− 1) + j, with 1 6

i 6 n and 1 6 j 6 p. The function ψ : N+(v) → Hp,t defined by ψ (w) = mij is

clearly a bijection. Since
−→
C n(p+1)+1 (J) is vertex-transitive, we have that J = N+(0). Let

Hp,t be the induced subtournament by N+(0) in
−→
C n(p+1)+1 (J). Notice that the induced

subtournament by N+(v) is isomorphic to Hp,t for every v ∈ V (
−→
C n(p+1)+1 (J)).

We define the out-neighborhood of each vertex mij ∈ Hp,t as the union of three disjoint
sets of vertices in Hp,t, specifically N+ (mij,Hp,t) = Aij ∪Bij ∪ Cij, where

Aij = {mkl ∈Mn×(p+1) : (k − 1)(s+ 1) + l − j 6 (i− 2)(s+ 1),
k > 1, l > j},

Bij = {mkl ∈Mn×(p+1) : (k − i)(s+ 1) + l − j − 1 < (n− i)(s+ 1)− j + r,
k > i, l > j + 1},

Cij = {mkl ∈Mn×(p+1) : (k − i− 1)(s+ 1) + l − 1 6 j − 2,
k > i+ 1, l > 1}.

By Lemma 1 of [1], the subtournaments induced by Aij, Bij and Cij are the vertex-
disjoint tournaments H1+(i−2)(t+1),t, Hp−(i−1)(t+1)−j,t and Hj−1,t, respectively. In Figure 1,
the entry m4,8 is the point ∗, the vertices in the out-neighborhood of ∗ in H22,2 are the •
points partitioned into the sets A4,8, B4,8 and C4,8 (the triangles that appear at the top, to
the right and to the left of ∗, respectively). Notice that the vertices in the in-neighborhood
of ∗ in H22,2 are the ◦ points and the · and 4 points are not vertices of H22,2.

Lemma 8 ([1], Theorem 5). dc
(−→
C n(p+1)+1 (J)

)
= n+ 1.

Theorem 9.
−→
C n(p+1)+1 (J) is tight (that is, −→ω 3(

−→
C n(p+1)+1 (J)) = 2).
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Proof. Let T ∼=
−→
C n(p+1)+1 (J). For a contradiction, suppose that T is not tight, that

is, there exists a
−→
C 3-free 3-coloring ϕ : V (T ) → {blue, green, red} of T . By Lemma 7,

T is −→ω 3-keen and therefore there is exactly one singleton chromatic class. Since T is
vertex-transitive, we may assume that ϕ (0) = blue, and 0 is the only vertex of color blue.
Suppose that ϕ (1) = green (ϕ(m11) = green in matrix notation). Since (0, 1, i) is a cyclic
triangle for every i ∈ {kp− (k − 1) t+ 1 : 1 6 k 6 n} (these cyclic triangles correspond

to (0,m11,4) in the matrix Mn×(p+1)) and ϕ is
−→
C 3-free, then ϕ (i) = green. Let us define

Nk = {(k − 1) p+ k, (k − 1) p+ k + 1, . . . , kp− (k − 1) t}

for 1 6 k 6 n (Nk can be viewed as the set of elements ◦ and • of the k-th row of the ma-
trix Mn×(p+1)). Observe that (0, j, kp− (k − 1) t+ 1) (respectively, (0, ◦,4) or (0, •,4))

is a cyclic triangle for every j ∈ Nk. Using again that ϕ is
−→
C 3-free, we have that

ϕ (j) = green for every j ∈ Nk. Therefore N+ (0) is monochromatic. Observe that
kp − (k − 1) t + 1 ∈ N− (0) (elements of type kp − (k − 1) t + 1 correspond to 4 in the
matrix) and ϕ (kp− (k − 1) t+ 1) = green. Analogously, we can conclude that N− (0) is
monochromatic. We have only used two colors, so ϕ is not surjective, a contradiction to
the initial assumption.

Observe that −→ω (
−→
C n(p+1)+1 (J)) = 2 by Theorem 2.

Corollary 10. For every r > 2 there exists an infinite set Fr,2 of tight r-dichromatic
circulant tournaments.

Proof. By Propositions 5 and 6(i), the infinite set F2,2 =
{−→
C 2n+1 〈∅〉 : n ∈ N

}
is the

desired set for r = 2. By Lemma 8 and Theorem 9, for every r > 3 the infinite set

Fr+1,2 =
{−→
C r(p+1)+1 (J) : p = (r − 1) (t+ 1) + 1, t > 0

}
provides the remaining cases.

4 Infinite sets for s > 3

Let H = (V,E) a finite hypergraph. A hypergraph H is t-uniform (or simply, a t-graph)
if every edge of H has cardinality t. A hypergraph H is called circulant if it has an
automorphism which is a cyclic permutation of V (H). If t 6 m, the circulant t-graph
Λm,t is defined by V (Λm,t) = Zm and E (Λm,t) = {αj : j ∈ Zm} where

αj = {j, j + 1, . . . , j + t− 1}

for j ∈ Zm.
We denote by β(T ) the maximum cardinality of an acyclic set of vertices of a tour-

nament T . In [12] (see Theorem 8), it was proved that dc (T [U ]) > dc (T ) + dc (U) − 1.
Using this result as well as Propositions 32(iii) and 34 and Corollary 43 of [14], it is not
hard to establish the following proposition that will be useful in the proof of Theorem 3.
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Proposition 11. Let T and U be circulant tournaments such that T has order 2m + 1
and U is an r-dichromatic tournament. Then

dc (T [U ]) >

⌈
r (2m+ 1)

m+ 1

⌉
.

Moreover, if β (T ) = t and T contains an isomorphic copy of a t-graph Λ2m+1,t (where
V (Λ2m+1,t) = Z2m+1, E (Λ2m+1,t) = {αj : j ∈ Z2m+1}, αj = {j, j + 1, . . . , j + t− 1} and
sums are taken modulo 2m+ 1), then

dc (T [U ]) =

⌈
r (2m+ 1)

t

⌉
.

Proposition 12 ([13], Proposition 3.6(i)). Let T be a −→ω 3-keen (respectively, −→ω -keen)
tournament and U an arbitrary tournament. Then

−→ω 3 (T [U ]) = −→ω 3 (T ) +−→ω 3 (U)− 1

(−→ω (T [U ]) = −→ω (T ) +−→ω (U)− 1).

Proposition 13 ([16], Corollary 1). Consider the recurrence relation Dn =
⌈
3
2
Dn−1

⌉
(n > 1 and D0 = 1), then

Dn =

⌊
K

(
3

2

)n⌋
(n = 1, 2, . . .) ,

where K ≈ 1.62227 is an irrational number.

The previous recurrence relation appears in the solution of the legendary Josephus
Flavius problem. It is the classical case when n Jews formed in a circle decide to kill
every third remaining person until no one is left (the last survivor must commit suicide).
In the story, there were 40 Jewish soldiers trapped in a cave by the Roman army who
chose suicide rather than be captured. For more details about the mathematical problem
see [16].

The following proposition is a consequence of Theorem 2.

Proposition 14. Let T be a circulant tournament with −→ω 3 (T ) = s > 3. There exist
s− 1 tight circulant tournaments T1, T2, . . . , Ts−1 such that T ∼= T1 [T2 [. . . [Ts−1]]].

Proof. We proceed by induction on s. If s = 3, then by Theorem 2, T is a composition of
two circulant tournaments T1 and T2, that is, T ∼= T1[T2]. Observe that if −→ω 3(T1) = s1 > 2
and −→ω 3(T2) = s2 > 2, then

−→ω 3(T1[T2]) = s1 + s2 − 1 = 3,

s1 = s2 = 2 and both T1 and T2 are tight circulant tournaments.
Suppose that the claim is valid for every 3 6 −→ω 3(T ) = s′ < s. By the induction

hypothesis, there exist s′ − 1 tight circulant tournaments T1, T2, . . . , Ts′−1 such that

T ∼= T1[T2[. . . [Ts′−1]]].
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Let −→ω 3(T ) = s. Hence, T is a composition of two circulant tournaments U and W , that
is T ∼= U [W ]. Let −→ω 3(U) = t1 > 2 and −→ω 3(W ) = t2 > 2. Since

3 6 −→ω 3(U [W ]) = t1 + t2 − 1 = s,

then 2 6 t1 < s and 2 6 t2 < s. By the induction hypothesis, there exist t1 − 1 tight
circulant tournaments U1, U2, . . . , Ut1−1 such that U ∼= U1[U2[. . . [Ut1−1]]], and t2 − 1 tight
circulant tournaments W1,W2, . . . ,Wt2−1 such that W ∼= W1[W2[. . . [Wt2−1]]], then

T ∼= U [W ] ∼= (U1[U2[. . . [Ut1−1]]])[W1[W2[. . . [Wt2−1]]]].

Using the associative property of the composition, we have that

T ∼= U1[U2[. . . [Ut1−1[W1[W2[. . . [Wt2−1]]]]]]].

Therefore, T is the composition of t1− 1 + t2− 1 = s− 1 tight circulant tournaments.

Let s ∈ N and define
−→
C 1

3 =
−→
C 3 and

−→
C s

3 =
−→
C 3

[−→
C s−1

3

]
for every s > 2. Observe that

in virtue of Proposition 12 and Lemma 7, −→ω 3

(−→
C s

3

)
= s+ 1.

We prove the main theorem of this paper.

Proof. (Theorem 3)
Let U be an r-dichromatic tournament. Since the composition of tournaments is

associative and by the first inequality of Proposition 11, we have that

dc (T [U ]) >

⌈
r (2m+ 1)

m+ 1

⌉
.

Therefore

dc (T [U ]) >

⌈
2r − r

m+ 1

⌉
>

⌈
3

2
r

⌉
.

It follows that dc (T [U ]) >
⌈
3
2
r
⌉

for every r-dichromatic tournament U .
Now let T be a circulant tournament such that −→ω 3 (T ) = s. By Proposition 14, there

exist T1, T2, . . . , Ts−1 such that T ∼= T1 [T2 [. . . [Ts−1]]]. Let dc (Ts−1) = r > 2 =
⌈
3
2

⌉
, then

dc (T ) >

⌈
3

2

⌈
3

2

⌈
. . .

⌈
3

2
r

⌉⌉⌉⌉
︸ ︷︷ ︸

s−2

>

⌈
3

2

⌈
3

2

⌈
. . .

⌈
3

2

⌉⌉⌉⌉
︸ ︷︷ ︸

s−1

= Ds−1.

By Proposition 13, dc (T ) >
⌊
K
(
3
2

)s−1⌋
.

Let T ∈
{−→
C s−2

3 [α] , α ∈ F2,2

}
. Since

−→
C 3 and α are tight, then −→ω 3 (T ) = s. Observe

that 2 =
⌈
3
2

⌉
, then

dc (T ) =

⌈
3

2

⌈
3

2

⌈
. . .

⌈
3

2

⌉⌉⌉⌉
︸ ︷︷ ︸

s−1

= Ds−1.

By Proposition 13, dc (T ) =
⌊
K
(
3
2

)s−1⌋
= b(s).
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Remark 15. Notice that b(s) is a lower bound for dc(T ) = r when −→ω 3(T ) = s and there
are no r-dichromatic circulant tournaments for which r < b(s).

Let D be a digraph. The hypergraph H1(D) is defined by V (H1(D)) = V (D) and

E(H1(D)) = {U ⊆ V (D) : U is a maximal acyclic set}.

Lemma 16 ([14], Proposition 41(i)). Let m > 2. Then

(i) H1(
−→
C 2m+1 〈∅〉) ⊇ Λ2m+1,m+1 and

(ii) β(
−→
C 2m+1 〈∅〉) = m+ 1.

We prove a similar result to the previous lemma for the family of circulant tournaments−→
C 2m+1 〈m− 1〉 with m > 2.

Lemma 17. Let m > 2. Then

(i) H1(
−→
C 2m+1 〈m− 1〉) ⊇ Λ2m+1,m−1 and

(ii) β(
−→
C 2m+1 〈m− 1〉) = m− 1.

Proof. (i) Since
−→
C 2m+1 〈m− 1〉 is vertex-transitive and {0, 1, . . . ,m− 2} is an acyclic

vertex subset of cardinality m− 1, the inclusion is valid.

(ii) Clearly, β(
−→
C 2m+1 〈m− 1〉) > m − 1. Let U be a vertex set of maximum car-

dinality, such that 〈U〉 is isomorphic to the acyclic subtournament of order |U |. Since
−→
C 2m+1 〈m− 1〉 is a vertex-transitive tournament, we may assume that 0 is the source of
U . In the out-neighborhood of 0 we have the following sequence:

N+ (1) = {2, 3, . . . ,m− 2} ,
N+ (2) = {3, 4, . . . ,m− 2,m,m+ 2} ,
N+ (3) = {4, 5, . . . ,m− 2,m} ,
N+ (4) = {5, 6, . . . ,m− 2,m,m+ 2} ,

...

N+ (m− 2) = {m,m+ 2} ,
N+ (m) = {1,m+ 2} ,

N+ (m+ 2) = {1, 3} .

Therefore, if |U | > m, the second source is 2, and U = {0, 2, 3, . . . ,m− 2,m,m+ 2} .
But (m+ 2, 3, 4,m+ 2) is a cyclic triangle in

−→
C 2m+1 〈m− 1〉. Hence, it follows that

β(
−→
C 2m+1 〈m− 1〉) = m− 1.

As a consequence of the second equality of Proposition 11 and Lemma 17, we have
the following
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Corollary 18. Let α be a r-dichromatic tournament, then

dc
(−→
C 2m+1 〈m− 1〉 [α]

)
=

⌈
r (2m+ 1)

m− 1

⌉
.

Moreover, if m > 3r + 1, then dc
(−→
C 2m+1 〈m− 1〉 [α]

)
= 2r + 1.

In what follows, we will recursively construct r-dichromatic circulant tournaments

with fixed
−→
C 3-free disconnection. For this purpose, we define the following functions

that will describe the growth of the dichromatic number by the composition of circulant
tournaments.

Let f ′i , fi : N2 → N (i ∈ {0, 1, 2}) be functions defined by

f ′0(q,m) = q(m+ 1)− 1, f0(q,m) = q(2m+ 1)− 1 (q > 1,m > 2),
f ′1(q,m) = qm+ 1, f1(q,m) = q(2m+ 1) + 3 (q > 1,m > 3),
f ′2(q,m) = 2q +m, f2(q,m) = 3q +m+ 1 (q > 1,m ∈ {1, 2}).

We define the (infinite) digraphs Di for i ∈ {0, 1, 2} as follows:

V (Di) = {v ∈ N : v > 3} ,
A (Di) = {(f ′i (q,m) , fi (q,m))} .

Let D = D0 ∪ D1 ∪ D2. Clearly, D0, D1 and D2 are arc-disjoint and acyclic. We
emphasize that (u, v) ∈ A(D) if and only if u = f ′i (q,m) and v = fi (q,m) (i ∈ {0, 1, 2})
for some positive integers q and m such that q > 1 and

(i) m > 2 if i = 0,

(ii) m > 3 if i = 1 and

(iii) 1 6 m 6 2 if i = 2.

Furthermore, if T is an r′-dichromatic tournament with r′ = f ′i (q,m), then Wi[T ] is

an r-dichromatic tournament with r = fi (q,m) (i ∈ {0, 1, 2}), where W0
∼=
−→
C 2m+1 〈∅〉 ,

W1
∼=
−→
C 2m+1 〈m〉 and W2

∼=
−→
C 3. Finally, if r ≡ 1(mod 3), then by the definition of

f2(q,m) it follows that dc
(−→
C 3[T ]

)
6= r for every tournament T.

We point out that fi, f
′
i and Di for i ∈ {0, 1} were defined by V. Neumann-Lara in

[14], where more details can be found.

Lemma 19 ([14], Lemma 64). For each positive integer n > 3, n 6= 7, there is a directed
path in D = D0 ∪D1 from a vertex in S = {3, 4, 5, 11, 15, 23} to n.

Lemma 20. For each positive integer n > 3, there is a directed path in D = D0∪D1∪D2

from a vertex in S = {3, 4, 5, 7} to n.
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Proof. A consequence of Lemma 19 and observing that (7, 11), (10, 15), (15, 23) ⊂ A(D2)

and (7, 13) ∈ A(D0). Note that by Lemma 8, we have that
−→
C 30t+43(J) is a 7-dichromatic

tournament for every t > 0.

Proposition 21. Let r > 2 and s > 2. Then

(i) F2r,s+1 =
{−→
C 2r+1 〈∅〉 [α] : α ∈ Fr,s

}
.

(ii) F2r+1,s+1 =
{−→
C 2(3r+1)+1 〈3r〉 [α] : α ∈ Fr,s

}
.

(iii) F3r,s+1 =
{−→
C 3 [α] : α ∈ F2r,s

}
.

(iv) F3r+2,s+1 =
{−→
C 3 [α] : α ∈ F2r+1,s

}
.

Proof. We proceed case by case.

(i) Let α ∈ Fr,s. By Proposition 11 and Lemma 16, if r 6 m, then

dc
(−→
C 2m+1 〈∅〉 [α]

)
=

⌈
r(2m+ 1)

m+ 1

⌉
=

⌈
2r − r

m+ 1

⌉
= 2r.

Hence, m = r and by Propositions 12 and 6(i), −→ω 3

(−→
C 2r+1 〈∅〉 [α]

)
= s+ 1.

(ii) Let α ∈ Fr,s. By Corollary 18, if m > 3r + 1, then

dc
(−→
C 2m+1 〈m− 1〉 [α]

)
= 2r + 1.

In this case the equality holds. By Proposition 6(ii) and Lemma 17,

−→ω 3

(−→
C 2m+1 〈m− 1〉 [α]

)
= s+ 1.

(iii) Let α ∈ F2r,s. By Proposition 11, dc
(−→
C 3 [α]

)
=
⌈
2r·3
2

⌉
= 3r. On the other hand,

since
−→
C 3 ∈ F2,2,

−→ω 3

(−→
C 3 [α]

)
= s+ 1.

(iv) Let α ∈ F2r+1,s. By Proposition 11, dc
(−→
C 3 [α]

)
=
⌈
(2r+1)·3

2

⌉
= 3r+ 2. On the other

hand, since
−→
C 3 ∈ F2,2,

−→ω 3

(−→
C 3 [α]

)
= s+ 1.

Proposition 22. For every integer r > 3 there is an infinite set of circulant tournaments
T such that dc (T ) = r and −→ω 3 (T ) = 3.
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Proof. By Theorem 3 and Lemma 20, we can construct the infinite sets Fr,3 for r = 6 and
r > 8.

Let α ∈ F2,2, then

dc
(−→
C 3 [α]

)
=

⌈
2 (3)

2

⌉
= 3 and −→ω 3(

−→
C 3 [α]) = 2 + 2− 1 = 3.

Therefore F3,3 =
{−→
C 3 [α] : α ∈ F2,2

}
.

Let α ∈ F2,2, then

dc
(−→
C 5 〈∅〉 [α]

)
=

⌈
2 (5)

3

⌉
= 4 and −→ω 3(

−→
C 3 [α]) = 2 + 2− 1 = 3.

Then F4,3 =
{−→
C 5 〈∅〉 [α] : α ∈ F2,2

}
.

Analogously,

F5,3 =
{−→
C 3 [α] : α ∈ F3,2

}
, F7,3 =

{−→
C 7 〈3〉 [α] : α ∈ F3,2

}
.

Let B(s) (s > 2) be a positive integer such that for every r > B(s) there exists an
infinite set of circulant tournaments T ∈ Fr,s. Clearly, B(2) = 2 and by Proposition 22,
we have that B(3) = 3 (see Corollary 10).

Proposition 23. B(s) 6 2B(s− 1)− 1 6 2s−2 + 1 for every s > 3.

Proof. We proceed by induction on s. For s = 3, by Proposition 22, we have that

B(3) = b(3) =

⌈
3

2

⌈
3

2

⌉⌉
= 3 = 2B(2)− 1.

Suppose that the statement is valid for some s > 3. We will prove it for s + 1. By
Proposition 21 (i) and (ii), we can construct the infinite sets

F2r,s+1 =
{−→
C 2r+1 〈∅〉 [α] : α ∈ Fr,s

}
and

F2r+1,s+1 =
{−→
C 2(3r+1)+1 〈3r〉 [α] : α ∈ Fr,s

}
for every r > B(s). It follows that B(s+1) 6 2B(s). We only need to prove the existence
of an infinite family F2s−2+1,s for every s > 4.

Let s > 3. Notice that 2s−2 + 1 ≡ 0 (mod 3) or 2s−2 + 1 ≡ 2 (mod 3).

(i) If 2s−2+1 ≡ 0 (mod 3), then 2s−2+1 = 3q for some integer q > 1 and by Proposition

21(iii) it follows that F2s−2+1,s =
{−→
C 3 [α] : α ∈ F2q,s−1

}
.

(ii) If 2s−2 + 1 ≡ 2(mod 3), then 2s−2 + 1 = 3q + 2 for some integer q > 1 and by

Proposition 21(iv) it follows that F2s−2+1,s =
{−→
C 3 [α] : α ∈ F2q+1,s−1

}
.
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By Proposition 23 and Proposition 21(iii) and (iv), we can construct infinite families
of circulant tournaments T with arbitrary

−→ω 3 (T ) = s and r >

⌈
3

2
b (s)

⌉
for every r > 2, except for the cases when r ≡ 1 (mod 3) and

⌈
3
2
b (s)

⌉
6 r < B (s). For

these values of r, we have to construct each infinite family case by case. Some of these
families are obtained using the construction and the properties of digraphD = D0∪D1∪D2

(see Lemmas 19 and 20). Others are obtained by the composition
−→
C 2m+1 〈m− 1〉 [α],

where α is an r-dichromatic circulant tournament with r > m. Since r > m, these

families are not those F2r,s+1 = {
−→
C 2m+1 〈∅〉 [α] : α ∈ Fr,s} given in Proposition 21(i).

Working with the aforementioned tools, one could obtained the following infinite sets Fr,s

of circulant tournaments:

(i) 3 6 s 6 5 and every r > b (s),

(ii) s = 6 and every r > 12 and r 6= 13,

(iii) s = 7 and r = 18, 21 and every r > 25,

(iv) s = 8 and r = 27, 32 and every r > 35,

(v) s = 9 and r = 41, 48, 51 and every r > 53,

(vi) s = 10 and r = 62, 72, 76, 77 and every r > 80 and

(vii) s = 11 and r = 93, 108, 114, 121 and every r > 123.

Cases (i) and (ii) are consequences of Proposition 22, Theorem 3 and using that
b(s) = B(s) for s ∈ {2, 3, 4}, b(6) = 12 and B(6) = 14. Observe that F13,6 is the first
unknown infinite set.

In Case (iii), we have that r > 18 by Theorem 3. By Proposition 23, there is an infinite

set Fr,7 for every r > 25. For r = 21, let α ∈ F14,6. Hence dc
(−→
C 3 [α]

)
=
⌈
14(3)
2

⌉
= 21 and

−→ω 3

(−→
C 3 [α]

)
= 2 + 6 − 1 = 7 by Corollary 18 and Proposition 12, respectively. There-

fore, F21,7 =
{−→
C 3 [α] : α ∈ F14,6

}
. For r ∈ {19, 20, 22, 23, 24}, the infinite sets Fr,7 are

unknown. Let r = 25 and α ∈ F12,6. Then dc
(−→
C 75 〈36〉 [α]

)
=
⌈
12(75)
36

⌉
= 25 (Corollary

18 for m = 37) and −→ω 3

(−→
C 75 〈36〉 [α]

)
= 2 + 6− 1 = 7 (Proposition 12). For r = 26, take

α ∈ F17,6 and apply Proposition 21(iv) to obtain F26,7 =
{−→
C 3 [α] : α ∈ F17,6

}
. For r = 27,

take α ∈ F18,6 and apply Proposition 21(iii) and we get F27,7 =
{−→
C 3 [α] : α ∈ F18,6

}
. Fi-

nally, note that B(7) 6 2B(6)− 1 = 2 · 14− 1 = 27 (see Proposition 23).
Using similar arguments, one can obtain the remaining cases.
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The following table summarizes some exact values of b(s) and B(s).

s 2 3 4 5 6 7 8 9 10 11
b(s) 2 3 5 8 12 18 27 41 62 93
B(s) 2 3 5 9 14 25 35 53 80 123

We finish with the following conjecture.

Conjecture 24. B(s) 6 2b(s− 1)− 1 for every s > 3.

Acknowledgment. We thank the anonymous referees for their suggestions that helped
us to significantly improve the presentation of this paper.
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