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Abstract In this article, we focus on constructing a new family of spatially anisotropic
Lifshitz spacetimes with arbitrary dynamical exponent z and constant negative curvature in
d + 1 dimensions within the framework of the Einstein–Proca theory with a single vector
field. So far, this kind of anisotropic spaces has been constructed with the aid of a set of
vector fields. We also consider the spatially isotropic case as a particular limit. The con-
structed metric tensor depends on the spacetime dimensionality, the critical exponent and
the Lifshitz radius; while, the curvature scalar depends just on the number of dimensions.
We also obtain a novel spectrum with negative squared mass; we compute the corresponding
Breitenlohner–Freedman bound and observe that the found family of spatially anisotropic
Lifshitz spaces respects this bound. Hence, these new solutions are stable and can be use-
ful within the gravity/condensed matter theory holographic duality, since the spectrum with
negative squared mass is complementary to the positive ones already known in the literature.
We also examine the null energy condition and show that it is essentially satisfied along all
the boundary directions, i.e., along all directions, except the r one, of our Lifshitz spacetime
with the corresponding consistency conditions imposed on the scaling exponents.

1 Introduction

The main idea of the gauge/gravity duality is that we can establish a relationship between
the physics of a field theory in d dimensions and the physics of gravity in d + 1 dimensions.
Gauge/gravity duality is of fundamental importance since it provides new links between
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quantum theory and gravity. It also has led to new concepts in mathematics and physics, and
provides new tools for solving problems in many areas of theoretical physics [1–3].

The most important and so far best understood example of this holographic principle is
the so-called anti-de Sitter/conformal field theory (AdS/CFT) correspondence, proposed by
Maldacena [4,5] (for a modern comprehensive review see [6,7]). This duality establishes a
relationship between backgrounds with negative curvature and conformal field theories with
one less (non-compact) spatial dimension.

One of the more interesting extensions of this duality consists in the study of quantum
critical systems that belong to the realm of condensed matter physics [8–16]. These quantum
critical models are scale invariant where space and time scale in a different way [17]. On the
other hand, these quantum critical theories are difficult to approach by means of perturbative
methods based on weakly interacting quasiparticles. Moreover, these systems exhibit non-
relativistic scaling symmetries of the following form

t −→ t ′ = λz t, xi −→ x
′i = λxi , (1)

where λ is an arbitrary real constant with dynamical critical exponent z �= 1. This kind of
symmetries is realized at quantum critical points and provides a strong kinematic relation to
different extensions of the AdS/CFT correspondence. The Lifshitz scaling transformations
(1) are present in the asymptotic symmetry group of the gravitational dual theory.

It is worth mentioning that since 1941, Lifshitz showed that systems which are invariant
under the anisotropic scaling transformation (1) appear within the framework of condensed
matter physics [18]. Notably, field theories invariant under the anisotropic scaling transfor-
mations (1) improve their high energy behavior [19–27]. In particular, using these transfor-
mations, Hořava formulated a modified gravity which seems to be ghosts free and power
counting renormalizable for z = 3 [28]. This modified gravity has dynamical inconsistencies
[29], but quite soon healthy extensions of it were found [30,31]. Remarkably, Hořava grav-
ity predicts that the spectral dimension of spacetime reduces at short distances [32]. Other
interesting properties of the Hořava gravity can be found in [33–41].

To construct metrics that obey the anisotropic Lifshitz scalings (1), an energy–momentum
tensor with the same symmetries is required to source the gravitational field. A first realization
of this idea was based on four-dimensional gravity coupled to a vector field and a 2-form that
interacts topologically [42]. However, an equivalent and simpler formulation was obtained
within the framework of gravity coupled to a massive single vector field [1,43]. It turns out
that this additional structure beyond pure Einstein gravity realizes Lifshitz geometries as
ground states. On the other hand, it is important to understand the physics that is encoded
in the gravitational theory when the Proca vector field is included, since the latter is hodge
dual to the 2-form action originally considered in [42]. An important aspect that it is worth
mentioning is that even when observables within gravitational systems can be difficult to
characterize, due to the dynamical nature of spacetime, these observables can be defined on
the boundary of such spacetimes (as in the case of Lifshitz geometries) [14].

Within the context of the holographic duality, a bulk field corresponds to an operator in
the dual field theory. The essential holographic dictionary was first formulated by Gubser–
Klebanov–Polyakov and Witten (GKPW) [44,45]. Besides, in [14], we have at hand a com-
prehensive review of the connection between bulk fields and operators in the dual field theory
that turns out to be completely general. There we observe that the important relation is

Field theory source h ⇐⇒ Leading behavior φ(0) of bulk field ∗
Field theory expectation value < O >⇐⇒ Subleading behavior φ(1) of bulk field ∗ ∗
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Here, φ(0) is the boundary value h of φ (where φ is a bulk field), and φ(1) is the expectation
value < O > of φ. Furthermore, it is important to mention that since the relations (∗) and
(∗∗) are completely general, then, as concrete examples, the sources could be the chemical
potential or an electric field and the expectation values are the charge density and the electric
current respectively [14].

We are motivated by the fact that Lifshitz spacetimes are currently relevant since they are
duals to quantum critical theories used to describe strongly coupled systems in condensed
matter. Concrete examples of such systems are high-temperature superconductors, whose
physical properties are governed by non-relativistic quantum critical points, and unitary
fermions, i.e., fermion whose interaction is fine-tuned to produce a non-relativistic scale
invariant system. Moreover, non-relativistic holography is interesting by itself as an example
of a gauge/gravity correspondence without asymptotically AdS spacetimes, and, hence, it
could shed some light on fundamental and general questions of the holographic principle
[1]. Therefore, in this paper, we shall focus on constructing a new family of exact solutions
to the Einstein–Proca equations that represent spatially anisotropic Lifshitz spacetimes, with
arbitrary dynamical exponent z and constant negative curvature in d + 1 dimensions.

This paper is organized as follows. In Sect. 2, we review Anti-de Sitter and Lifshitz
spacetimes. In Sect. 3, we introduce the Einstein–Proca theory with a single vector field
and quote a new family of exact solutions to the Einstein–Proca field equations that have
spatially anisotropic Lifshitz symmetry. We continue (in Sect. 3.1) with a discussion on
the novel spectrum with negative squared mass that respects a Breitenlohner–Freedman
bound and comment on the null energy condition in Sect. 3.2. In Sect. 3.3, we consider
a spatially isotropic Lifshitz background as a particular limit, and we find the BF bound for
this spacetime. We conclude in Sect. 4 with a short summary and conclusions.

2 Anti-de Sitter and Lifshitz spacetimes

2.1 Anti-de Sitter spacetimes

The geometry of the Anti-de Sitter spacetime is given by the following metric (in Poincarè
coordinates)

ds2 = l2
[
r2 (−dt2 + dx2

i

) + dr2

r2

]
, (2)

where i = 1, 2, . . . , D in a spacetime of D + 2 dimensions, l is the AdS radius [6]. The
boundary of AdS is found in r → ∞. Anti-de Sitter space is a solution of the Einstein
equations with a negative cosmological constant Λ = − D(D+1)

2 described by the action

S =
∫

dd+1x
√−g [R + D(D + 1)] , (3)

where d is the number of spatial dimensions of this gravity theory and d = D + 1; then
Einstein equations are

Rμν − 1

2
gμνR − D(D + 1)

2
gμν = 0, (4)

and the curvature scalar reads

R = − (D + 1)(D + 2)

l2
= −d(d + 1)

l2
, (5)
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which evidently is negative definite for any dimension and possesses an arbitrary factor given
by l−2.

2.2 Lifshitz spacetimes

On the other hand, a Lifshitz invariant theory is spatially isotropic and homogeneous, i.e., is
invariant under space and time translations and spatial rotations:

H : t −→ t ′ = t + a;
Pi : xi −→ x

′i = xi + ai ;
Li j : xi −→ x

′i = Li
j x

j , (6)

in addition, a Lifshitz theory admits the non-relativistic scaling symmetry

Dz : r −→ r ′ = λ±1r ,

t −→ t ′ = λ∓z t,

xi −→ x
′i = λ∓1xi . (7)

where the parameter z is the dynamical exponent. The symmetry group consisting of (H , Pi ,
Li j , Dz) will be denoted as LifD(z). Furthermore, a generalization of a Lifshitz invariant
theory takes place when considering a spatially anisotropic metric, i.e., a theory that admits
the following non-relativistic scaling symmetry

Dz : r −→ r ′ = λ±1r ,

t −→ t ′ = λ∓z t,

xi −→ x
′i = λ∓zi x i , (8)

where the zi are critical exponents along different spatial directions. The simplest Lifshitz
geometry [42] is given by the following metric

ds2 = �2
(

−r±2zdt2 + r±2dx2
i + dr2

r2

)
, (9)

where 0 ≤ r < ∞, � is the Lifshitz radius and again i = 1, 2, . . . , D in a spacetime of D+2
dimensions. This metric admits the space and time translations, and spatial rotations (6) and
the scaling symmetry (7). The ‘+’ and ‘−’ signs are related via the coordinate transformation
r → 1

r which leaves the metric invariant. Although, the matter fields of the considered theory
can have different behavior under the transformation r → 1

r , since only the field invariants
preserve its form under this inversion.

3 Einstein–Proca theory and Lifshitz spacetimes

In this section, we study the Einstein–Proca theory of a single massive vector field coupled
to gravity with a negative cosmological constant. Thus, we use the following action,1

S =
∫

dd+1x
√−g

[
R + D(D + 1) − 1

4
F2 − 1

2
M2A2

]
, (10)

1 It is important to note that there is no gauge invariance of the action (10).
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where Fμν is the vector field strength, Aμ is a massive vector field and M is its mass, and
the Greek indices run from 0 to D + 1. The Einstein–Proca equations of motion following
from this action are

Rμν − 1

2
gμνR − D(D + 1)

2
gμν = 1

2

(
FμρFν

ρ − 1

4
gμνF

2
)

+ M2

2

(
AμAν − 1

2
gμν A

2
)

,

(11)
whereas, the Proca equations read

∇μF
μν − M2Aν = 0 . (12)

In this paper, we will be interested in obtaining new spatially anisotropic Lifshitz spacetimes
of the Einstein–Proca theory. Thus, we shall start with the following metric ansatz

ds2 = �2
(

− f (r)dt2 + Pi (r)dx
2
i + dr2

r2

)
, (13)

where f (r) and Pi (r) are arbitrary functions of the extra coordinate and again i =
1, 2, . . . , D. Spatially anisotropic black branes with Lifshitz scaling were perturbatively
constructed in [46]. Without loss of generality, we shall consider the case in which the only
non-trivial component of the vector field is At . This requirement is consistent with the fact
that the mixed components of the energy–momentum tensor Ttr , Tti and Tir must vanish since
we are considering a diagonal metric ansatz. Therefore, under the ansatz (13), the Einstein–
Proca field equations consist of the following nonlinear ODEs for the unknown functions
f (r), Pi (r) and At (r):

−r2Pi
2

P ′′
k

Pk
+ 3r2Pi

8

P
′2
k

P2
k

− r2Pi
8

P ′
l P

′
k

Pl Pk
− r Pi

2

P ′
k

Pk
+ D(D + 1)

2
�2Pi

= r2Pi
4�2 f

A
′2
t + M2Pi

4 f
A2
t , (14)

−r2Pi
8

P
′2
k

P2
k

+ r2Pi
8

P ′
l P

′
k

Pl Pk
+ r2Pi f ′

4 f

P ′
k

Pk
− D(D + 1)

2
�2Pi

= − r2Pi
4�2 f

A
′2
t + M2Pi

4 f
A2
t , (15)

−r2P ′′
i

2
− r2 f ′P ′

i

4 f
− r P ′

i

2
− r2P ′

i

4

P ′
k

Pk

+r2P
′2
i

2Pi
+ r2Pi f ′′

2 f
+ r Pi f ′

2 f
− r2Pi

4

(
f ′

f

)2

+ r2Pi
2

P ′′
k

Pk

+r2Pi f ′

4 f

P ′
k

Pk
+ r Pi

2

P ′
k

Pk
+ r2Pi

8

P ′
l P

′
k

Pl Pk
− 3r2Pi

8

P
′2
k

P2
k

− D(D + 1)

2
�2Pi

= r2Pi
4�2 f

A
′2
t + M2Pi

4 f
A2
t , (16)

A′′
t +

(
1

2

P ′
k

Pk
− 1

2

f ′

f
+ 1

r

)
A′
t − M2�2

r2 At = 0, (17)

where primes denote derivatives with respect to the r coordinate and repeated indices k and
l denote summation from 1 to D.
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It turns out that the curvature scalar (or Ricci scalar) for the metric ansatz (13) reads

R = gμνRμν

= r2

2�2

[
−2

f ′′

f
− 2

f ′

r f
+ f

′2

f
− f ′

f

P ′
k

Pk
− 2

P ′′
k

Pk
+ 3

2

P
′2
k

P2
k

− 2
P ′
k

r Pk
− 1

2

P ′
l P

′
k

Pl Pk

]
. (18)

To solve the field equations (14)–(17), it is convenient to use the two following ansätze

f (r) = r±2z, (19)

Pi (r) = rai , (20)

where z is an arbitrary number and the ai are arbitrary constants. As a result of substituting
these ansätze into the field equations (14)–(16), we obtain a system of algebraic equations
for ai with the following independent solutions:

a1 = 1

2

⎡
⎣∓2z −

D∑
m=3

am±
√√√√−2

D∑
m=3

a2
m −

D∑
m,n=3

aman∓4z
D∑

m=3

am − 12z2 + 8D(D + 1)�2

⎤
⎦ ,

(21)

a2 = 1

2

⎡
⎣∓2z −

D∑
m=3

am∓
√√√√−2

D∑
m=3

a2
m −

D∑
m,n=3

aman∓4z
D∑

m=3

am − 12z2 + 8D(D + 1)�2

⎤
⎦ ,

(22)

and for arbitrary a3, a4, a5, . . . , aD subjected to the following restriction

D∑
k=1

ak = ∓2z, (23)

which manifestly depends on the spacetime dimensionality D and the critical exponent z,
and allows for a plethora of powers of r for the metric functions Pi (r) different from those
so far reported in the literature [2].

Since all the am are completely arbitrary, by choosing them to be positive, am > 0, we
shall have a negative definite a2, while the sign of a1 will depend on whether the sum of the
first and second terms is smaller or greater than the third one; however, their difference can
be made positive by appropriately setting the curvature radius �. For instance, when D = 2,

if �2 > z2

3 , then a1 > 0; when D = 3, if �2 > 3z2, for a3 ∼ z, then a1 > 0. Thus, with the
aid of �2 we can have as much positive am as we wish.

For these metric functions the non-vanishing component of the massive vector field is

At = c r±z, c =
√

2D(D + 1)�2

z
. (24)

On the other hand, the parameters of the theory read

M2 = − z2

�2 , (25)

D∑
k=1

a2
k = 4D(D + 1)�2 − 4z2. (26)
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An interesting and novel feature of the aforementioned family of Lifshitz solutions is that it
possesses a spectrum with negative squared masses. However, these modes of the massive
vector field must satisfy a Breitenlohner–Freedman bound for the system to be stable (see
next section).

Thus, the full metric is expressed as follows:

ds2 = �2
(

−r±2zdt2 + 1

r2 dr2 + rai dxidxi

)
, (27)

which is invariant under the spatially anisotropic Lifshitz transformations (8) if the coordi-
nates transform in the following way:

r −→ r ′ = λr,

t −→ t ′ = λ∓z t,

xi −→ x
′i = λ− ai (z,D,�2)

2 xi . (28)

The curvature scalar upon substitution of the metric functions f and Pi in (18), reads

R = −D(D + 1); (29)

here, we note that the curvature scalar only depends on the dimensionality D; it is constant,
negative and independent on the critical exponent z. There are several works where the
squared mass and the curvature scalar depend on both the dimensionality D and the dynamical
exponent z as well (see for instance [1,2,47]) within the same theory. It would be interesting
to find new solutions and/or the conditions under which these quantities acquire dependence
on both D and z.

3.1 A Breitenlohner–Freedman bound for our Lifshitz field configuration

It is well known that in AdS spacetime tachyons (particles with their negative mass square)
can arise, causing an instability only if their squared mass falls below a negative value. The
allowed range for the negative squared mass is obtained from calculating the Breitenlohner–
Freedman bound, guaranteeing the energy positivity of the system and, hence, its stability
[48]. Thus, in spite of having a negative spectrum for M2, given by (25), these values can be
allowed in spacetimes with negative curvature if these satisfies the Breitenlohner–Freedman
bound, that renders positive values for the energy of the system.

In particular, to find the Breitenlohner–Freedman bound for our case, we shall consider
the spacetime given by the background (27) and the Proca equations without gravitational
back-reaction, i.e., in the perturbative limit in which the massive vector field A(t, r, xi ) does
not alter the structure of spacetime. The Proca equations

∇μF
μν − M2Aν = 0 (30)

lead to the following constraint in curved spacetime

∇ν A
ν = ∂t A

t + ∂r A
r + ∂i A

i + r

�2 Ar = 0, (31)

obtained by a ∇ν contraction of Eq. (30).
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Thus, the following coupled field equations for At , Ar , and Ai , are obtained,

r∓2z∂2
t At − r2∂2

r At − ∂i∂
i At − (1∓ 2z) r∂r At ∓ 2zr∂t Ar + M2�2At = 0, (32)

r∓2z∂2
t Ar − r2∂2

r Ar − ∂i∂
iAr − 2r∂rAr − (1±2z)r∓2z−1∂tAt

+1 + ai
r

∂iAi + M2�2Ar = 0, (33)

r∓2z∂2
t Ak − r2∂2

r Ak − ∂i∂
i Ak− (1 ± 2z)r∂r Ak±2zr∂k Ar + M2�2Ak = 0, (34)

where At = At (t, r, xi ), Ar = Ar (t, r, xi ) and Ak = Ak(t, r, xi ). If we further consider, for
simplicity, that the only non-zero component of the vector potential is At (following [1,47]),
then it follows from Eq. (33) that ∂t At = 0. Therefore, the field Eq. (32) for the At component
of the vector potential adopts the form (see [49,50] for a similar treatment of the perturbed
vector field in a curved bulk background within the braneworld paradigm):[

r2∂2
r +(1∓ 2z) r∂r + r−ai ∂2

i − M2�2] At (r, x
i ) = 0. (35)

Fourier transforming with respect to xi , Eq. (35) becomes an ordinary differential equation[
r2∂2

r +(1∓ 2z) r∂r − k2
i r

−ai − M2�2] At (r, ki ) = 0, (36)

which can be solved analytically for D ≥ 1. The transformation

At (r, ki ) = r
1
2 (±2z−1)at (r, ki ), (37)

yields the following differential equation for the function at (r, ki )

− ∂2at (r, ki )

∂r2 +
(

4k2
i

rai
+ 4z2 − 1 + 4M2�2

)
at (r, ki )

4r2 = 0, (38)

which has a Schrödinger-like form with the potentialV (r) = 1
4r2

(
4k2

i
rai + 4z2 − 1 + 4M2�2

)
.

Thus, for D = 1, the exact solution for this equation for arbitrary values of z reads

at (r) = r
1
2

[
c1 Iα

(
βr− a1

2

)
+ c2 I−α

(
βr− a1

2

)]
, (39)

where c1 and c2 are integration constants, I±α

(
βr− a1

2

)
represent modified Bessel functions

of first class and order ±α, with

α = ±2
√
M2�2 + z2

a1
, β = 2k1

a1
. (40)

If we insert the function at (r) into (37), we obtain for the vector field the following expression

At (r) = r±z
[
c1 Iα

(
βr− a1

2

)
+ c2 I−α

(
βr− a1

2

)]
. (41)

By expressing the modified Bessel functions of first class in terms of infinite series, we have

Iα
(
βr− a1

2

)
=

∞∑
s=0

1

s!(s + α)!

(
βr− a1

2

2

)2s+α

, (42)

I−α

(
βr− a1

2

)
=

∞∑
s=0

1

s!(s − α)!

(
βr− a1

2

2

)2s−α

, (43)
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Table 1 The special values of D, z and ai corresponding to the expressions for ξD,z

(
k2
i

)
and ζD,z

(
k2
i

)
for

which the Schrödinger-like equation (45) renders analytical solutions with finite energy

D z ai ξD,z

(
k2
i

)
ζD,z

(
k2
i

)

2 3 a1 = − 2, a2 = − 4 k2
2 k2

1

3 4 a1 = − 2, a2 = − 4, a3 = − 2 k2
2 k2

1 + k2
3

5 a1 = − 2, a2 = − 4, a3 = − 4 k2
2 + k2

3 k2
1

4 5 a1 = − 2, a2 = − 4, a3 = − 2, a4 = − 2 k2
2 k2

1 + k2
3 + k2

4

6 a1 = − 2, a2 = − 4, a3 = − 2, a4 = − 4 k2
2 + k2

4 k2
1 + k2

3

7 a1 = − 2, a2 = − 4, a3 = − 4, a4 = − 4 k2
2 + k2

3 + k2
4 k2

1

Furthermore, to have real solutions, we require the order of the Bessel functions to be real;
hence, the radicand of α must be positive leading to

M2 ≥ − z2

�2 , (44)

which is the Breitenlohner–Freedman bound for our Lifshitz spacetime when D = 1.
For the D ≥ 2 cases, we have performed a detailed, but not exhaustive, analysis of the

Schrödinger-like potential of Eq. (38) for the allowed values of the ai constants, and have
found a plethora of potentials that range from potential wells to potential barriers. Among
them, we have identified a family of potential wells with infinite walls that necessarily include
negative energies and resemble the structure of the harmonic oscillator potential. Thus, the
corresponding Schrödinger-like equation for this class of potentials can be solved analytically
and allow us to make a complete analysis of the respective mass spectrum for concrete values
of the dynamical exponent z and the constants ai .

For the cases when D = 2, 3, 4 we obtain the following Schrödinger-like master equation
for the values of the ai and z displayed in Table 1:

− ∂2at (r, k2
i )

∂r2 +
(

ξ2
D,zr

2 + z2 − 1
4 + M2�2

r2

)
at (r, k

2
i ) = −ζ 2

D,zat (r, k
2
i ), (45)

where ξD,z and ζD,z depend on k2
i according to Table 1.

As the dimensionality of spacetime D increases the number of cases which obeys the
Schrödinger-like master equation (45) increases as well. The exact solution for this equation
is

at (r, k
2
i ) = e− ξD,zr

2

2 r2ρ− 1
2

[
ĉ1U (n, ρ, (ξD,zr

2)) + ĉ2L
2ρ−1
−n (ξD,zr

2)
]
, (46)

where ĉ1 and ĉ2 are integration constants, U (n, ρ, k2r2) is the confluent hypergeometric
function and L2ρ−1

−n (k2r2) denote generalized Laguerre polynomials, with

n = ζ 2
D,z

4ξD,z
+ ρ, ρ = 1

2
(1 +

√
M2�2 + z2). (47)

However, it can be shown that the latter functions are divergent and therefore we shall set
ĉ2 = 0. Hence, we shall consider only the term containing the confluent hypergeometric
function as the solution to the Schrödinger-like equation (45) (Fig. 1).
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Fig. 1 The profiles of At associated with D = 2, D = 3, D = 4, where ĉ1 = 1 for all cases

By substituting at (r,ξD,z,ζD,z) into (37), we get the final expression for the generic At

At (r, k
2
i ) = ĉ1e− ξD,zr

2

2 r±z+2ρ−1U (n, ρ, (ξD,zr
2)). (48)

It is remarkable that for these solutions to be real, the same bound (44) must be obeyed for all
the cases considered in Table 1. Thus, we have obtained the same Breitenlohner–Freedman
bound as for the D = 1 case.
Here, we would like to comment on an alternative approach to derive the Breitenlohner–
Freedman bound for our system. In [47], the authors start from the Proca equations (30) and
they consider only the electric component At = At (r) dt on the bulk. By following them
and using the metric given by (27), we find that

At (r) = č1r
τ±+λ+ + č2r

τ±+λ− , (49)

where τ± = ±z and λ± = ±√
M2�2 + z2. Thus, we have obtained one more time the same

Breitenlohner–Freedman bound (44) for the massive vector field.
Therefore, we can conclude that the mass spectrum of the solution given by (25) satisfies

the Breitenlohner–Freedman bound upon substitution into (44) in a straightforward way and
it holds for any dimension D when At = At (r, ki ) and in this sense yields a stable field
configuration.

By following the same argument as for the AdS/CFT correspondence in [45], one can
interpret č2 in (49) as the normalisable mode for dual operator of Lifshitz dimension τ−+λ−.

3.2 The null energy condition (NEC)

Einstein’s equations can be obtained without specifying matter, such that the Tμν is arbitrary.
Thus, understanding properties of Einstein’s equations that have a certain variety of sources
(fields) is very important. Therefore, it is convenient to impose energy conditions that restrict
the arbitrariness of Tμν . Hence, to calculate these energy conditions, we must construct
scalars of Tμν , by contracting it with arbitrary timelike vectors ζμ or arbitrary null vectors
ξμ.
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It is important to mention that there are several types of energy conditions, which are
appropriate for different circumstances. In our case, the NEC is generally assumed to provide
a sufficient condition to have a physically sensible holographic dual in the semi-classical limit
[51].

Although one can calculate the NEC using the energy–momentum tensor, one can also
write this condition in terms of the Ricci tensor. Following [16], the NEC in terms of the
Ricci tensor Rμν and an arbitrary null vector, is as follows:

Rμνξ
μξν ≥ 0, (50)

or

Rtt (ξ
t )2 + Rrr (ξ

r )2 + Ri j ξ
iξ j ≥ 0. (51)

If we use our background given by (27), a straightforward computation of the components
of the Ricci tensor gives

Rtt = −gtt
�2

[
z2± z

2

D∑
k=1

ak

]
,

Rrr = −grr
�2

[
z2 + 1

4

D∑
k=1

a2
k

]
,

Ri j = −gi j
�2

[
±z + 1

2

D∑
k=1

ak

]
ai
2

. (52)

By substituting these expressions into (51) we obtain
[
z2± z

2

D∑
k=1

ak

]
r±2z(ξ t )2 −

[
z2 + 1

4

D∑
k=1

a2
k

]
r−2(ξ r )2

−
[
±z + 1

2

D∑
k=1

ak

]
ai
2
rai (ξ i )2 ≥ 0. (53)

Subsequently, by substituting the explicit expressions of
∑D

k=1 ak and
∑D

k=1 a
2
k , which are

given by (23) and (26), respectively, into the inequality (53), we get

−D(D + 1)�2r−2(ξ r )2 ≥ 0. (54)

Thus, the inequality (54) can not be satisfied for an arbitrary null vector since it vanishes
only when ξ r is identically zero. In other words, the NEC is only satisfied when applied along
the t − xi directions. It is important to emphasize that even when the NEC is not satisfied for
all directions of the bulk spacetime, i.e., for t, r, xi , where i = 1, 2, 3, . . . , D, it does along
the D + 1 directions of the boundary, i.e., in the time direction t and the spatial directions xi
of the field theory.

3.3 Spatially isotropic Lifshitz background

In Sect. 3, we showed the general construction of a new family of spatially anisotropic Lifshitz
spacetimes with arbitrary dynamical exponent z and constant negative scalar curvature in d+1
dimensions within the framework of the Einstein–Proca theory.
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Nonetheless, it is possible to obtain a spatially isotropic Lifshitz background from the
results obtained in the previous section. By construction, starting from the same action of
Sect. 3 and making Pi (r) = p(r), we get the following metric anzatz

ds2 = �2
(

− f (r)dt2 + p(r)dx2
i + dr2

r2

)
, (55)

where again i = 1, 2, . . . , D. If we further consider

f (r) = r±2z, (56)

just as in our previous analysis, as a result of substituting these ansätze into the Einstein–Proca
field equations (14)–(17), we obtain the following Lifshitz solutions:

p(r) = r∓ (D−1)z
D2 (57)

At = c r±z, (58)

where the power of p(r) shows a dependence on the spacetime dimensionality D and the
critical exponent z, and the non-vanishing component of the massive vector field At has an
arbitrary real constant c. In addition, the parameters of the theory read

M2 = −2D2(D − 1)

3D − 1
, (59)

c =
√

(3D − 1)(2D − 1)(D + 1)

4D5
z, (60)

�2 = (3D − 1)z2

4D3 . (61)

It is important to emphasize that this Lifshitz solution possesses a spectrum with negative
squared masses as in the spatially anisotropic case. As pointed out before, these modes of
the massive vector field must satisfy a Breitenlohner–Freedman bound. This issue will be
discussed in the next subsection.
Thereby, the full metric is expressed as follows:

ds2 = �2
(

−r±2zdt2 + 1

r2 dr2 + r∓ (D−1)z
D2 dxidxi

)
, (62)

which is invariant under the Lifshitz transformations (8) if the coordinates transform in the
following way:

r −→ r ′ = λ±r, (63)

t −→ t ′ = λ∓z t, (64)

xi −→ x
′i = λ

± (D−1)z
2D2 xi . (65)

The curvature scalar upon substitution of the metric functions f and p, and the expression
for the Lifshitz curvature radius � in (18), reads

R = − (D + 1)
(
5D2 − 2D + 1

)
(3D − 1)

; (66)

here, we note that the curvature scalar only depends on the dimensionality D; it is constant
and negative definite.
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It is worth mentioning that if t , r and xi transform in the following way:

r = r̃− 2D2
(D−1)z ,

t = t̃,

xi = x̃i , (67)

and z = −2D2

D−1 , the metric (62) reads

ds2 = �2
(

−r̃±2zdt̃2 + dr̃2

r̃2 + r̃±2dx̃2
i

)
, (68)

concluding that the spatially isotropic Lifshitz background given by (62) is diffeomorphic to
the one reported in [1].

3.3.1 BF bound for our spatially isotropic Lifshitz background

To find the Breitenlohner–Freedman bound, we consider a spacetime given by the background
(62) and the Proca equations without gravitational back-reaction, i.e., in the perturbative limit
in which the massive vector field does not alter the structure of spacetime. Thus, the Proca
equations read

∇μF
μν − M2Aν = 0 , (69)

and are supplemented by the following constraint in curved spacetime

∇ν A
ν = ∂0A

0 + ∂r A
r + ∂i A

i +
[

1 ± (D + 1)z

2D

]
r

�2 Ar = 0, (70)

obtained by a ∇ν contraction of the equation (69).
Hence, the following coupled field equations for Ar , At , and Ai , are obtained,

r∓2z∂2
t At − r2∂2

r At − r± z(D−1)

D2 ∂2
i At −

(
1∓ (3D − 1)z

2D

)
r∂rAt

∓ 2zr∂t Ar + M2�2At = 0, (71)

r∓2z∂2
t Ar − r2∂2

r Ar − r± z(D−1)

D2 ∂2
i Ar −

(
2 ± (D + 1)z

2D

)
r∂r Ar −

− (1 ± 2z)r∓2z−1∂t At +
(

1 ∓ (D − 1)z

D2

)
r−1∂i A

i + M2�2Ar = 0, (72)

r∓2z∂2
t Ak − r2∂2

r Ak − r± z(D−1)

D2 ∂2
i Ak −

(
1 ± (2D − 1)(D + 1)z

2D2

)
r∂r Ak

± (D2 − 1)z

2D2 r∂k Ar + M2�2Ak = 0, (73)

where At = At (t, r, xi ), Ar = Ar (t, r, xi ) and Ak = Ak(t, r, xi ). If we further consider,
for simplicity, that the only non-zero component of the vector potential is At , then it follows
from equation (72) that ∂t At = 0. Therefore, the field equation (71) for the component At

of the vector potential adopts the form:
{
∂2
r +

[
1 ∓ (3D − 1)z

2D

]
r−1∂r + r± (D−1)z

D2 −2
∂2
i − �2M2r−2

}
At (r, x

i ) = 0. (74)
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Fourier transforming with respect to xi , the equation (74) becomes an ordinary differential
equation

{
∂2
r +

[
1 ∓ (3D − 1)z

2D

]
r−1∂r − k2r± (D−1)z

D2 −2 − �2M2r−2
}
At (r, ki ) = 0, (75)

where k2 = ki ki and the exact solution for this equation for general values of z is

At (r) = r± (3D−1)z
4D

[
c+ Iγ

(
ηr± (D−1)z

2D2

)
+ c− I−γ

(
ηr± (D−1)z

2D2

)]
, (76)

where c+ and c− are integration constants, I±γ

(
ηr± (D−1)z

2D2

)
represent modified Bessel func-

tions of first class and order ±γ , with

γ = ±D
√

16D2�2M2 + (3D − 1)2z2

2(D − 1)z
, (77)

η = ± 2D2k

(D − 1)z
. (78)

Furthermore, to have real solutions, we require the order of the Bessel functions to be real;
hence,

16D2�2M2 + (3D − 1)2z2 ≥ 0, (79)

by substituting the value of �2 given by (61) into this expression, we get

M2 ≥ −D(3D − 1)

4
, (80)

which is the Breitenlohner–Freedman bound for our spatially isotropic Lifshitz spacetime.
An alternative way of obtaining this result is as follows:

If we start from the Proca equations (69), considering only the electric component A =
At (r) dt on the bulk and using the metric given by (62), we find that

At (r) = c̃1r
κ±+ω− + c̃2r

κ±+ω+ , (81)

where κ± = ± (3D−1)z
4D and ω∓ = ∓

√
16D2�2M2+(3D−1)2z2

4D .
By substituting the value of �2 (61) into the radicand appearing in ω∓, we get the same
Breitenlohner–Freedman bound (80) for the massive vector field. Besides, one can interpret
c̃1 and c̃2 as the normalisable modes for dual operators of Lifshitz dimension κ− + ω∓.

The mass spectrum for this solution given by (59) satisfies the BF bound upon substitution
into (80) in a straightforward way, rendering an inequality, (D + 1)2 ≥ 0, which holds for
any dimension D and yields a stable field configuration.

3.3.2 Null energy condition (NEC)

In terms of the Ricci tensor Rμν and an arbitrary null vector, the NEC reads

Rμνξ
μξν ≥ 0. (82)
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For the spatially isotropic case, the Ricci tensor components look like

Rtt = −
(
D + 1

2D

)
z2 gtt

�2 ,

Rrr = −
(

1 + (D − 1)2

4D3

)
z2 grr

�2 ,

Ri j =
(
D2 − 1

4D3

)
z2 gi j

�2 . (83)

By substituting these Ricci tensor components into (82) we obtain

z2 (D + 1)

2D
r±2z(ξ t )2 − z2

(
1 + (D − 1)2

4D3

)
r−2(ξ r )2

+z2
(
D2 − 1

4D3

)
r
∓ (D−1)z

d2 (ξ i )2 ≥ 0. (84)

As in Sect. 3.3, for this particular spatially isotropic Lifshitz spacetime, the NEC can not
be satisfied for an arbitrary null vector since it vanishes only when ξ r is identically zero.
In other words, the NEC is only satisfied when applied along the boundary directions, i.e.,
along time direction t and the xi spatial directions of the field theory.

3.3.3 Another look at spatially isotropic Lifshitz backgrounds

Now, we show that if one considers Pi = r2, the metric ansatz is expressed as follows

ds2 = �2
(

− f (r)dt2 + dr2

r2 + r2dx2
i

)
. (85)

As a result of substituting the function Pi = r2 into the Einstein–Proca field equations
(14)–(17), we obtain the following function f (r) as a solution

f (r) = r2z, (86)

where the parameter z is the critical exponent and can be positive or negative in principle.
By substituting (86) in (85), we obtain

ds2 = �2
(

−r2zdt2 + 1

r2 dr2 + r2dxidxi

)
, (87)

where the parameters of the theory read

�2 = (2z + D − 1)2 + (3D − 1)(D + 1)

4D(D + 1)
, (88)

M2 = 2D2(D + 1)

(2z + D − 1)2 + (3D − 1)(D + 1)
z, (89)

c =
√

2D(z − 1)

M2 , (90)

and the massive vector field is expressed by

At = cr z . (91)
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As one can see, the massive vectorial field is real if z > 1, which implies that M2 is positive
too. It is convenient to stress that at this point, the spatially isotropic Lifshitz background
reported in [1] is recovered. Whereas if z ≤ 0, the massive vectorial field turns out be real
if M2 is negative, since M2 is proportional to z. For 0 < z < 1 there is no real vector field
solution.

Finally, the curvature scalar upon substitution of the metric functions f and Pi in (18),
reads

R = −2D(D + 1)
[
4z2 + 2D(2z + D + 1)

]
(2z + D − 1)2 + (3D − 1)(D + 1)

; (92)

here, we note that the curvature scalar depends on the dimensionality D and the critical
exponent z; it is negative and constant for any z.

4 Conclusions and discussion

We have obtained a new family of exact solutions to the Einstein–Proca equations with a
single vector field that have spatially anisotropic Lifshitz symmetry, for any dimension D
and arbitrary dynamical exponent z. Our functions Pi (r), which multiply dx2

i in the metric,
depend on the dimension D, the curvature Lifshitz radius �2 and the critical exponent z, giving
rise to a spatially anisotropic generalization of the known Lifshitz backgrounds constructed
within the Einstein–Proca theory, since in the spacetime metric all the xi coordinates scale
in a different way. Thus, we have obtained an interesting new family of spatially anisotropic
Lifshitz solutions that is different from those supported by several vector fields [2]. In addition,
we have found that the squared mass of the Proca field turns out to be negative definite, making
it necessary to obtain a generalized Breitenlohner–Freedman bound for our theory. We have
computed such a bound in two different ways (one of them considers a full dependence of
the vector field At on all the spacetime coordinates) and have shown that our mass spectrum
respects it, yielding a stable and physically meaningful field configuration. We found that
our curvature scalar is also negative definite, depends only on the dimensionality D and is
completely independent of the dynamical exponent z. It would be interesting to obtain further
generalizations of these Lifshitz backgrounds where the curvature scalars depending on both
the dimensionality D and the critical exponent z.

On the other hand, we also obtained a spatially isotropic Lifshitz background, given by
(62), built within the Einstein–Proca theory supported by a single vector field. This spatially
isotropic spacetime is diffeomorphic to a Lifshitz geometry with negative z as shown in Sect.
3.3.

We further analyzed the null energy condition of both the spatially anisotropic Lifshitz
spacetime (27) and the spatially isotropic Lifshitz background (62). It is worth mentioning
this condition since it plays a relevant role in the sense that we can obtain restrictions for
the dynamical exponents determined by the NEC and these restrictions will be applied when
studying the invariant fixed points in the field theories. The NEC is remarkable since it plays
a crucial role when examining the behavior of the flow of the c-function: the NEC must be
satisfied for the flow of the c-function to be monotonic for dual field theories to Einstein
gravity, for more details see [51].

Regarding the spatially anisotropic Lifshitz geometry (27), the NEC is satisfied for all
the boundary directions, i.e., along the time direction t and the spatial directions xi of the
dual field theory with the corresponding conditions on the scaling exponents. However, the
NEC is not satisfied for a completely arbitrary null vector due to the presence of negative
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critical exponents. Since the spatially isotropic Lifshitz spacetime (62) possesses a negative
dynamical exponent, it also violates the NEC. However, in [52], the authors presented Lifshitz
backgrounds obtained within a gravitational model with curvature squared corrections where
solutions with z < 1 also are allowed and, in principle, the NEC can be satisfied for negative
dynamical exponents. This implies that so far there is no exhaustive study about whether or
not the NEC holds for Lifshitz solutions with z < 1, opening a window for gravitational
configurations for which the NEC can be satisfied. It would be interesting to either confirm
or refute this hypothesis within the context of our model, i.e., by adding curvature squared
corrections to the Einstein–Proca theory and see if we can obtain Lifshitz spacetimes where
the null energy condition can be satisfied for negative critical exponents. We leave this issue
for future work.

One of the most important results in this spatially isotropic case is the negative definite
character of the squared mass of the Proca field which supplements the positive definite
squared mass spectra known so far in the literature. We also have found a Breitenlohner–
Freedman bound for this background and shown that the mass spectrum respects it, yielding
a stable field configuration. Likewise, its curvature scalar was calculated; it is also nega-
tive definite and depends only on the dimensionality D. A detailed study of the physical
consequences of the negative squared mass spectrum on the dual quantum field theory is in
order here to better understand this apparent inconsistency of the aforementioned spatially
isotropic family of Lifshitz spaces.

Finally, to be able to apply Lifshitz holography to condensed matter systems, one needs to
understand in detail the correspondence existing between bulk fields and boundary operators,
i.e., to establish a holographic dictionary. However, this dictionary is very subtle and is not
completely well understood for non-relativistic theories as the Lifshitz one. Recent progress
on this issue shows that holographic models describe universality classes of Lifshitz theory
at strong coupling and the holographic dictionary was used to deduce universal properties
of certain Lifshitz systems [1]. It would be interesting to determine whether the negative
character of the squared mass spectrum of our solution introduce some subtleties within a
given dual field theory. This is a work currently in progress.
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