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Abstract

This article shows a new focus of mathematic analysis for the Solow-Swan eco-

nomic growth model, using the generalized conformal derivative Katugampola

(KGCD). For this, under the same Solow-Swan model assumptions, the Inada

conditions are extended, which, for the new model shown here, depend on the

order of the KGCD. This order plays an important role in the speed of conver-

gence of the closed solutions obtained with this derivative for capital (k) and

for per-capita production (y) in the cases without migration and with negative

migration. Our approach to the model with the KGCD adds a new parameter

to the Solow-Swan model, the order of the KGCD and not a new state vari-

able. In addition, we propose several possible economic interpretations for that

parameter.

Keywords: Solow-Swan Economic Growth Model, Katugampola Generalized

Conformal Derivative, Inada Conditios.

1. Introduction

The economic growth models of [1] and [2], that henceforth, because of the

similarities between them, we will call the Solow-Swan model (SSM), are models
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that try to explain income and its growth in an economy through the amounts

of resources involved in production (capital and labor) and technological change

or technical progress. The model assumes, among other things, perfect compe-

tition, full employment, decreasing marginal returns in the use of capital and

labor, constant returns to scale for a production function that is homogeneous

and is considered exogenous because it includes variables or parameters whose

value is determined outside the model or is an external data.

In the SSM, the technical progress, denoted by the constant A, is an ex-

ogenous parameter defined as a factor of increasing scale that multiplies the

production function [1] and includes in that concept the improvements in hu-

man factors through time [3]. Recently, the SSM continues to be studied, for

example in [4] it is done using a Kadiyala production function.

Two are the main criticisms of SSM from the perspective of endogenous

growth models: 1) its theoretical inability to explain long-term economic growth,

which can only be achieved if it is imposed exogenously through technical

progress (a strong technological change) to increase income and per-capita cap-

ital levels, as well as welfare of families over time, either before reaching their

steady state (in which economy growth stops) or once this has been reached ([5]

and [6]), and 2) the impossibility of empirically verifying in the long term, the

convergence that the model predicts for all the economies of the planet, those

developed and those that are not, to the same steady state [6].

This second criticism has also been addressed by those [7] who, based on

the theories of endogenous economic growth, model the differences between the

economies of the world, adding human capital (the knowledge, skills and com-

petencies of workers as individuals) to the two state variables of the (SSM).

When this variable was included, the convergence rates of the different types of

economies to the same steady state improved, however, they remained insuffi-

cient.

Nonetheless, in all the mentioned cases and in others as case [8] that ana-

lyze the closed solution for the economic growth in relation to the migration,

the method to obtain the solutions for the variables of the proposed models
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(endogenous and exogenous) was typical of derivatives of an integer order.

Other works using models based on fractional order derivatives have also ad-

dressed the problem of economic growth. For example, in [9], a generalization

of the economic model of natural growth is suggested, which takes into account

the memory effect of the power law type. The memory effect implies the de-

pendence of the process, not only on its current state but also on its history of

changes in the past. For the mathematical description of the economic process

with power law memory, the theory of non-integer derivatives and fractional

differential equations is used. They conclude that the memory effect can lead

to a decrease in the output and not to its growth, which is typical of a model

without memory.

In [10], economic models must take into account the memory effects caused

by the fact that economic agents, in their decisions, remember the history of

changes in the exogenous and endogenous variables characterizing economic pro-

cesses. The continuous-time description of the economic processes by decreasing

memory of the power law type can be described using fractional calculus and

fractional differential equations. The inclusion of memory effects in economic

models can lead to new results with the same parameters.

In [11] with sufficient conditions to analyze the Mittag Leffler stability type,

a Solow type model of fractional order is introduced as a new tool in mathemat-

ical finance. The main advantage of the proposed approach is the non-locality

property of these fractional derivatives that are convenient for the modeling of

real financial situations and macroeconomic systems.

Models based on other types of derivatives have also been studied, for exam-

ple in [12], axioms for the system of differential equations (time scales) of Solow

type are formulated under the assumption that a certain function is constant,

proving stability and balance results in positive coordinates. A Cobb-Douglas

type production function is also considered.

In [13], a general Solow model on time scales is introduced from which a first-

order nonlinear dynamic equation that describes the model is deduced. Based

on a Cobb-Douglas type production function, several cases are considered when
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there is no technological development or changes in the population. Subse-

quently, they consider the case with technological development and population

growth. These models include, as particular cases, different types of derivatives

such as quantum calculus and some of conformal type.

The case of slow growth when the order of the fractional derivative ρ ∈

(0, 1) is similar to the situation that appears in physics with the description

of anomalous diffusion models [14], which is related in form of sub-diffusion

for 0 < ρ < 1. The anomalous diffusion equations have been used to describe

financial processes [15, 16, 17, 18, 19, 20, 21].

We propose derivatives of conformal type [22, 23] that could, without in-

creasing state variables, offer an alternative to solve the two criticisms raised

previously against the SSM for the case with negative migration. The model

obtained with the KGCD is simpler than the models presented with fractional

derivatives, or with derivatives of the time-scales type. In addition, we present

closed solutions of the SSM with the KGCD, very similar to the model of the in-

teger SSM order, and therefore it is possible to give an analogous interpretation

to those of the classical model.

Applying the KGCD of order ρ [23] instead of the usual derivative of the in-

teger order in the SSM, we show two results that preserve the Inada conditions,

imposing restrictions on the ρ order of the KGCD related to the marginal con-

tribution of capital (α) to the production obtained (Y ). Later, we obtain closed

solutions for capital and per-capita production on time for zero and negative

migration cases. These closed solutions with the KGCD introduce a new pa-

rameter ρ, and not a new state variable to the solutions obtained for the SSM as

other authors do. The analysis of the SSM model with the KGCD allows us to

show that the ρ parameter plays a fundamental role in maintaining consistency

with Inada’s well-known conditions. As expected, when the parameter ρ takes

the value of 1, we recover the derivative of integer order, and consequently the

classic SSM.

This article is organized as follows. In the second section the mathematical

preliminaries are presented. In the third section the congruence of the KGCD
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with the Inada conditions of integer order is shown. In the fourth section, closed

solutions are obtained for the SSM model without migration and with negative

migration. In the negative migration case, the analysis on the restrictions im-

posed for capital and per-capita production is presented, and also the times

for which the aforementioned variables increase to infinity. In the sixth section

some representative graphs of the results obtained in the previous sections are

presented. Finally, the general conclusions are presented.

2. Preliminaries of KGCD

This section provides the main definitions of the KGCD, as well as the

foundation of the SSM.

2.1. Basic Definitions on KGCD

This subsection discusses the definition of the conformal derivative, as well

as its properties of order ρ ∈ [0, 1].

Definition 2.1. [23] Given a function f : [0,∞) → R. Then the KGCD of

order ρ, m is defined by:

Dρ
mf(t) = limǫ→0

f(teǫt
−ρ

k )− f(t)

ǫ
, (1)

where

etm =
m
∑

i=0

ti

i!
, (2)

for all t > 0, ρ ∈ [0, 1].

As a consequence of the previous definition, the following Lemma is obtained.

Lemma 2.1. If f is differentiable, then Dρ
mf(t) = t1−ρ df

dt
.

Proof 1. Let’s take

h(t, ǫ) = ǫt1−ρ
(

1 + ǫt1−ρ + ǫ2t2(1−ρ)

2! + ...+ ǫm tm(1−ρ)

m!

)

= ǫt1−ρ (1 +Om(ǫ)) = ǫt1−ρ + Ôm(ǫ2), (3)
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where Ôm(ǫ2) = ǫt1−ρOm (ǫ). Then, the definition of the KGCD of order ρ, m

is as follows:

Dρ
mf(t) = limǫ→0

f(teǫt
−ρ

m )− f(t)

ǫ
= (4)

limǫ→0
f(t+ ǫt1−ρ + Ôm(ǫ2))− f(t)

ǫ
= (5)

limǫ→0
f(t+ h(t, ǫ))− f(t)

ǫ
= (6)

limǫ→0
f (t+ h (t, ǫ))− f(t)

h(t,ǫ)tρ−1

1+Om(ǫ)

= (7)

limǫ→0t
1−ρ df(t)

dt
. (8)

If the KGCD of f exists, then we will say that the function f is ρ−differentiable

in some interval (0, a) with a > 0, the KGCD of the fuction f exits and the

limt→0+D
ρ
mf(t) exists as well, hence we define

Dρ
mf(0) = limt→0D

ρ
mf(t). (9)

Note that

Dρ
1f(t) = limǫ→0

f(t+ ǫt1−ρ)− f(t)

ǫ
(10)

is the KGCD defined for m = 1 and

Dρ
∞f(t) = limǫ→0

f(teǫt
−ρ

)− f(t)

ǫ
(11)

is the KGCD defined for m = ∞. �

Let it be noted that the derivatives (10) and (11) are particular cases of

the derivative KGCD (1). Which correspond to the conformal derivative in [22]

and the derivative of Katugampola in [23]. Therefore, the following results are

similar due to Lemma (2.1).
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Theorem 2.1. [22, 23] If a function f : [0,∞) → R is ρ−differentiable in

t0 > 0, ρ ∈ (0, 1], so f is continuous on t0.

Theorem 2.2. [22, 23] Let it be that ρ ∈ (0, 1] and f, g are ρ−differentiable for

t > 0. Therefore

1) Dρ
m(af + bg) = aTρ(f) + bTρ(g) for every a, b ∈ R.

2) Dρ
m(tq) = qtq−ρ for all q ∈ R.

3) Dρ
m(λ) = 0, for all constant functions f(t) = λ.

4) Dρ
m(fg) = fTρ(g) + gTρ(f).

5) Dρ
m

(

f
g

)

=
gTρ(f)−fTρ(g)

g2 .

In the following section, the Inada conditions are presented applying the

KGCD.

3. Inada conditions for the Solow-Swan model with the KGCD

The SSM is a benchmark for most economic growth analysis. In time, the

model is represented as in Eq.(12) where Y is the national production, K and L

(state variables) are the quantities of capital and labor factors used in produc-

tion, both measured with the appropriate units and A represents a technological

constant that is usually interpreted as the total productivity of all factors. For

a period of time t, national production is the result of combining capital and

labor, given a certain technological constant, represented mathematically as:

Y (t) = F (A,K(t), L(t)) (12)

where t indicates time [8].

Definition 3.1. The production Y (t) : R+ → R is a function and must fulfill

the following properties [8], known in Economic Science as the Inada conditions.

Replacing the derivative of integer order with the KGCD, we obtain the following

modified Inada conditions:
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i) The function Y (t) is increasing for both state variables, capital (Dρ
K,mY > 0)

and labour force (Dρ
L,mY > 0).

ii) The function Y (t) will have constant returns to scale, Y (λK, λL) = λY (K,L),

∀λ > 0.

iii) The function Y (t) satisfies the conditions: lim
K→0

Dρ
K,mY = lim

L→0
Dρ

L,mY = +∞

and lim
K→∞

Dρ
K,mY = lim

L→∞

Dρ
L,mY = 0

iv) The function Y (t) also satisfies that (D2ρ
K,mY < 0) and that (D2ρ

L,mY < 0)

Where: Dρ
K,mY y Dρ

L,mY are the partial derivatives of Y of order ρ, m of

KGCD with respect to the variables K and L respectively.

Let it be noted that when ρ is 1 we recover the usual Inada conditions of

integer order. Thereafter, we present the following propositions, where we will

consider A,K,L > 0. Let’s observe the following:

Dρ
K,mY (K,L) = K1−ρDK,mY (K,L) (13)

Dρ
L,mY (K,L) = L1−ρDL,mY (K,L) (14)

D2ρ
K,mY (K,L) = Dρ

K,m(Dρ
K,mY (K,L))

D2ρ
K,mY (K,L) = K1−2ρ[(1 − ρ)DK,mY +KD2

K,mY ] (15)

and

D2ρ
L,mY (K,L) = Dρ

L,m(Dρ
L,mY (K,L))

D2ρ
L,mY (K,L) = L1−2ρ[(1− ρ)DL,mY + LD2

L,mY ] (16)

Theorem 3.1. If the Inada conditions for the KGCD are satisfied for some

ρ ∈ (0, 1), then the Inada conditions of integer order are satisfied.

Remark 1. Let it be noted that we do not assume an explicit form for the

function Y (K,L).
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Proof 2. Let’s suppose that ρ0 ∈ (0, 1) exists so that the Inada conditions are

satisfied with the KGCD (3.1). Therefore

i) Since Dρ0

K,mY = K1−ρDK,mY > 0, then DK,mY > 0 and similarly

Dρ0

L,mY = L1−ρDL,mY > 0, then DL,mY > 0.

ii) Is the same statement as for ρ = 1.

iii) If limK→0 D
ρ0

K,mY = limK→0 K
1−ρ0DK,mY = ∞, then DK,mY it is of or-

der O(K−(1−ρ0+ǫ)) with ǫ > 0. Therefore limK→0 DK,mY = ∞. Similarly,

limL→0D
ρ0

L,mY = ∞ implies limL→0 DL,mY = ∞.

If limK→∞ Dρ0

K,mY = limK→∞ K1−ρ0DK,mY = 0, then DK,mY is of order

O(K−(1−ρ0+ǫ)) with ǫ > 0. Therefore limK→∞ DK,mY = 0. The case of

limL→∞ DL,mY = 0 is similar.

iv) D2ρ0

K,mY < 0 if and only if K1−2ρ0 [(1−ρ0)DK,mY +KD2
K,mY ] < 0, whereby

(1 − ρ0)DK,mY +KD2
K,mY < 0, but (1 − ρ0), K and DK,mY are positive

because of item i), therefore D2
K,mY < 0. Similarly D2ρ0

L,mY < 0, then

D2
L,mY < 0. �

Theorem 3.2. Let’s consider the SSM, with production function Y = AKαL1−α.

The Inada conditions for the KGCD are satisfied if and only if ρ > max[α, 1−α].

Proof 3. First let’s note that Y = AKαL1−α satisfies the Inada condition of

integer order.

i) Dρ
K,m(Y ) = K1−ρDK,m(Y ) > 0 and Dρ

L,m(Y ) = L1−ρDL,m(Y ) > 0 because

K,L,DK,m(Y ) y DL,m(Y ) are positive for Y = AKαL1−α.

ii) It is the same statement for integer order and KGCD.

iii) limK→0 D
ρ
K,m(Y ) = limK→0 K

1−ρDK,m(AKαL1−α) =

αAL1−α limK→0 K
α−ρ = ∞, if ρ > α.

limL→0D
ρ
L,m(Y ) = limL→0 L

1−ρDL,m(Y ) =

AKα(1−α) limL→0L
1−(ρ+α) = ∞, if ρ > 1−α. Therefore ρ > max[α, 1 − α].

Analogously limK→∞ Dρ
K,m(Y ) = αAL1−ρ limK→∞ Kα−ρ = 0, if ρ > α.

Similarly limK→∞ Dρ
K,m(Y ) = 0, if ρ > 1−α. Therefore ρ > max[α, 1−α].
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iv) D2ρ
K,m(Y ) = K1−2ρ[(1− ρ)DK,m(Y ) +KD2

K(Y )] < 0 if and only if

|D2
K(Y )| >

1− ρ

K
|DK,m(Y )| (17)

because DK,m(Y ) > 0 y D2
K,m(Y ) < 0.

Substituting Y = AKαL(1−α) in Eq. (17) and considering the absolute

values, we obtain Aα(1−α)Kα−2L1−α > (1− ρ)AαKα−2L1−α if and only

if 1−α > 1− ρ equivalently ρ > α. Similarly D2ρ
L,m(Y ) < 0 if |D2

L,m(Y )| >

(1−ρ)
L

|DL,m(Y )| ⇐⇒ AKα(1−α)L−α−1(1−ρ) < AKα(1−α)αL−α−1 given

that 1 − ρ < α ⇐⇒ ρ > 1 − α, therefore both conditions are fulfilled ⇐⇒

ρ > max[α, 1 − α]. Notice that α ∈ [0, 1] implies that ρ ∈ (1/2, 1] since ρ

cannot be greater than 1 by the propositions that consider the Cobb-Douglas

form Y = AKα(t)L1−α(t) , α ∈ (0, 1). �

These results show that the Inada conditions of integer order are preserved

with the new derivative KGCD. In the next section the SSM is described using

the KGCD.

4. The Solow-Swan model with the KGCD

In this section we analyse two cases: the case without migration with a

Malthusian law considering the population as labour force and the case with

negative constant migration. We will follow a similar procedure to the one

developed in [8]. If the production function is of the Cobb-Douglas form [1]:

Y = AKα(t)L(t)1−α, α ∈ (0, 1) (18)

when α is close to 0 it is said that the economy is work intensive and for the

opposite case, if α is almost 1, it is capital intensive. According to (18), the

capital stock dynamics is governed by the ordinary differential equation:

K̇ = sY − δK = sAKαL1−α − δK (19)
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where s and δ are the savings constants and the rate of depreciation of capital

respectively, hence, neoclassically, sY can be taken as the gross investment

and δK is the capital depreciation of the entire economy [8]. In the following

subsections we present both cases, with and without migration.

4.1. The KGCD Solow Growth Model without Migration

Deriving out of the SSM of integer order, we present in this subsection a

new model, applying the KGCD. In it, the KGCD retrieves the properties of

integer order, but introduces a parameter in the order of the derivative that

allows greater flexibility to the model and is compatible with the classic SSM

when ρ takes the unit value.

The rest of the work will use the following notations indistinctly:

L
(ρ)
m = Dρ

m(L)

L(ρ)
m = γL ⇒ L(t) = L0e

γ tρ

ρ (20)

where L0 > 0 is the initial population of workers and γ the inter-temporal rate

of growth or Malthusian parameter. If we replace (20) in (18) we obtain

Y = AKα
(

L0e
γ tρ

ρ

)1−α

(21)

If we define the per-capita capital, as

k(t) =
K(t)

L(t)
(22)

and the labour growth rate as,

n(t) =
L
(ρ)
m (t)

L(t)
(23)

Therefore, deriving (22) with respect to the time and taking n(t) = γ, we

obtain that k
(ρ)
m =

K(ρ)
m

L
− γk(t). From (19) and replacing now the capital stock

using the KGCD is given by
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K(ρ)
m = sY − δK = sAKαL1−α − δK

k(ρ)m + (δ + γ)k = sAkα (24)

where (24) is a Bernoulli equation using the KGCD. Through Bernoulli’s well-

known variable change, to obtain the linear equation, we take w = k1−α,

w(ρ)
m = (1− α)k−αk(ρ)

w(ρ)
m + (1− α)(γ + δ)w = (1− α)sA (25)

From (24) and (25) the solution for k(t) is given by

k(t) =

[

c1e
−(1−α)(γ+δ) tρ

ρ +
sA

γ + δ

]
1

1−α

(26)

where c1 is a constant of appropriate units.

It is important to note that the steady state of per-capita capital k∞, is

given by

k∞ = lim
t→+∞

k(t) =

(

sA

γ + δ

)
1

1−α

(27)

Note that the limit, when t tends to infinity, coincides with the limit of

integer order. On the other hand, we now define the per-capita product as the

total production ratio in respect to work, that is,

y(t) =
Y (t)

L(t)
= Akα(t) (28)

where using the expression (18), in the long term the per-capita production

tends to

y∞ = lim
t→+∞

Akα(t) = A

(

sA

γ + δ

)
1

1−α

. (29)

The solutions obtained here with KGCD have the same mathematical behavior

as those of classical SSM. Therefore in the case without migration, the conver-

gence to the same steady state of capital and per-capita production will exist
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regardless of the value of ρ. However, in this case the convergence speed de-

creases as the value of ρ decreases.

4.2. The KGC Solow Growth Model with Migration

Under the same assumptions, this subsection presents another KGCD model

adding a constant migration rate (I) to the differential equation (20), which

determines the labour force of the economy, therefore we have:

L(ρ)
m = γL+ I. (30)

Calculating the solution of (30)

L(t) = ceγ
(t−t0)ρ

ρ +

∫ t

0

eγ
(t−t0)ρ

ρ e−γ
(s−t0)ρ

ρ I(s− t0)
ρ−1ds (31)

where t0 is an initial time which we take with value 0 in (31), we obtain

L(t) =

[(

c+
I

γ

)

eγ
tρ

ρ −
I

γ

]

, c = L0 (32)

Note that if ρ = 1, we retrieve the solution of the integer migration case.

Therefore, if a labour growth rate is taken as (23) and the KGCD is applied, it

results in

n̄(t) =
L
(ρ)
m

L
=

γ(γL+ I)

(γL0 + I)eγ
tρ

ρ − I
(33)

Again, with (19) and now replacing the stock capital with migration using

the KGCD, the per-capita capital satisfies the following equation

k̄(ρ)m + (n̄(t) + δ)k̄ = SAk̄α (34)

where (34) was obtained analogously to Eq.(24) but considering migration. This

is also a Bernoulli equation with the KGCD. If we now take Z = k̄1−α and

Z(0) = Z0 = k̄1−α
0 with Z

(ρ)
m = (1−α)k̄−αk̄

(ρ)
m , for a similar argument we come

to:

Z(ρ)
m − (α− 1)(δ + n̄(t))Z = (1− α)sA. (35)

13



Now using Eq.(33), we obtain that:

∫

(δ + n̄ (t)) tρ−1dt = δ
tρ

ρ
+

∫

dγL(t)

γL(t)
= δ

tρ

ρ
+ln

[

(γL0 + I) eγ
tρ

ρ − I
]

−ln(γL0)

(36)

where γL(t) = (γL0 + I)e
γtρ

ρ − I.

On the other hand, substituting the integral of the Eq.(36) in the exponent

of the exponential function, we get:

e±
∫

y
0
(1−α)(δ+n̄(t))tρ−1dt = e±(1−α)δ yρ

ρ

[(

γL0 + I

γL0

)

e
γyρ

ρ −
I

γL0

]±(1−α)

. (37)

Therefore the solution of Eq.(35) is:

Z(t) = Z0e
−

∫
(1−α)(δ+n̄(t))tρ−1dt + e−

∫
(1−α)(δ+n̄(t))tρ−1dt

∫

e(1−α)δ yρ

ρ

[(

γL0 + I

γL0

)

e
γyρ

ρ −
I

γL0

](1−α)

(1− α)sAtρ−1dt (38)

Hence, from the following equation it is possible to obtain the capital and

per-capita production:

Z(t) = Z0e
(α−1)δ tρ

ρ [

(

γL0 + I

γL0

)

e
γtρ

ρ −
I

γL0
](α−1)+

(1− α) sAe(α−1)δ tρ

ρ [

(

γL0 + I

γL0

)

e
γtρ

ρ −
I

γL0
](α−1)

(

∫ t

0

(

e−(α−1)δ yρ

ρ

[(

γL0 + I

γL0

)

e
γyρ

ρ −
I

γL0

](1−α)

yρ−1dy

))

(39)

where it is obtained that the per-capita capital (k̄) is given by

k̄(t) = Z(t)
1

1−α (40)

and per-capita production (ȳ) by

ȳ(t) = AZ(t)
α

1−α . (41)

The last two equations (40), (41), give us closed solutions for capital and

per-capita production with migration. In the next section we will give the closed
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solution for the case of negative migration by explicitly solving the integral of

(39) in terms of hypergeometric functions.

4.3. The Closed Analytic Solutions of KGCD Solow Growth Model with Migra-

tion

In this section we applied a similar procedure to used in [8] for to solve the

integral of the second term of the equation (39).

J =

∫ t

0

e(1−α) δτρ

ρ

[(

γL0 + I

γL0

)

e
γτρ

ρ −
I

γL0

](1−α)

τ (ρ−1)dτ (42)

Applying the change of variable u = e
γtρ

ρ we have that,

du = γ
ρ
e

γτρ

ρ

(

ρτ (ρ−1)dτ
)

= γuτ (ρ−1)dτ from where du
γu

= τ (ρ−1)dτ

J =
1

γ

∫ e
γτρ

ρ

1

u
(1−α)δ

γ
−1

[

−
I

γL0
+

(

γL0 + I

γL0

)

u

](1−α)

du (43)

J =
1

γ

(

−
I

γL0

)(1−α) ∫ e
γtρ

ρ

1

u
(1−α)δ

γ
−1

[

1−

(

1 +
γL0

I

)

u

](1−α)

du (44)

The last integral is related to Euler’s integral representation of the Gaussian

Hypergeometric Function 2F1:

2F1





a, b

c

∣

∣

∣

∣

∣

∣

z1



 =

∞
∑

n=0

(a)n(b)nz
n

(c)nn!

=
Γ(c)

Γ(c− b)Γ(b)

∫ 1

0

tb−1(1− t)c−b−1(1 − zt)−adt (45)

where (.)n = Γ(. + n)/Γ(.) is the Pochhammer symbol [24, 25]. The series is

convergent for any a, b, c if |z| < 1, and for Re(a+ b− c) < 0 if |z| = 1. For the

integral representation Re(c) > Re(b) > 0 is needed. In this case Γ(z) denotes

the Gamma Function. Thus,

J =
1

γ

(

−
I

γL0

)(1−α)

(Jt − J0) (46)
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where

J0 =
γ

(1− α)δ
2F1





a, b

c

∣

∣

∣

∣

∣

∣

z1



 (47)

where

Jt =
γe(1−α)δ tρ

ρ

(1 − α)δ
2F1





a, b

c

∣

∣

∣

∣

∣

∣

z2(t)



 (48)

with a = α − 1, b = (1−α)δ
γ

, c = (1−α)δ
γ

+ 1, z1 =
(

1 + γL0

I

)

y z2(t) =
(

1 + γL0

I

)

eγ
tρ

ρ . And therefore, we obtain formulas that are explicitly closed for

capital and per-capita production with negative migration

Z(t) = Z0e
(α−1)δ tρ

ρ [

(

γL0 + I

γL0

)

e
γtρ

ρ −
I

γL0
](α−1)+

(1− α) sAe(α−1)δ tρ

ρ [

(

γL0 + I

γL0

)

e
γtρ

ρ −
I

γL0
](α−1)

(

1

γ

(

−
I

γL0

)(1−α)

(Jt − J0)

)

(49)

k̄(t) = e−δ tρ

ρ [

(

γL0 + I

γL0

)

e
γtρ

ρ −
I

γL0
]−1

[

k̄1−α
0 +

(

(1− α)sA

γ

(

−
I

γL0

)(1−α)

(Jt − J0)

)]
1

1−α

(50)

ȳ(t) = Ak̄(t)α (51)

The
(

− I
γL0

)(1−α)

factor implies that: if I ≤ 0, therefore γ > 0, and if I > 0,

then γ < 0. In the next section we offer restrictions on the values that migration

I and time t can take.

5. Analysis for I negative.

In this section an analysis is made of the restrictions on capital and per-

capita production, for I < 0 and γ > 0 according to the following lemmas.
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Lemma 5.1. i) L(t) =
(

I
γ
+ L0

)

eγ
tρ

ρ − I
γ
> 0 with γ > 0, 0 < I

γ
+ L0 and

I < 0, if I ∈ [−γL0, 0] .

ii) L(t) =
(

I
γ
+ L0

)

eγ
tρ

ρ − I
γ

> 0 with γ > 0, I
γ
+ L0 < 0 and I < 0, if

I ∈ (−∞,−γL0) y t < tf where tf =
[

ln
(

1 + γL0

I

)]
−1
γ

.

Proof 4. i) If γ > 0, 0 < I
γ
+ L0 and I < 0 ⇔ −γL0 < I < 0 ⇔

I ∈ [−γL0, 0] ⇒ L(t) =
(

I
γ
+ L0

)

eγ
tρ

ρ − I
γ
> 0.

ii) If γ > 0, I
γ
+ L0 < 0 and I < 0 ⇔ I < −γL0 ⇔ I ∈ (−∞,−γL0) and

(

I
γ
+ L0

)

eγ
tρ

ρ > I
γ
⇔ eγ

tρ

ρ >
I
γ

I
γ
+L0

= 1

1+
γL0
I

⇒ t < tf =
[

ln
(

1 + γL0

I

)]
−1
γ

.

�

Lemma 5.2. γ > 0 and |z1| < 1 and |z2| < 1 ⇔ I ∈ (−∞,−γL0) y t < tf =
[

ln
(

1 + γL0

I

)]
−1
γ

.

Proof 5. |z1| < 1 ⇔ −1 < 1 + γL0

I
< 1 ⇔ −2 < γL0

I
< 0.

|z2| < 1 ⇔ −1 <
(

1 + γL0

I

)

eγ
tρ

ρ < 1 ⇔ −1

1+
γL0
I

< eγ
tρ

ρ < 1

1+
γL0
I

−1

1+
γL0
I

< eγ
tρ

ρ is fulfilled if 1 + γL0

I
> 0 ⇔ −1 < γL0

I
.

If γ > 0 and I < 0 or γ < 0 and I > 0 then −1

1+
γL0
I

< 1 = e0 ⇒

−2 < γL0

I
< 0.

Note that −1 < γL0

I
< 0 ⇔ I ∈ (−∞,−γL0). On the another hand,

eγ
tρ

ρ < 1

1+
γL0
I

is fulfilled if t < tf . Therefore, γ > 0 and |z1| < 1 and |z2| < 1

⇔ I ∈ (−∞,−γL0) and t < tf . �

Remark 2. If the conditions of lemma 5.2 are met, so are the conditions of

item ii) of the lemma 5.1. Hence, we can only consider the case I ∈ (−∞,−γL0)

and t < tf .

As a consequence of the previous results, it is not possible to perform an

asymptotic analytic for k̄(t) when t → ∞ and for any ρ ∈ [0, 1], because the

hypergeometric functions Jt y J0 converge only for |z1| < 1 and |z2| < 1 which

implies that I ∈ (−∞,−γL0) and t < tf . However, we can calculate the limit

limt→tf k̄(t) = ∞, which coincides with the case of integer order.
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Note that L(t) > 0 is a hypothesis for the Inada conditions to be met with

the KGCD and in the case of an integer order, and for the function of Cobb-

Douglas production to take real values. Therefore, the only possible case is the

one we have just determined.

In general, when applying the KGCD to the obtained solutions for capital

and per-capita production, a new parameter ρ is incorporated, and not a new

state variable to the solutions obtained for the SSM model. This parameter ρ

represents the order of the KGCD applied and can vary between 0 and 1 to

meet the Inada conditions if the KGCD is applied. It allows to recover the

solutions of the SSM when ρ adopts its maximum value and is consistent with

the Inada conditions, and therefore with the SSM, if its value is greater than

max[α, 1− α].

In a simple way, the parameter ρ added to the classic SSM when using the

KGCD, can be interpreted as the speed with which an economy approaches

towards its steady state in which there will be no further growth. The aforesaid

speed will be slower the smaller the said parameter is. In this trajectory, per-

capita capital decreases and, therefore, per-capita production and the economy’s

growth rate do it as well.

In this sense, the possibility of incorporating into the classic SSM a set

of differences between the economies of the planet that makes their trajectories

towards the same steady state do not coincide in speed and/or value. Therefore,

there is the possibility of solving the second criticism of said model that was

aforementioned.

The ρ parameter could, in addition, allow economic science researchers to

model endogenously (and without adding a state variable) some data of variables

from the economic, socio-political and institutional spheres that, the closer they

are to zero, more they decelerate the falling rate of the trajectories of capital

and the per-capita production over time towards its respective long-term steady

state.

Among the useful economic data to represent ρ there could be: 1) The per-

centage of available resources not used, that is, the percentage of idle capacity
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of available resources. 2) The percentage of profits (payment to capital) that is

used for purposes other than the creation of new capital through innovation. 3)

The inflation rate of an economy, this is the speed with which prices increase.

At a higher rate, per-capita capital and, therefore, also per-capita production

will fall to lower values and more rapidly than in the case of economies with

lower inflation rates. 4) The interest rate. 5) The tax rate applied in direct

and indirect taxes. 6) The unemployment rate. 7) The natural rate of unem-

ployment. 8) The size of the total public deficit with respect to GDP. 9) The

size of imports regarding GDP. 10) The complement of the ratio of the Trade

Openness Index (1− TOI). 11) The standardized risks measured between zero

and one by the rating agencies. 12) The percentage of concentration in the eco-

nomic structure (monopolies and oligopolies). 13) The degree to which other

market failures arise (externalities, incomplete markets, public goods and social

goods, among others). In the socio-political and institutional spheres, ρ could

represent, among other things, the degrees of: 14) Risk perceived by economic

agents. 15) Informality in the economy. 16) Inequality in income distribution.

17) Poverty and Malnutrition. Health and education shortfalls (illiteracy). 18)

Corruption. 19) Impunity. 20) Social violence. 21) Public insecurity. 22) The

efficiency with which private economic agents, with their rational expectations,

inhibit countercyclical economic policy measures that the government designs

and executes to reduce and decelerate the capital and per-capita production

downfalls.

One more possibility is that ρ is an index that results from a combination

of all or some of the aspects of any of the areas indicated previously, provided

it reflects in an aggregated and hierarchical manner the differences between the

economies of the planet in normalized values between zero and one.

Finally, ρ could also represent the rate of diminishing returns of capital

that generates convergence to the same steady state and that could be different

for each economy of the world, since it would be determined by the economic,

socio-political and institutional aspects listed above.
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6. Graphics of some representative examples

In this section we present the different cases of the solution for capital and

for production, both per-capita, without migration and with negative migration.

In Figures 1 and 2 the following values were taken: γ = 0.02, α = 0.6, δ = 0.05,

s = 0.12, A = 1, k0 = 200, L0 = 100, and −γL0 = −2. For the Figures 3 and

4 γ = 0.14, α = 0.69, δ = 0.19, s = 0.19, A = 1, k0 = 100, L0 = 100, and

H = −19.0.

6.1. Case without migration

Figure (1) shows the trajectories of per-capita capital for the case without

migration and for different values of ρ > max[α, 1−α] compared with the one of

integer order (ρ = 1). It can be noted that, without migration (I = 0) and with

a s lower than α, the per-capita capital decreases at a lower speed while the

order of the derivative KGCD is smaller and it does so converging to the same

steady state regardless of the value of ρ. That is, the lower the ρ, the lower and

slower will be the decrease in per-capita capital in an economy in which, without

migration, the savings rate and its conversion into new capital is insufficient to

counteract the depreciation of capital and growth of the population.

Figure 1: The value of per-capita capital k1(t) without migration of integer order ρ = 1.0,

k2(t) with fractional order of ρ = 0.95, k3(t) with fractional order of ρ = 0.90 and k4(t) with

fractional order of ρ = 0.85.

.

Figure (2) graphically describes the trajectories of per-capita production

without migration and for different values of ρ > max[α, 1 − α] compared with
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Figure 2: The value of per-capita product y1(t) without integer order migration ρ = 1.0,

y2(t) with fractional order of ρ = 0.95, y3(t) with fractional order of ρ = 0.90 and y4(t) with

fractional order of ρ = 0.85.

the ρ of integer order. Figure 2 shows that the per-capita production under the

KGCD follows a similar behaviour to that of the per-capita capital. This means,

the smaller the parameter ρ is, the lower and slower its trajectory towards the

same steady state will be. This is consistent with what happens in the SSM.

6.2. Case with negative migration

Figure (3) shows the trajectories of the per-capita capital with negative

migration of −19 for different values of ρ > max[α, 1 − α] compared to the

one of integer order (ρ = 1). From this we can deduce that negative migration

generates two different phases in the trajectory of per-capita capital over time:

one descending and another ascending. In both phases it happens that, inside

of the aforementioned interval, the smaller the ρ value the slower or less fast the

decrease and the rise of the per-capita capital trajectories.

An interesting aspect on this graph is that the lower the value of said para-

meter, the corresponding trajectory reaches its vertical asymptote more slowly.

This implies that, in the presence of negative migration, if it is possible that per-

capita capital, and therefore the per-capita production, will grow indefinitely in

a given time (t∗). The figure (4) that appears below shows this. This forces to

intuit the divergence in contrast to the convergence predicted by the classical

SSM.

Figures 3 and 4 show the possibility of solving the first criticism for the SSM
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Figure 3: The value of the per-capita capital kf1(t) with migration I = −19.0 of integer order

for ρ = 1.0, kf2(t) with fractional order of ρ = 0.98, kf3(t) with fractional order of ρ = 0.95

and kf4 with fractional order of ρ = 0.90.

Figure 4: The value of per-capita product yf1(t) with migration I = −19.0 of integer order

for ρ = 1.0, yf2(t) with fractional order of ρ = 0.98, yf3(t) with fractional order of ρ = 0.95

and yf4 with fractional order of ρ = 0.90.

cited in the introduction of this paper. This is provided that three conditions

are met: a negative migration (I < 0), I ∈ (−∞,−γL0) and t < tf . This is

due to the fact that capital and per capita production grow, approaching their

vertical asymptote, without stagnation.

7. Conclusions

Applying the KGCD to the SSM, we verify the consistency of the model

proposed with the Inada conditions, which is fulfilled if the ρ value in the KGCD

is greater than the maximum of max[α, 1−α], and we obtain closed solutions for

capital and per-capita production in cases without migration and with negative

migration. The obtained solutions were similar and consistent with the original
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model. As consequences, we have a simpler model than those of fractional

order and time scales, which allows giving a range of possible interpretations to

the parameter ρ in terms of economic science. In particular, this model could,

without increasing state variables, provide an alternative to solve the first and

second criticisms raised in the introduction to classical SSM for the case with

negative migration.

For the case without migration as for the classic SSM, with the KGCD it

was obtained that at different values of ρ there is convergence of the different

trajectories, although at different speeds according to the value of said para-

meter.

For the case with negative migration, unlike the classical SSM, it was ob-

tained that to guarantee the convergence of the hypergeometric functions and

fulfill the hypothesis that the labour force L(t) must be positive, there is a

vali-dity interval for the migration and a finite escape time in which per-capita

capital and per-capita production reach a vertical asymptote, without stagna-

tion.

Possible future work with KGCD may generate approximations about the

apparent memory effect that has been addressed with fractional derivatives for

growth models. In addition, the empirical verification of the convergence pro-

posed of the different trajectories for different economies of the world.
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