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México, D.F 01120, México
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Abstract

We study a recently proposed generalization of the relativistic
particle by Kostelecký, that includes explicit Lorentz violation. We
present an alternative action for this system and we show that this
action can be interpreted as a particle in curved space with a metric
that depends on the Lagrange multipliers. Furthermore, the following
results are established for this model: (i) there exists a limit where
this system has more local symmetries that the usual relativistic par-
ticle; (ii) in this limit if we restore the Lorentz symmetry we obtain a
direct relationship with the two time physics; (iii) also we show that
if we intent to restore the Poincaré symmetry we obtain the action of
the relativistic bosonic string.
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1 Introduction

In several recent publications have been proposed different systems with ex-
plicit Lorentz violation. Since, the Lorentz symmetry is one of the corner-
stones of the Laws of Physics, these works have attracted a lot of attention.
For example, the Hořava’s gravity breaks locally this symmetry, but has as
consequence a renormalizable gravity [1]. In Quantum Field Theory there
are also several studies that consider this symmetry violation [2], a review on
this subject can be found in [3]. An interesting point is that various models
that break the Lorentz symmetry, at the level of Quantum Field Theory [4],
imply a dispersion relation of the form

(Pµ + aµ)
2 +m2 + b · b∓ 2

√

(P · b+ a · b)2 +m2b · b = 0, (1)

with a and b two constant vectors. Clearly this dispersion relation violates
the Lorentz symmetry. Recently in Ref. [5] was found a mechanical model
that implies the dispersion relation (1). This model allows to understand
more deeply the kind of phenomena that are involved in the Lorentz sym-
metry violation. An interesting result is the relationship between this model
and the Finsler geometry [6]. Let us also mention here that recently the
Finsler geometry was proposed as an alternative to the Minkowski geometry
in the High Energy Physics regime close to the Planck scale [7]. In that
sense, independently of the origin of the proposed action of [5], this system
has very interesting properties that are worth to study.

The purpose of this work is to study several aspects of the action pre-
sented in [5], and show that this system has several interesting properties.
In particular, we introduce an alternative action to the proposed by Kost-
elecký, et al [5]. Furthermore, we establish that this action is equivalent
to a particle in a curved space, where the metric depends on two Lagrange
multipliers. This result exhibit that Finsler geometry could be studied in
this way. We also consider the local symmetries of the system and we show
that there exist a limit where the model has more local symmetries that the
classical relativistic free particle. As another property, we show that if in this
limit we tray to recover the Lorentz symmetry we obtain several generalized
Lorentz invariant systems. These systems have interesting local symmetries.
For example, we show in Sec. 5 that applying the Dirac’s method [8], we
obtain the action for the two time physics. One of the hallmarks of the two

2



time physics is that in only one action are unified different models to the
level of particle. Consequently this theory acts as a unification model to the
level of point particle [9]. Also, we show that, nevertheless the Lorentz sym-
metry is recovered we still don’t have a restoration of the Poincaré symmetry.

Now, the dispersion relation (1) originally appears from a Field Theory,
and the action for the point particle is obtained from a simplification of a
given Field Theory. It is worth to notice that the same happens in the case
of the action for the two time physics, where it is obtained from a reduction
of a Field Theory [10]. In this work to recover the Poincaré invariance, we
will take the inverse path, i.e. we will transform our point particle action
into a field theory. We will see that if we consider that the coordinates de-
pend on other parameter σ, i.e. XM = XM(τ, σ), and instead of b we take

T ∂XM

∂σ
the system will be invariant under Lorentz and Poincaré transforma-

tions. We also show that in this case the action of the relativistic bosonic
string is obtained. We must mention that in the case of the Snyder space
[11], Yang proposed an extra dimension in such way to become the Snyder
space Poincaré invariant [12]. A similar process will be taken in this work to
recover the Lorentz and Poincaré symmetries.

This work is organized in the following way: In Section 2 we perform a
canonical analysis of the action proposed by Kostelecký [6]. In section 3 we
find an alternative action to such system. In Section 4 we study the case
where the perturbation is stronger that the usual term. In Section 5 we
recover the Lorentz symmetry and we establish a relationship between this
system and the two time physics. For the Section 6, we show that in order
to recover the Poincaré symmetry we obtain the relativistic string. Finally
we summarize our results in Section 7.

2 Action for the system

The action proposed in Ref. [5] is

S =
∫

dτ

(

−m

√

−Ẋ · Ẋ − a · Ẋ ±
√

(

b · Ẋ
)

2 − (b · b)
(

Ẋ · Ẋ
)

)

. (2)

where A·A = AMAM = ηMNA
MAN withN,M = 0, 1, 2, · · · , D and sig(ηMN) =

(−1, 1, · · · , 1). Furthermore aM and bM are constant vectors. Note that this
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action is invariant under reparametrizations given by dX
dτ

= dτ̃
dτ

dX
dτ̃
.

The canonical momenta of the system are

PM = m
ẊM

√

−Ẋ · Ẋ
− aM ±

(

b · Ẋ
)

bM − (b · b) ẊM
√

(

b · Ẋ
)

2 − (b · b)
(

Ẋ · Ẋ
)

, (3)

from these we obtain the canonical Hamiltonian

Hc = P · Ẋ − L = 0. (4)

Also, we see that the following relations are satisfied

(P + a) · b = m
Ẋ · b

√

−Ẋ · Ẋ
, (5)

(PM + aM)2 = −m2 ±
2m

√

(

b · Ẋ
)

2 − (b · b)
(

Ẋ · Ẋ
)

√

−Ẋ · Ẋ
− b · b, (6)

introducing (5) in (6), we found

(PM + aM)2 +m2 + b · b∓ 2
√

(P · b+ a · b)2 +m2b · b = 0. (7)

The dispersion relation (7) is consistent with several models developed to
test a possible violation of the Lorentz symmetry [4].

Using the Dirac’s method [8, 13], the total Hamiltonian is

HT = λΦ, (8)

Φ =
1

2

[

(PM + aM)2 +m2 + b · b∓ 2
√

(P · b+ a · b)2 +m2b · b
]

, (9)

where λ is Lagrange multiplier. The Hamiltonian action results

S =
∫

dτ
(

P · Ẋ − λΦ
)

. (10)

In the next section we will show that exist an alternative action for this
system.
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3 Action without square roots

For the relativistic particle and inclusive for the string and membranes a
more suitable action for describing their variational principles is to avoid the
introduction of the square root by including a Lagrange multiplier. In the
case of the point-particle with Lorentz-violation (2) we have two independent
square roots so we need to introduce a pair of Lagrange multipliers. The
resulting action is given by

S =
∫

dτ











1

2







Ẋ2

λ
− λm2 − 2a · Ẋ ±

(

b · Ẋ
)

2 − b2
(

Ẋ · Ẋ
)

β
± β

















. (11)

This action is equivalent to (2) if we use the equations of motion of the two
Lagrange multipliers. The above action (11) can be rewritten as

S =
∫

dτ

{

1

2

[

gMNẊ
MẊN − 2a · Ẋ − λm2 ± β

]

}

, (12)

where the metric gMN is a deformation of the standard Minkowski metric
given by

gMN =

(

β ∓ λb2

λβ

)

ηMN ± bMbN

β
. (13)

Using the action (12) is easy to see that in the limit b → 0 we recover the
relativistic particle coupled to external electromagnetic field a. To compute
the Hamiltonian we use the action (12) and we get the momenta

pM = gMNẊ
N − aM . (14)

Then the canonical Hamiltonian is

HC =
gMN

2
(PM + aM) (PN + aN) +

1

2

(

λm2 ∓ β
)

, (15)

with the inverse metric gMN results

gMN =
λβ

β ∓ b2λ
ηMN ∓ λ2

β ∓ λb2
bMbN . (16)

Furthermore we have two primary constraints

pλ ≈ 0, pβ ≈ 0, (17)
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and in consequence the total Hamiltonian is

HT = HC + µ1pλ + µ2pβ. (18)

From the evolution of the primary constraints we get

ṗλ = {pλ,HT} = −∂gMN

∂λ
1

2
(PM + aM) (PN + aN)− m2

2
,

ṗβ = {pβ,HT} = −∂gMN

∂β
1

2
(PM + aM ) (PN + aN )± 1

2
.

That results in the two following conditions

(

β2ηMN +
(

b2λ2 ∓ 2λβ
)

bMbN
)

(PM + aM) (PN + aN) +m2
(

β ∓ b2λ
)

2 ≈ 0,

(19)
(

±b2ηMN ∓ bMbN
)

(PM + aM ) (PN + aN )±
(

β ∓ b2λ
)

2 ≈ 0. (20)

Solving from (20) for β we get

β = λ
(

±b2 +
√
A
)

, (21)

with A given by

A =
(

−ηMNb2 + bMbN
)

(PM + aM) (PN + aN) . (22)

It should be noted that we can rewrite the metric in terms of the momenta
or the velocities and it is interesting to observe that at this moment it is not
of the Finsler type, since we still haven’t eliminated the Lagrange multiplier
λ. For the metric we obtain,

gMN =
1

λ
(

±b2 +
√
A
)

(√
AηMN ± bMbN

)

. (23)

Furthermore, from (19) using β given by (21) we recover the constraint given
in (6).

4 Strong perturbation limit

The action (2) has been proposed to study the Lorentz symmetry breaking,
where the usual term is greater than the perturbation that breaks the sym-
metry. But it is interesting to study what happen at the contrary, i.e., if
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the correction is bigger than the usual relativistic term. In other words we
are considering the ultrarelativistic regime, where we assume that aM , bM are
such that

∣

∣

∣

∣

m

√

−Ẋ · Ẋ
∣

∣

∣

∣

<<

∣

∣

∣

∣

∣

−a · Ẋ ±
√

(

b · Ẋ
)

2 − (b · b)
(

Ẋ · Ẋ
)

∣

∣

∣

∣

∣

, (24)

in this regime we obtain the action

S =
∫

dτ

(

−a · Ẋ ±
√

(

b · Ẋ
)

2 − (b · b)
(

Ẋ · Ẋ
)

)

. (25)

For the canonical momenta we have

PM = aM ±
(

b · Ẋ
)

bM − (b · b) ẊM
√

(

b · Ẋ
)

2 − (b · b)
(

Ẋ · Ẋ
)

, (26)

and now these satisfy two primary constraints

Φ1 = (P + a) · b = 0, (27)

Φ2 = (PM + aM)2 + b · b = 0. (28)

In this way, the total Hamiltonian is

H = λ1Φ1 + λ2Φ2. (29)

The constraints Φ1 and Φ2 are first class, since

{φ1, φ2} = 0. (30)

This shows that the action (25) has more local symmetries than the original
action (2). In this case the gauge symmetries are given by

δ1XM = ǫ1(τ)bM , δPM = 0, δλ1 = ǫ̇1(τ),

δ2XM = ǫ2(τ)2 (PM + aM) , δPM = 0, δλ2 = ǫ̇2(τ). (31)

5 Lorentz symmetry and two time physics

By eliminate the usual term m

√

−Ẋ · Ẋ in the action (2) we have lost the
usual relativistic particle. However, we have more local symmetries. Now,
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we will see that by recovering the Lorentz symmetry we will get still more
local symmetries and we can related this system to the action of two time
physics.

By simplicity we consider aM = 0, in this case the Lagrangian of the
action (25) takes the form

L = ±
√

(

b · Ẋ
)2 − (b · b)

(

Ẋ · Ẋ
)

. (32)

Thus, to restore the Lorentz symmetry we regard now the constant vector bM

as a local field BM = BM(X), transforming under Lorentz transformations
as proper vector field, in this case the action becomes

S = ±
∫

dτ

√

(

B · Ẋ
)

2 − (B · B)
(

Ẋ · Ẋ
)

, (33)

and this is Lorentz invariant.

Now this system has the primary constraints

Φ1 = PMBM = 0, (34)

Φ2 = PMBM +BMBM = 0. (35)

In consequence the total Hamiltonian is

HT = λ1Φ1 + λ2Φ2. (36)

Note that

{PMBM , PNB
N +BNB

N} = 2 (PNPM − BNBM) ∂MBL. (37)

From which it immediately follows that we will get more constraints and
these depend on the form of BM .

An interesting case corresponds to assume that BM = XM , then the action
will be

S = ±
∫

dτ

√

(

X · Ẋ
)

2 − (X ·X)
(

Ẋ · Ẋ
)

, (38)

with primary constraints

Φ1 = PMXM = 0, (39)

Φ2 = PMXM +XMXM = 0, (40)
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furthermore

{Φ1,Φ2} = 2Φ3 Φ3 =
(

PMPM −XMXM
)

. (41)

Then, using the Dirac’s method, we must satisfy that

Φ3 =
(

PMPM −XMXM
)

= 0. (42)

Now, these constraints satisfy the algebra

{Φ1,Φ2} = 2Φ3, {Φ1,Φ3} = 2Φ2 {Φ2,Φ3} = 8Φ1, (43)

then, it follows that are first class constraints and there are no more con-
straints. Thus it appears that the extended Hamiltonian is

HE = λ1

(

PMPM +XMXM
)

+ λ2PMXM + λ3

(

PMPM −XMXM
)

.(44)

On the other hand, by defining

φ1 =
1

2
PMPM , φ2 = PMXM , φ3 =

1

2
XMXM , (45)

γ1 =
λ1 + λ2

2
, γ2 = λ2, γ1 =

λ1 − λ2

2
, (46)

we obtain

HE = γ1φ1 + γ2φ2 + γ3φ3. (47)

This is the Hamiltonian of the two time physics [9, 14]. We know that the
Lagrangian of the two time physics has as a local symmetry the group Sp(2)
and as global symmetry the conformal group [14]. Then, the Hamiltonian
action of this system has more symmetries that the original action (2).

Let us observe, finally, that the two time physics contains different sys-
tems when we use only a temporal coordinate and acts like a model that
unifies the dynamics of different systems [9]. In particular, it contains the
relativistic free particle. In consequence, by imposing the Lorentz invariance
to the Lagrangian (32) we obtain a system that unifies different models to
the level of point particle [9].
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Finally, it should be emphasized that by consistency, this system re-
quires two temporal coordinates and the signature must be of the form
sig(η) = (−,−,+, · · · ,+). Thus, to make sense of this system is required
that the signature had a transition from sig(η) = (−,+,+, · · · ,+) to sig(η) =
(−,−,+, · · · ,+). It is interesting to mention that recently was proposed ma-
terials with this kind of characteristics [15].

6 Poincaré symmetry and relativistic string

The action (38) is Lorentz invariant, but not invariant under the Poincaré
group. Now, to write down an explicit Poincaré action we must choose BM

in such way that it be invariant under translations. Note that, if we take
BM = ∂CM

∂τ
, the Lagrangian (32) is invariant under Poincaré. However, not

all the equations of motion will be independent and corresponding system
must have constraints. In this case the Hamiltonian analysis is quite in-
volved. Another case, corresponds to take CM = XM , here the Lagrangian
(32) is invariant under Poincaré, but vanishes.

Another way to recover the Poincaré invariance is to consider that the
action (2) was built taking as starting point a dispersion relation obtained in
Field Theory, i.e., the action was established from a simplification of Field
theory to a point particle. It must be stressed that the action for the two
time physics was obtained in the same way [10]. Then, to recover de Poincaré
invariance we will take the inverse path, i.e., we will transform our particle
model into a Field Theory. In fact, assuming that the coordinates depend on
an extra parameter σ, i.e. XM = XM(τ, σ), it is equivalent to suppose that
the particles are not points and instead are linear extended objects. In that
case we can take BM = T ∂XM

∂σ
, where T is a constant, and the Lagrangian

(32) will be invariant under Poincaré transformations.

We can use the expression BM = T ∂XM

∂σ
, in the constraints (39)-(40) and

results

φ1 = PM

∂XM

∂σ
= 0, (48)

φ2 = (PM)2 + T 2
∂XM

∂σ

∂XM

∂σ
= 0. (49)
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The equations (48) and (49) are the constraints of the Hamiltonian action of

the relativistic string [16]. For instance, using BM = T ∂XM

∂σ
in the Lagrangian

(32) we get

L = T

√

√

√

√

(

∂XM

∂σ

∂XM

∂τ

)

2

−
(

∂XN

∂σ

∂XN

∂σ

)(

∂XM

∂τ

∂XM

∂τ

)

. (50)

From this expression, the action takes the form

S = T

∫

dτdσ

√

√

√

√

(

∂XM

∂σ

∂XM

∂τ

)

2

−
(

∂XN

∂σ

∂XN

∂σ

)(

∂XM

∂τ

∂XM

∂τ

)

. (51)

and this is the action of Nambu-Goto relativistic string [16].

In this way, by imposing the Lorentz and the Poincaré symmetries to the
Lagrangian (32) we get the action of a bosonic string. It should be men-
tioned that to make Poincaré invariant the Snyder space [11], Yang proposed
an extra dimension [12]. In our case we use a similar process, introducing
the coordinate σ and we reestablish the Lorentz and Poincaré symmetries.

Furthermore, using the Nambu-Goto (51) we can also recover the action
(38). In fact, in order to put this back, we shall use the expression

∂XM

∂σ
= αXM (52)

then

XM(τ, σ) = eασuM(τ). (53)

Using this result in (51), we get

S = β

∫

dτ
√

(u · u̇)2 − (u · u) (u̇ · u̇), (54)

with β = T |α| ∫ dσe2ασ. This action is equivalent to (38).

7 Summary

In this work was analyzed several properties of the particle with Lorentz
symmetry violation recently proposed by Kostelecký. We introduced an al-
ternative action for this system, that can be interpreted as a particle in a
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curved space, where the metric depends on the Lagrange multipliers. In ad-
dition, was shown that there exist a limit where this system has more local
symmetries that usual relativistic particle. In this limit we saw that there
were several forms to reestablish the Lorentz symmetry. In particular, for
one of this forms we obtain a relationship with the two time physics. Finally,
by recovering the Poincaré symmetry the action of the relativist string was
obtained.
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