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We study an electrodynamics consistent with anisotropic transformations of space-time
with an arbitrary dynamic exponent z. The equations of motion and conserved quantities
are explicitly obtained. We show that the propagator of this theory can be regarded as a
quantum correction to the usual propagator. Moreover we obtain that both the momen-
tum and angular momentum are not modified, but their conservation laws do change. We
also show that in this theory the speed of light and the electric charge are modified with
z. The magnetic monopole in this electrodynamics and its duality transformations are
also investigated. For that we found that there exists a dual electrodynamics, with higher
derivatives in the electric field, invariant under the same anisotropic transformations.
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1. Introduction

In several areas of physics the scale-invariant systems are important. These systems

have been recognized in the context of condensed matter 1,2 and theories of modified

gravity such as MOND 3, see also 4. Of particular importance are the systems

invariant under anisotropic scale-transformations of the space-time of the form

t → bzt, ~x → b~x, (1)

where z plays the role of a dynamical critical-exponent. These transformations arise

in the non-relativistic limit of string theory 5,6 and, through the duality AdS/CFT ,

this theory can be related to condensed matter systems 7,8. Recently, in addition,

P. Hořava proposed a gravity compatible with (1). This gravity is non-relativistic

but at large distances retrieves a gravity similar to Einstein’s 9. A noteworthy fact

of Hořava gravity is that replaces the usual dispersion relation by

k20 −G(k2)z = 0, G = constant, k2 = k21 + k22 + k23 , (2)

1
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but more importantly, for the case of z = 3, yields a ghost-free gravity which is

renormalizable by power counting. This new gravity has features that makes it no-

table; for instance, in a natural way has an alternative mechanism to inflation 10.

In addition, it can explain some cosmological phenomena without introducing dark

matter 11; some systems in this gravity can be found in 12,13. Another feature

is that the dispersion relation (2) arises not from a geodesic equation but from a

mechanics invariant under (1), see 14,15,16,17,18,19. Hořava gravity is recent and

has several aspects not well understood; for example, it presents some dynamical

problems 20,21,22,23,24,25; see also 26. A modification to Hořava gravity, free from

these problems, can be found in 27,28,29; however see 30. From all this, Hořava

gravity is without a doubt an important step towards understanding the quantum

aspects of gravity.

Field theories consistent with the dispersion relation (2) for the case of z = 2 have

been studied 31,32,33,34, some systems with z = 3 can be seen in 35,36. Systems

with arbitrary z have been studied in: black holes 37, nonrelativistic AdS/CFT

duality 38,39, and the causal structure of Schrödinger space 40. However, the case

of z arbitrary has been seldom considered in field theory. In this paper, based

on the initial works 41,42 and 43, we study an electrodynamics compatible with

the transformations (1) for arbitrary z. Modified Maxwell’s equations and their

conserved quantities are first obtained for the case of z = 2 and then, based on these

results, a general model that includes derivatives of higher order in the magnetic

field is constructed. For this model we obtain a dispersion relation of the form

ω2α

c2
=
∑

n≥1

bn
(

k2
)n

, (3)

and show that α acts as a refraction index. Notice that the dispersion relation (2) is

a particular case of (3). The conserved quantities are also obtained; in particular it is

shown that energy is modified, but the momentum and angular momentum remain

unchanged. In addition, we show the existence of a conserved quantity additional to

the usual ones. For this system we propose the modified Maxwell’s equations with

sources and obtain their conservation laws. In particular, the modifications to the

stress tensor are provided. Moreover, from duality transformations we consider the

problem of the magnetic monopole and show the existence of a dual electrodynamics

compatible with the dispersion relation (3). Finally, we show that the propagator of

this theory can be regarded as a quantum correction to the usual Maxwell’s prop-

agator.

It is worth mentioning that non-relativistic Maxwell theory has been already

studied in another context 44,45,46. Other models with higher derivatives in the

magnetic fields can be found in 47,48,49.

This paper is organized as follows: in section 2 Hořava electrodynamics for the
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case of z = 2 is studied; in the section 3 we present the general case of arbitrary z;

an analysis of the magnetic monopole question appears in section 4; we obtain the

Green function in section 5; finally our results are summarized in section 6.

2. Electrodynamics à la Hořava: z = 2

In this section we study Hořava electrodynamics for the case of z = 2 originally

proposed in 42. For completeness we recall the definitions

Ei = − (∂ctAi + ∂iφ) , Bi =
(

~∇× ~A
)

i
, Fij = ∂iAj − ∂jAi = ǫijkBk. (4)

Now, let us assume we have the action

S =

∫

cdtd~xL =

∫

cdtd~x (αEiEi + β∂iFik∂jFjk) . (5)

By requesting δS = 0 one finds the equations of motion

α∂ctEk + β∂2∂iFik = 0, ∂iEi = 0. (6)

Consideration of (4) leads to the modified Maxwell’s equations

~∇ · ~E = 0, (7)

~∇× ~E = −1

c

∂ ~B

∂t
, (8)

~∇ · ~B = 0, (9)

~∇×
(

β∇2 ~B
)

=
α

c

∂ ~E

∂t
. (10)

From (8) and (10) we obtain

(

β
(

∇2
)2 − α

c2
∂2

∂t2

)

~E = 0,

(

β
(

∇2
)2 − α

c2
∂2

∂t2

)

~B = 0. (11)

Then, the dispersion relation for plane waves is β
(

k2
)2

= −αω2/c2.

The equations (7)-(10) are invariant under the transformations of scale

~E → b−3 ~E, ~B → b−2 ~B, t → b2t, ~x → b~x, (12)

however, the action transforms as

S → b−1S. (13)

A similar case occurs to the harmonic oscillator, whose equations of motion are

invariant under the scale transformations x → bx, but the action does not have this

invariance.
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2.1. Conserved quantities

By considering the equations of motion (7)-(10) one may show that the quantities

E =
c

8π

∫

d~x
(

α~E2 + β ~B · ∇2 ~B
)

, (14)

~P =
1

4πc

∫

d~x
(

α~E × ~B
)

, (15)

~L =
1

4πc

∫

d~x
[

~x×
(

α~E × ~B
)]

, (16)

are conserved. From these we see that the energy is different to the usual one, but

both the momentum and angular momentum remain unchanged. Below we will find

a generalization of these quantities and their conservation laws for arbitrary z.

Although Noether’s theorem does not give a conserved charge for symmetry

(12), in the next section we will associate a conserved charge with this.

3. Electrodynamics à la Hořava: General Case

We now move on to propose a model that allows one to obtain a dispersion relation

of the form (2) valid for arbitrary z. By assuming f(x) a smooth function, we pose

the action

S =

∫

cdtd~xL =

∫

cdtd~x
(

αEiEi − ~B · f
(

∇2
)

~B
)

=

∫

cdtd~x

(

αEiEi −
1

2
Fijf

(

∇2
)

Fij

)

. (17)

First let us observe that in units of momenta we have

[cdtdx3] = −(3 + z), [Ei] = (z + 1), [Bi] = 2, [α] = −(z − 1). (18)

Now, if f(x) =
∑

n≥1 anx
n−1 and [an] = z − 1 − 2(n− 1), then

[

f
(

∇2
)]

= z − 1;

therefore, S has no units.

Note us that the Lagrangian can be regarded as

L = L0 + LI , (19)

where,

L0 = α~E · ~E − a1 ~B · ~B (20)

the free part of the Lagrangian and

LI =

∞
∑

n=2

an ~B ·
(

∇2
)n−1 ~B, (21)

the interaction one.
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Before performing the variation of S, notice that carrying out n integrations by

parts and neglecting the boundary terms we obtain
∫

d~xFij

(

∇2
)n

δFij = (−)2n
∫

d~xδFij

(

∇2
)n

Fij , (22)

so that
∫

d~xδ
(

Fij

(

∇2
)n

Fij

)

=

∫

d~x
(

δFij

(

∇2
)n

Fij + Fij

(

∇2
)n

δFij

)

= 2

∫

d~xδFij

(

∇2
)n

Fij , (23)

from where we may define
∫

d~xFijf
(

∇2
)

Fij . (24)

Thus

δ

∫

d~xFijf
(

∇2
)

Fij =

∫

d~xδ
(

Fijf
(

∇2
))

Fij

=

∫

d~xδ



Fij





∑

n≥1

an
(

∇2
)n−1



Fij



 =
∑

n≥1

an

∫

d~xδ
(

Fij

(

∇2
)n−1

Fij

)

= 2
∑

n≥1

an

∫

d~xδFij

(

∇2
)n−1

Fij = 2

∫

d~xδFijf
(

∇2
)

Fij . (25)

By using definition (4) and neglecting boundary terms one gets to

δ

∫

d~xFijf
(

∇2
)

Fij = −4

∫

d~xδAj∂i
(

f
(

∇2
)

Fij

)

. (26)

Taking these results into account and once again neglecting boundary terms one

obtains

δS =

∫

cdtd~x2
[

δAi

(

f(∇2)∂jFji + α∂ctEi

)

+ αδφ∂iEi

]

. (27)

Therefore, δS = 0 implies the equations of motion

~∇ · ~E = 0, (28)

~∇× ~E = −1

c

∂ ~B

∂t
, (29)

~∇ · ~B = 0, (30)

~∇×
(

f
(

∇2
)

~B
)

=
α

c

∂ ~E

∂t
. (31)

For f(x) = azx
z−1 these yield

~∇ · ~E = 0, ~∇× ~E = −1

c

∂ ~B

∂t
, (32)

~∇ · ~B = 0, ~∇×
(

az
(

∇2
)z−1 ~B

)

=
α

c

∂ ~E

∂t
. (33)
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Notice that the dimensions of α change for each z. As [α] = −(z − 1), we may

assume that α is of the form lz−1, where l is a constant with units of length. Under

this assumption, it is clear that α = 1 for z = 1, but α 6= 1 for z 6= 1. Therefore,

the constant α changes with z.

In addition to Eqs. (29) and (31) we obtain the modified wave equations

(

f
(

∇2
)

∇2 − α

c2
∂2

∂t2

)

~E = 0, (34)

(

f
(

∇2
)

∇2 − α

c2
∂2

∂t2

)

~B = 0. (35)

For the case of plane waves one obtains the dispersion relation

ω2α

c2
= f(−k2)k2 =

∑

n≥1

(−)n−1an
(

k2
)n

. (36)

In particular, if an = 0 for n 6= z and az = (−)z−1G, this yield

ω2α

c2
= G(k2)z , (37)

which is Hořava dispersion relation (2). By defining c′ = c/n with n =
√
α, we can

consider α as a refraction index that changes with z.

3.1. Case with sources

The modified Maxwell’s equations with sources are

~∇ · ~E = 4πρ, (38)

~∇× ~E = −1

c

∂ ~B

∂t
, (39)

~∇ · ~B = 0, (40)

~∇×
(

f
(

∇2
)

~B
)

=
4π

c
~J +

α

c

∂ ~E

∂t
. (41)

By considering equations (38) and (41) we obtain conservation of the electric charge:

∂ρ′

∂t
+ ~∇ · ~J = 0, (42)

with ρ′ = αρ. This implies that the electric charge is modified by z. For instance,

for a point particle the electric charge changes from e to e′ = αe. Below we will find

this phenomenon also present in the Lorentz force.
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3.2. Conserved quantities

For ρ = 0 and ~J = ~0 one obtains the conserved quantities

E =
c

8π

∫

d~x
(

α~E · ~E + ~B · f
(

∇2
)

~B
)

, (43)

~P =
1

4πc

∫

d~x
(

α~E × ~B
)

, (44)

~L =
1

4πc

∫

d~x
[

~x×
(

α~E × ~B
)]

. (45)

As it can be seen, the energy is modified but the momentum and angular momen-

tum remain unchanged.

For the general case it is valid that

1

c

dE
dt

= −
∫

d~x ~E · ~J − c

4π

∮

da
(

~E × f
(

∇2
)

~B
)

· n̂

+
1

8π

∫

d~x

(

~B · f
(

∇2
) ∂ ~B

∂t
− ∂ ~B

∂t
· f
(

∇2
)

~B

)

. (46)

The last integral in this expression is a boundary term. In fact, carrying out a

perturbative expansion we find

1

8π

∫

d~x

(

~B · f
(

∇2
) ∂ ~B

∂t
− ∂ ~B

∂t
· f
(

∇2
)

~B

)

= − c

4π

∮

daulnl, (47)

with

ul =
1

2c

[

a2
(

∂tBi∂lBi −Bi∂l∂tBi

)

+ a3
(

∂tBi∇2∂lBi −Bi∇2∂t∂lBi

+ ∂mBi∂m∂l∂tBi − ∂t∂mBi∂m∂mBi

)

+ · · ·
]

. (48)

Hence,

1

c

dE
dt

= −
∫

d~x ~E · ~J − c

4π

∮

da
(

~E × f
(

∇2
)

~B + ~u
)

· n̂. (49)

Notice that in this case the energy flux is not directly related to the momentum ~P .

One also finds that

dPi

dt
= −

∫

d~x

(

αρ~E +
~J × ~B

c

)

i

+
1

4π

∮

daτ̃ijnj

+
1

8π

∫

d~x
[

∂i ~B · f
(

∇2
)

~B − ~B · f
(

∇2
)

∂i ~B
]

, (50)

with

τ̃ij = αEiEj +Bjf
(

∇2
)

Bi −
δij
2

(

α~E · ~E + ~B · f
(

∇2
)

~B
)

. (51)
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The last term in (50) is a boundary integral as

1

8πc

∫

d~x
[

∂i ~B · f
(

∇2
)

~B − ~B · f
(

∇2
)

∂i ~B
]

=

∫

d~x∂j

[

a2

(

∂i ~B · ∂j ~B −
(

∂j∂i ~B
)

· ~B
)

+a3

(

∂iBl∇2∂jBl −
(

∇2∂i∂jBl

)

Bl

+
(

∂j∂m∂iBl

)

∂mBl −
(

∂i∂mBl

)(

∂j∂mBl

)

)

+ · · ·
]

.

(52)

Therefore,

dPi

dt
= −

∫

d~x

(

αρ~E +
~J × ~B

c

)

i

+
1

4π

∮

daτijnj, (53)

where the stress tensor τij is given by

τij = αEiEj +Bjf
(

∇2
)

Bi −
δij
2

(

α~E · ~E + ~Bf
(

∇2
)

~B
)

+ a2

(

∂i ~B · ∂j ~B −
(

∂j∂i ~B
)

· ~B
)

+ a3

(

∂iBl∇2∂jBl −
(

∇2∂i∂jBl

)

Bl

+
(

∂j∂m∂iBl

)

∂mBl −
(

∂i∂mBl

)(

∂j∂mBl

)

)

+ · · · (54)

For ρ(~x) = eδ3 (~x− ~x′) and ~J(~x) = e~vδ3 (~x− ~x′) one obtains
∫

d~x

(

αρ~E +
1

c
~J × ~B

)

i

= eα~E +
e

c
~v × ~B, (55)

which is a modified Lorentz force. Note that when ~B = 0 this yields a modified

electric force of the form e′ ~E with e′ = αe. That is, the electric charge gets modi-

fied to e′ = αe and so, for instance, the electric potential of a point charge becomes

φ = αe/r. A similar modification occurs to the gravitational potential of a particle
27.

3.3. The scale transformations

Note that equations (32)-(33) are invariant under the scale transformations

~E → b−(z+1) ~E, ~B → b−2 ~B, t → bzt, ~x → b~x. (56)

Under these, the action transforms as

S → b(1−z)S. (57)

Therefore, only if z = 1 the transformations (56) are symmetries of the action. In

this case, by Noether’s theorem, we have the conserved quantity

Dz=1 =
1

4πc

∫

d~x
(

α~E × ~B
)

· ~x− t

c
E , (58)
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which is the generator of dilations. For arbitrary z the transformations (56) are not

symmetries of the action, but it can be shown that the quantity

D =
1

4πc

∫

d~x
(

α~E × ~B
)

· ~x− t

c
E +

∫

dtU, (59)

where

U =

∫

d~x
(

a2 ~B · ∇2 ~B + 2a3 ~B ·
(

∇2
)2 ~B + · · ·

)

, (60)

is conserved. Thus this quantity is related to the scale transformations.

4. Duality transformations and the question of the magnetic

monopole

The usual Maxwell’s equations in vacuum are invariant under the duality transfor-

mations

(

~E, ~B
)

→
(

− ~B, ~E
)

. (61)

Introducing these into the modified Maxwell’s equations (28)-(31) one finds the dual

equations

~∇ · ~E = 0, ~∇×
(

f
(

∇2
)

~E
)

= −α

c

∂ ~B

∂t
, (62)

~∇ · ~B = 0, ~∇× ~B =
1

c

∂ ~E

∂t
. (63)

Therefore, unlike the usual case, the equations are not self-dual. Now one gets a

system of modified Maxwell’s equations with the Faraday’s law modified. It can be

observed that these equations imply the wave equations (34) and (35), and so Eqs.

(62)-(63) are also consistent with the dispersion relation (36).

Now, notice that in terms of the scalar magnetic potential φ̃ and the electric

vector potential Ãi one has

Bi = −
(

∂ctÃi + ∂iφ̃
)

, Ei = ǫijk∂jÃk. (64)

Dual equations (62)-(63) can be obtained from the dual action

S =

∫

cdtd~xL =

∫

cdtd~x
(

αBiBi − Eif
(

∇2
)

Ei

)

=

∫

cdtd~x

(

αBiBi −
1

2
F̃ijf

(

∇2
)

F̃ij

)

, (65)

which is compatible with the dispersion relation (36) and in particular with (2).
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Let us now consider the modified Maxwell’s equations including magnetic

monopoles

~∇ · ~E = 4πρe, ~∇× ~E = −
(

4π

c
~Jm +

1

c

∂ ~B

∂t

)

, (66)

~∇ · ~B = 4πρm, ~∇×
(

f
(

∇2
)

~B
)

=
4π

c
~Je +

α

c

∂ ~E

∂t
. (67)

By performing the duality transformations
(

~E, ~B
)

→
(

− ~B, ~E
)

,
(

ρe, ρm
)

→
(

− ρm, ρe
)

,
(

~Je, ~Jm
)

→
(

− ~Jm, ~Je
)

, (68)

one obtains the dual equations

~∇ · ~E = 4πρe, ~∇×
(

f
(

∇2
)

~E
)

= −
(

4π

c
~Jm +

α

c

∂ ~B

∂t

)

, (69)

~∇ · ~B = 4πρm, ~∇× ~B =
4π

c
~Je +

1

c

∂ ~E

∂t
. (70)

Then, if we have solutions of the equations (66)-(67), by duality transformations

(68), solutions to (69)-(70) are obtained.

Some topics on the magnetic monopole for the case of z = 2 have been discussed

in 50.

5. Green Function

Introducing the definitions of the potentials into (38) and (41) we find

∇2φ+
1

c

∂~∇ · ~A
∂t

= −4πρ, (71)

f
(

∇2
)

∇2 ~A− α

c2
∂2 ~A

∂t2
− ~∇ ·

(

f
(

∇2
)

~∇ · ~A+
α

c

∂φ

∂t

)

= −4π

c
~J. (72)

Using the Coulomb gauge, ~∇ · ~A = 0, in the static case we have

∇2φ = −4πρ, f
(

∇2
)

∇2 ~A = −4π

c
~J. (73)

If f
(

∇2
)

= az
(

∇2
)z−1

we obtain

∇2φ = −4πρ,
(

∇2
)z ~A = − 4π

caz
~J. (74)

The solution for ~A is given by

~A(~x) = − 4π

caz

∫

d~x1G (~x, ~x1) ~J (~x1) , (75)

where

G (~x, ~x1) =

∫

d~xzd~xz−1 · · · d~x2G0 (~x, ~xz)G0 (~xz , ~xz−1) · · ·G0 (~x2, ~x1) , (76)
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and

G0 (~xa, ~xb) =
−1

4π|~xa − ~xb|
, (77)

is the Green function for the Maxwell static theory. Remarkably the Green function

(76) seems like a quantum correction of order z to the Maxwell’s static two-point

function 51,52.

As it may be seen, the Lorentz gauge condition is substituted by

f
(

∇2
)

~∇ · ~A+
α

c

∂φ

∂t
= 0. (78)

In terms of this, one obtains
(

f
(

∇2
)

∇2 − α

c2
∂2

∂t2

)

φ = −4πf
(

∇2
)

ρ, (79)

(

f
(

∇2
)

∇2 − α

c2
∂2

∂t2

)

~A = −4π

c
~J. (80)

For this case the potentials are

φ(~x, t) =

∫

d~x′dt′
[

f
(

~∇′2
)

ρ(~x′, t′)

]

g
(

~R, τ
)

,

~A(~x, t) =

∫

d~x′dt′ ~J(~x′)g
(

~R, τ
)

, ~R = ~x− ~x′, τ = t− t′

where

g
(

~R, τ
)

= − 1

4π3

∫

d~kdωei(
~k·~R−ωτ)g̃

(

k2, ω
)

(81)

with

g̃
(

k2, ω
)

=
c′2

ω2 − k2c′2f (−k2)
(82)

If k2c′2f
(

−k2
)

= k2c′2 + az
(

k2
)z

, we can find

g̃
(

k2, ω
)

=
c′2

ω2 − k2c′2 − az (k2)
z . (83)

At low energies, the propagator is dominated by the Maxwell theory

g̃
(

k2, ω
)

= c′2

(

1

ω2 − k2c′2
+

1

ω2 − k2c′2
az
(

k2
)z 1

ω2 − k2c′2
+ · · ·

)

. (84)

Therefore we can see this theory as a quantum correction to the Maxwell classical

theory.
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In the high energies regime, the propagator is dominated by g̃
(

k2, ω
)

= c′2/(ω2−
az
(

k2
)z
), that is

g̃
(

k2, ω
)

= c′2

(

1

ω2 − az (k2)
z +

1

ω2 − az (k2)
z k

2c′2
1

ω2 − az (k2)
z + · · ·

)

. (85)

The same occurs in the Hořava gravity 9.

6. Summary

In this work we studied an electrodynamics consistent with anisotropic transfor-

mations of the space-time with an arbitrary dynamic exponent z. The equations

of motion and conserved quantities were obtained. It was shown that the propaga-

tor of this theory can be regarded as a quantum correction to the usual Maxwell’s

propagator. Also, it was shown that the momentum and angular momentum remain

unchanged, but their conservation laws have modifications. It was shown that both

the speed of light and electric charge run with z. The existence of an additional

conserved quantity that changes with z was also shown which, if z = 1, is reduced

the generator of dilations. In addition, the question of the magnetic monopole was

considered, and this lead to showing a dual electrodynamics invariant under the

same anisotropic transformations.

In a further work we will study the quantum version of this model. From (85)

a better UV behavior than the usual case is expected. Moreover from propagator

(83) and equations (84)-(85) we can expect that this model has two fixed points.

We hope to prove this affirmation with the renormalization group and study the

crossover between these fixed points. We will also couple this field with matter.
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Rev. Lett. 104, 181302 (2010).
28. P. Horava, C. M. Melby-Thompson, General Covariance in Quantum Gravity at a

Lifshitz Point, e-Print: arXiv:1007.2410 [hep-th]
29. D. Blas, O. Pujolas, S. Sibiryakov, Models of non-relativistic quantum gravity: the

good, the bad and the healthy, e-Print: arXiv:1007.3503 [hep-th]
30. I. Kimpton, A. Padilla, Lessons from the decoupling limit of Horava gravity, JHEP

1007 014 (2010), e-Print: arXiv:1003.5666 [hep-th].
31. S. R. Das, Ganpathy Murthy, Compact z = 2 Electrodynamics in 2 + 1 Dimensions:

Confinement with Gapless Modes, Phys. Rev. Lett. 104, 181601 (2010).
32. O. Andreev, Generating Functional for Gauge Invariant Actions: Examples of Non-

relativistic Gauge Theories, Int. J. Mod. Phys. A 25, 2087 (2010).
33. Y. Nakayama, Superfield Formulation for Non-Relativistic Chern-Simons-Matter The-

ory, Lett. Math. Phys. 89, 67 (2009).
34. T. G. Pavlopoulos, Breakdown of Lorentz Invariance, Phys. Rev. 159 1106 (1967).
35. J. Alexandre, K. Farakos, A. Tsapalis, Liouville-Lifshitz theory in 3+1 dimensions,

http://arxiv.org/abs/1002.2849
http://arxiv.org/abs/1003.4052
http://arxiv.org/abs/1001.0490
http://arxiv.org/abs/0906.5401
http://arxiv.org/abs/1004.0055
http://arxiv.org/abs/1007.2410
http://arxiv.org/abs/1007.3503
http://arxiv.org/abs/1003.5666


November 25, 2018 13:8 WSPC/INSTRUCTION FILE Electrodynamics-
Horava

14 Juan M. Romero, J. A. Santiago, O. González-Gaxiola, A. Zamora
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