
ar
X

iv
:1

41
1.

59
27

v1
  [

he
p-

th
] 

 2
1 

N
ov

 2
01

4

Hamiltonian analysis for Lifshitz type Fields

Alejandro Gaona (1)∗, Juan M. Romero (2)†

(1)Posgrado en Ciencias Naturales e Ingenieŕıa,
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Abstract

Using the Dirac Method, we study the Hamiltonian consistency for
three field theories. First we study the electrodynamics a la Hořava
and we show that this system is consistent for an arbitrary dynamical
exponent z. Second, we study a Lifshitz type electrodynamics, which
was proposed in [1]. For this last system we found that the canonical
momentum and the electrical field are related through a Proca type
Green function, however this system is consistent. In addition, we
show that the anisotropic Yang-Mills theory with dynamical exponent
z = 2 is consistent. Finally, we study a generalized anisotropic Yang-
Mills theory and we show that this last system is consistent too.
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1 Introduction

Lately, systems invariant under anisotropic scaling

~x → b~x, t → bzt, b = constant, (1)

where z is a dynamical exponent, have been attracted a lot of attention.
For example, in general relativity it has been found space-times invariant
under the anisotropic scaling (1), see [2]. Some of these kind of space-times
can be seen as generalized Schrödinger space-time [3] and other as an AdS

deformation [4, 5]. It is worth to mention that different anisotropic space-
times are solution for the Einstein’s equation with energy momentum tensor
produced by a Proca Field [2], which is a massive field. Now, originally
the anisotropic scaling (1) were found in condensed matter [6]. Amazingly,
the gravity/gauge correspondence allows a relation between different metrics
invariant under the anisotropic scaling (1) and some condensed matter sys-
tems [7, 8, 9]. Furthermore, almost every field theory can be transformed
into a field theory invariant under the anisotropic scaling (1), this deformed
field theory improves its high energy behavior [10, 11, 12, 13, 14, 15, 16]. In
fact, using the anisotropic scalings (1), Hořava formulated a modified gravity
which seems to be free ghosts and power counting renormalizable for z = 3
[17]. However, applying Dirac Method, it was shown that this gravity has
dynamical inconsistencies [19], but with the same method were found healthy
extensions [20, 21]. Hořava gravity has different interesting properties, some
works about these properties can be seen in [22, 23, 24, 25, 26, 27, 28, 29].
The Dirac Method is important to understand the anisotropic gravity, how-
ever there is not a study about Hamiltonian consistency for anisotropic gauge
fields as anisotropic electrodynamics or anisotropic Yang-Mills field.

In this paper, using the Dirac Method, we show that the anisotropic elec-
trodynamics is consistent for an arbitrary dynamical exponent z. In addition,
we show that the usual Coulomb gauge condition is correct for this system.
Furthermore, we study the Hamiltonian formalism for a Lifshitz type elec-
trodynamics. For this last system we found that the canonical momentum
and the electrical field are related through a Proca type Green function,
however this system has two degrees of freedom and is consistent. It is
worth mentioning that this last system was proposed for generating neutrino
masses dynamically [1]. Moreover, using the Dirac Method again, we find
that the Hamiltonian formalism for the anisotropic Yang-Mills theory with
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z = 2 proposed in [16] is consistent. Also, we study a generalized anisotropic
Yang-Mills theory and we show that this last system is consistent too.

This paper is organized as follow: in the section 2 we study the formalism
for the electrodynamics a la Hořava; in the section 3 we study a Lifshitz type
electrodynamics; in the section 4 the anisotropic Yang-Mills is studied and
in the section 5 our summary is given.

2 Anisotropic Electrodynamics and Hamil-

tonian analysis

In this section we study the Hamiltonian formalism for the anisotropic elec-
trodynamics, the action for this system is given by [12]

S =
∫

cdtd~xL =
∫

dtd~x

(

EiEi −
1

2
Fijf

(

∇2
)

Fij

)

, (2)

where f(x) =
∑

z≥1 azx
z−1 and

Ei = − (∂tAi + ∂iφ) , Bi =
(

~∇× ~A
)

i
, Fij = ∂iAj − ∂jAi = ǫijkBk. (3)

The case z = 2 was first studied in [30].

Now, from the action (2) we obtain

πi =
∂L

∂(∂tAi)
= −2αEi, (4)

π0 =
∂L

∂(∂tφ)
= 0. (5)

Then we have the primary constraint

χ1 = π0(~x, t) ≈ 0. (6)

In addition, the canonical Hamiltonian for this system is given by

Hc(t) =
∫

d~x
(

πi∂tAi −L
)

=
∫

d~x

(

1

4
πiπi +Bif(∇

2)Bi − φ∂iπ
i

)

. (7)
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According to Dirac Method [31], all Hamiltonian constraint does not evolve.
Then, the constraint (6) must satisfy

χ̇1 ≈ 0, (8)

namely

χ̇1 =
{

π0(~x, t), Hc(t)
}

=
{

π0(~x, t),
∫

d~y

(

1

4
πiπi +Bif(∇

2)Bi −A0∂iπ
i

)}

= ∂iπ
i(~x, t). (9)

This equation implies the new constraint

χ2 = ∂iπ
i(~x, t) ≈ 0. (10)

According to Dirac Method [31], this last constraint must satisfy

χ̇2 ≈ 0, (11)

namely

χ̇2 =
{

∂iπ
i(~x, t), Hc

}

=
{

∂iπ
i(~x, t),

∫

d~y
(

Bjf(∇
2)Bj

)

}

= ∂iǫilj∂l
(

f(∇2)Bj

)

= 0. (12)

Thus, there are not more constraints. In conclusion, the Hamiltonian con-
straints are given by

χ1 = π0(~x, t) ≈ 0, χ2 = ∂iπ
i(~x, t) ≈ 0, (13)

which satisfy

{χ1(~x, t), χ2(~x
′, t)} = 0. (14)

For this reason, the constraints (13) are first class constraints and them gen-
erate gauge transformations for the system (2). Then, the gauge freedom for
this system is the same of the usual electrodynamics. In particular, this sys-
tem has two degrees of freedom and there are not dynamical inconsistencies.

Furthermore, the extended Hamiltonian is given by

HE(t) =
∫

d~x

(

1

4
πiπi +Bif(∇

2)Bi − A0∂iπ
i + λ1π

0 + λ2∂iπ
i

)

,
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where λ1 and λ2 are Lagrange multipliers. Using this Hamiltonian we have
the equations of motion

φ̇(~x, t) = {φ(~x, t), HE(t)} = λ1(~x, t), (15)

Ȧi(~x, t) = {Ai(~x, t), HE(t)} =
1

2α
πi(~x, t) + ∂i [φ(~x, t)− λ2(~x, t)] , (16)

π̇0 =
{

π0(~x, t), HE(t)
}

= ∂iπ
i(~x, t) = 0, (17)

π̇i = {πi(~x, t), HE(t)} = ǫilj∂l
(

f(∇2)Bj(~x, t)
)

. (18)

The two last equations can be written as

∇ · ~E = 0, (19)

~∇× (f(∇2) ~B) =
∂ ~E

∂t
, (20)

which are the equations of motion for anisotropic electrodynamics [12].

3 Coulomb gauge

Due that this theory has two first class constraints, we have to choice two
gauge conditions. The usual Coulomb gauge conditions are

χ3(~x, t) = φ(~x, t) ≈ 0, (21)

χ4(~x, t) = ∂iA
i(~x, t) ≈ 0, (22)

which are good gauge conditions for the anisotropic electrodynamics. In fact,
according to Dirac Method, the constraints (21)-(22) have not evolve. Then,

φ̇(~x, t) = {φ(~x, t), HE(t)} = λ1(~x, t) ≈ 0, (23)

χ̇4 = {∂iAi, HE} =
{

∂iAi, Hc +
∫

d~y
(

λ1π
0 + λ2∂jπ

j
)

}

=
1

2α
∂iπi(~x) +∇2φ− ∂i∂iλ2 ≈ 0,

which implies

∇2φ− ∂i∂iλ2 ≈ 0. (24)
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Now, the Dirac bracket for this gauge is

{V (~x, t),W (~y, t)}∗ = {V (~x, t),W (~y, t)}

+
∫

d~y′
[{

V, π0(~y′, t)
} {

A0(~y′, t),W
}

−
{

V,A0(~y′, t)
} {

π0(~y′, t),W
}]

−
∫ ∫

1

4π

1

| ~w − ~y′ |

{

V, ∂iπ
i(~w, t)

} {

∂iA
j(~y′, t),W

}

d~y′d~w

+
∫ ∫

1

4π

1

| ~w − ~y′ |

{

V, ∂jA
j(~w, t)

} {

∂iπ
i(~y′, t),W

}

d~y′d~w.

In particular, we have

{Aµ(~x, t), πν(~y, t)}∗ =
(

ηµν + ηµ0η0ν
)

δ3(~x− ~y)

−
∂

∂xµ

∂

∂yν

(

1

4π

1

| ~x− ~y |

)

. (25)

Then, the equations of motion are
{

Ai(~x, t), HE(t)
}∗

= Ȧi, (26)

{

πi(~x, t), HE(t)
}∗

= ~∇×
(

f(∇2) ~B
)

=
∂ ~E

∂t
. (27)

Thus, the usual Coulomb gauge is a good gauge condition for the system (2).

4 Lifshitz type electrodynamics

Recently it was proposed a new mechanism to obtain massive fields. In this
mechanism spatial higher order derivatives are introduced [1]. For example,
the action for the Lifshitz type electrodynamics is

S =
∫

d~xdtL =
∫

d~xdt

(

−
1

4
Fµν

(

1−
∇2

M2

)

F µν

)

, (28)

=
∫

d~xdt

(

1

2
EiE

i −Ei

∇2

2M2
Ei −

1

4
FijFij + Fij

∇2

4M2
Fij

)

. (29)

From this action we have

π0 = 0, (30)

πi = −

(

1−
∇2

M2

)

Ei. (31)
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Then, we have the primary constraint

χ1 = π0(~x, t) ≈ 0. (32)

In addition, from the equation (31), we have

Ei(~x, t) =
∫

d~x′G (~x− ~x′)πi(~x′, t), (33)

where

−

(

1−
∇2

M2

)

G (~x− ~x′) = δ3(~x− ~x′), (34)

namely

G (~x− ~x′) = −
M2

4π

e−M |~x−~x′|

|~x− ~x′|
. (35)

Notice that this Green function is a Proca type propagator.

Now, the canonical Hamiltonian for this system is given by

Hc(t) =
∫

d~x(πi∂tAi − L)

=
∫

d~x

(

−
1

2
πiEi +

1

4
FijF

ij −
1

4M2
F ij∆Fij + φ∂iπ

i

)

=
∫

d~xd~x′
(

−
1

2
πi(~x, t)G (~x− ~x′)πi(~x

′, t)
)

+
∫

d~x

(

1

4
FijF

ij +
1

4M2
F ij∆Fij + φ∂iπ

i

)

. (36)

In addition, according to the Dirac Method [31], the constraint (32) has to
satisfy

χ̇1 ≈ 0, (37)

namely

χ̇1 =
{

π0(~x, t), Hc(t)
}

= ∂iπ
i(~x, t) ≈ 0. (38)

This equation implies the new constraint

χ2 = ∂iπ
i(~x, t) ≈ 0, (39)
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which implies

χ̇2 ≈ 0. (40)

It can be shown that

χ̇2 =
{

∂iπ
i(~x, t), Hc(t)

}

= 0. (41)

Thus, there are not more constraints. Then, all the Hamiltonian constraints
are given by the constraints (32) and (39) which are first class constraints and
generate the gauge transformations for this system. For that reason there
are not dynamical inconsistencies.

Now, the usual Proca field is massive and has three degrees of freedom.
In the Lifshitz type electrodynamics appears a Proca type propagator (35),
however it has two first class constraints. For this last reason, the Lifshitz
type electrodynamics has two degrees of freedom, as the usual electrodynam-
ics.

5 Anisotropic Yang-Mills field

The action for the anisotropic Yang-Mills field is given by [16]

S =
1

4

∫

dtd~x

(

1

e2
(EaiEai) + β(DiFaikDjFajk)

)

, (42)

where

DiFajk = ∂iFajk + igfab
cAbiFcjk. (43)

This action is invariant under anisotropic scaling for z = 2.

From the action (42) we have

πi
a = −

1

2e2
Ei

a, (44)

π0

a = 0. (45)

Then, we have the constraints

χ1a = π0

a ≈ 0. (46)
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In addition, the canonical Hamiltonian is

Hc(t) =
∫

d~x

(

e2πi
aπ

i
a −

β

4
(DiFaikDjFajk)−Aa0

(

∂iπ
i
a + igfac

bAciπ
i
b

)

)

.(47)

Using this Hamiltonian we get

χ̇1a = {π0

a(~x, t), Hc(t)} = ∂iπ
i
a(~x, t).+ igfae

bπi
b(~x, t)Aei(~x, t) (48)

Now, due that the Dirac Method sets

χ̇1a ≈ 0, (49)

we have the new constraints

χ2a(~x, t) = ∂iπ
i
a(~x, t) + igfae

bπi
b(~x, t)Aei(~x, t) ≈ 0, (50)

which satisfy

{χ2a(~x, t), χ2b(~y, t)} = igfab
cχ2c(~y, t) ≈ 0. (51)

Using the constraints (50) we obtain

Hc(t) =
∫

d~x

(

e2πi
aπ

i
a −

β

4
(DiFaikDjFajk)− Aa0χ2a

)

. (52)

Furthermore we found that

χ̇2a = {χ2a, Hc} = −
igβ

2
fad

h
(

DiF
ik
h )(DjF

jk
d

)

= 0. (53)

Then, there are not more constraints and the only constraints for this system
are (46) and (50), which are first class constraints. This last result implies
that the extended Hamiltonian is given by

HE(t) =
∫

d~x

(

e2πi
aπ

i
a −

β

4
(DiFaikDjFajk) + λ1aχ1a + (λ2a −Aa0)χ2a

)

, (54)

where λ1a and λ2a are Lagrange multipliers.
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It is worth mentioning that the constraints (46) and (50) are the same con-
straints for the usual Yang-Mills theory [32]. Now, the consistent Coulomb
gauge conditions for the usual Yang-Mills theory are given by [32]

∂iA
i
a(~x, t) = 0,

A0

a(~x, t)−
1

4π

∫

d~yGab (~x, ~y, A) (2e
2)igfbc

dπi
d(~y, t)Aci(~y, t) ≈ 0,

where
(

δab∂i∂
i + igfac

bAi
c∂i
)

Gcb(~x, ~y, A) = −4πδabδ(~x− ~y). (55)

It is possible to show that these gauge conditions are good gauge conditions
for the anisotropic Yang-Mills with z = 2.

5.1 General case

For the case z = 2, an alternative action for the anisotropic Yang-Mills theory
is given by

S =
1

4

∫

dtd~x

(

1

e2
EaiEai + βFajkD

2Fajk

)

, D2Fajk = DiDiFajk.(56)

In fact, we can propose the general action

S =
1

4

∫

dtd~x

(

1

e2
EaiEai + Fajkf

(

D2
)

Fajk)
)

, (57)

where f(x) =
∑

z≥1 azx
z−1. From this action we have

πi
a = −

1

2e2
Ei

a, (58)

π0

a = 0. (59)

Namely, we obtain the constraints

χ1a = π0

a ≈ 0. (60)

In addition, the canonical Hamiltonian is

Hc(t) =
∫

d~x

(

e2πi
aπ

i
a −

1

4
Fajkf

(

D2
)

Fajk − Aa0

(

∂iπ
i
a + igfac

bAciπ
i
b

)

)

. (61)
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Now, using this Hamiltonian we arrive to

χ̇1a =
{

π0

a(~x, t), Hc(t)
}

= ∂iπ
i
a(~x, t) + igfae

bπi
b(~x, t)Aei(~x, t), (62)

which implies the constraints

χ2a(~x, t) = ∂iπ
i
a(~x, t) + igfae

bπi
b(~x, t)Aei(~x, t) ≈ 0. (63)

Due that the constraints χ1a(~x, t) and χ2a(~x, t) satisfy (51), these are first
class constraints.

Now, using the Jacobi’s identity for the structure constants

frs
cfac

b + fsa
cfrc

b + far
cfsc

b = 0,

we arrive to
{

Diπ
i
a(~x, t),

∫

d~yFbjk(~y, t)
(

D2
)z

Fbjk(~y, t)
}

= 2(ig)2Aj
r(~x, t)A

k
s(~x, t)

(

frs
cfac

b + fsa
cfrc

b + far
cfsc

b
) (

D2
)z

Fbjk(~x, t) = 0. (64)

This last result implies

χ̇2a = {χ2a, Hc} ≈ 0. (65)

Then, there are not more constraints and this system is consistent. In this
case the extended Hamiltonian is given by

HE(t) =
∫

d~x

(

e2πi
aπ

i
a −

1

4
Fajkf

(

D2
)

Fajk + λ1aχ1a + (λ2a − Aa0)χ2a

)

, (66)

where λ1a and λ2a are Lagrange multipliers. Another generalized anisotropic
Yang-Mills theory was proposed in [18].

The Hamiltonian constraints for anisotropic gravity are very different
from the Hamiltonian constraints for the usual gravity. However, the Hamil-
tonian constraints obtained for the Lifshitz type fields are not different from
the Hamiltonian constraints for usual fields. This result is interesting, be-
cause if it is possible to obtain a quantum gravity with anisotropic scaling
transformations, the anisotropic fields theories will not have problems, in fact
them improve its UV behavior.
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6 Summary

In this paper, we studied the dynamical consistency for the electrodynamics
a la Hořava and we show that this system is consistent for arbitrary dynam-
ical exponent z. In fact, for this system the constraints are the same that
the usual electrodynamics. For this reason, a good gauge condition for the
usual electrodynamics is a good gauge condition for the anisotropic electro-
dynamics. In addition, we study a Lifshitz type electrodynamics, which was
proposed in [1]. For this last system we found that the canonical momenta
and electrical field are related through a Proca type Green function. Also,
we show that this last system is consistent. The anisotropic Yang-Mills field
was studied too, in this case we show that the anisotropic Yang-Mills theory
with dynamical exponent z = 2 proposed in [16] is dynamical consistent.
Finally, we studied a generalized anisotropic Yang-Mills theory and it was
shown that this system is consistent too.
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