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Abstract

In this paper a quantum mechanics is built by means of a non-

Hermitian momentum operator. We have shown that it is possible to

construct two Hermitian and two non-Hermitian type of Hamiltoni-

ans using this momentum operator. We can construct a generalized

supersymmetric quantum mechanics that has a dual based on these

Hamiltonians. In addition, it is shown that the non-Hermitian Hamil-

tonians of this theory can be related to Hamiltonians that naturally

arise in the so-called quantum finance.
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1 Introduction

In the origins of quantum mechanics P.A.M Dirac [6] observed that commu-
tation relations

[xi, xj ] = [Pi, Pj ] = 0, [xi, Pj] = iδij , (1)

are satisfied by the operators xi, Pj = −i∂j and also by the set

xi, P(f)j = −i∂j + i∂jf, (2)

with f been an arbitrary function [6]. For different reasons, operators (2)

were discarded, for example, the Hamiltonian Hf =
P 2

f

2
is non-Hermitian

and it could have a non-real spectrum. However, it has recently been shown
that there are non-Hermitian operators with real spectrum [3]. Studies of
non-Hermitian Hamiltonians and their applications in physics can be found
in the papers [7], [4] and [10] .

In this paper, we will show that, using the operator P(f)j , four different
types of Hamiltonians can be built, two of these Hermitians and the other
two, non-Hermitians. We will show that, from two Hermitian Hamiltonians
in one dimension, it is possible to construct a supersymmetric mechanics,
and that using one of the two non-Hermitian Hamiltonians a generalized su-
persymmetric mechanic can be constructed. Moreover, we will show that this
new supersymmetric quantum mechanics has a dual and the ground state of
the corresponding Hamiltonians will be found.

As a second point of this work, it is shown how the operator P(f)j can also
be used to build some of non-Hermitian Hamiltonians that naturally arise in
the so-called quantum finance.

2 Non-Hermitian Hamiltonians

In this section, we will study the quantum mechanics that emerges when the
operator P(f)j is considered. As an starting point, we have to notice that the
operator P(f)i is given by the transformation

P(f)i = efPie
−f , (3)
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and also that it is not Hermitian.

With ~P(f) we can construct four Hamiltonians, two of them Hermitians

H1 = α2 ~P
†
(f) ·

~P(f) = α

(

~P 2 +∇2f +
(

~∇f
)2
)

, (4)

H2 = α2 ~P(f) · ~P
†
(f) = α

(

~P 2 −∇2f +
(

~∇f
)2
)

(5)

and two non-Hermitians

H3 = β2 ~P
†
(f) ·

~P
†
(f)

= β2
(

~P 2 − 2i~∇f · ~P −∇2f −
(

~∇f
)2
)

, (6)

H4 = β2 ~P(f) · ~P(f)

= β2
(

~P 2 + 2i~∇f · ~P +∇2f −
(

~∇f
)2
)

. (7)

These Hamiltonians are obtained naturally in different contexts. In the fol-
lowing subsection, we will see that, they can be used to obtain a generalized
version of the supersymmetric quantum mechanics.

3 Supersymmetric Quantum Mechanics

In the one dimensional case, the Hamiltonians H1 and H2 are given by

H1 = α2



P 2 +
d2f

dx2
+

(

df

dx

)2


 , (8)

H2 = α2



P 2 −
d2f

dx2
+

(

df

dx

)2


 . (9)

Moreover, if

f(x) =
∫ x

0
W (u)du, (10)

then

H1 = α2

(

P 2 +
dW

dx
+W 2

)

, (11)
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H2 = α2

(

P 2 −
dW

dx
+W 2

)

. (12)

(13)

This Hamiltonians can be used to form the matrix

h =

(

H1 0
0 H2

)

. (14)

Now, defining

Q =

(

0 αP(f)

0 0

)

, (15)

we have

h = {Q,Q†}, Q2 = 0, {Q,H} = 0. (16)

According to the supersymmetric quantum mechanics [5], h represents a su-
perhamiltonian and Q a supercharge. Therefore, the quantum mechanics
built using P(f)i contains the usual supersymmetric quantum mechanics.

Moreover, P(f) allows us to generalize supersymmetric quantum mechan-
ics. In fact, we can define the matrices

Q1 =













0 αP(f) 0 0
0 0 0 0

0 0 0 βP
†
(f)

0 0 0 0













, Q2 =













0 0 0 0

αP
†
(f) 0 0 0

0 0 0 0

0 0 βP
†
(f) 0













, (17)

and thenQ2
1 = Q2

2 = 0. Using Q2
1 = Q2

2 = 0 we can construct the Hamiltonian

H = {Q1, Q2} =











H1 0 0 0
0 H2 0 0
0 0 H3 0
0 0 0 H3











(18)

with the conserved charges

Q̇1 = [Q1, H ] = 0, Q̇2 = [Q2, H ] = 0; (19)
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now, if β = 0, we have Q1 = Q2 = Q and this quantum mechanics reduces
to the usual supersymmetric quantum mechanics.

Besides, we have another quantum mechanics that reduces to the usual
supersymmetric quantum mechanics. In fact, if

Q3 =













0 αP
†
(f) 0 0

0 0 0 0
0 0 0 βP(f)

0 0 0 0













, Q4 =











0 0 0 0
αP(f) 0 0 0

0 0 0 0
0 0 βP(f) 0











, (20)

then Q2
3 = Q2

4 = 0 and we can construct the Hamiltonian

H̃ = {Q3, Q4} =











H2 0 0 0
0 H1 0 0
0 0 H4 0
0 0 0 H4











. (21)

Note that if β = 0 this Hamiltonian is just the usual superhamiltonian h.

If we make the transformation f → −f, we have

(H1, H2, H3, H4) → (H2, H1, H4, H3) , (22)

i.e

H → H̃. (23)

Then, there is a duality transformation between Hamiltonians H and H̃.

Therefore these generalized quantum mechanics are duals.

Now, if we consider the functions ψ0 = A1e
f , φ0 = A2e

−f that satisfy

P(f)ψ0 = 0, P
†
(f)φ0 = 0. (24)

Then, the wave function

ψ =











A1e
−f

A2e
f

A3e
−f

A3e
−f











(25)
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satisfies

Hψ = 0. (26)

Moreover, the wave function

ψ̃ =











ef

e−f

ef

ef











(27)

satisfies

H̃ψ̃ = 0. (28)

Thus, ψ is the ground state of H and ψ̃ is the ground state of H̃.

4 The Black-Scholes model

This model is a partial differential equation whose solution describes the value
of an European Option. See [2], [8]. Nowadays, it is widely used to estimate
the pricing of options other than the European ones. Let (Ω,F , P,Ft≥0) be
a filtered probability space and let Wt be a brownian motion in R. We will
consider the stochastic differential equation (s.d.e.)

dX(t) = a(t, X(t))dt+ σ(t, X(t))dW (t), (29)

with a and σ continuous in (t, x) and Lipschitz in x. The price processes
given by the geometric brownian motion S(t), S(0) = x0, solution of the
s.d.e.

dS(t) = µS(t)dt+ σS(t)dW (t), (30)

with µ and σ constants. It is well know the solution of this s.d.e. it is given
by:

dS(t) = x0 exp{σ(W (t)−W (t0)) + (r −
1

2
σ2)(t− t0)} (31)

Let 0 ≤ t < T and h be a Borel measurable function, h(X(T )) denote the
contingent claim, let Ex,th(X(T )) be the expectation of h(X(T )), with the
initial condition X(t) = x.
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Now we recall the Feynman–Kac theorem [9]. Let v(t, x) = Ex,th(X(T ))
be, 0 ≤ t < T , where dX(t) = a(X(t))dt+ σ(X(t))dW (t). Then

vt(t, x) + a(x)vx(t, x) +
1

2
σ2(x)vxx(t, x) = 0, and v(T, x) = h(x). (32)

Now, if we consider the discounted value

u(t, x) = e−r(T−t)Ex,th(X(T )) = e−r(T−t)v(t, x).

Then if at time t, S(t) = x, if we proceed in standard way,

v(t, x) = er(T−t)u(t, x),

vt(t, x) = −rer(T−t)u(t, x) + er(T−t)ut(t, x),

vx(t, x) = er(T−t)ux(t, x),

vxx(t, x) = er(T−t)uxx(t, x).

The Black-Scholes equation is obtained substituting the above equalities in
the equation (32) and multiplying by the factor e−r(T−t):

−ru(t, x) + ut(t, x) + rxux(t, x) +
1
2
σ2x2vxx(t, x) = 0, (33)

0 ≤ t < T, x ≥ 0.

5 The Relation with the Black-Scholes Equa-

tion

The operators ~Pf · ~Pf and ~P
†
f ·

~P
†
f are non-Hermitians, using them only non-

Hermitians Hamiltonians such as H3 and H4, can be constructed. However,
we will show that these operators may have applications in some other areas
such as quantum finance. In order to see this, we define the potentials

U1(x, y, z) = −β2
(

∇2f −
(

~∇f
)2
)

+ V1(x, y, z), (34)

U2(x, y, z) = β2
(

∇2f +
(

~∇f
)2
)

+ V2(x, y, z), (35)

and the non-Hermitians Hamiltonians

HI = β2 ~P(f) · ~P(f) + U1(x, y, z)

= β2
(

~P 2 + 2i~∇f · ~P
)

+ V1(x, y, z), (36)

HII = β2 ~P
†
(f) ·

~P
†
(f) + U2(x, y, z)

= β2
(

~P 2 − 2i~∇f · ~P
)

+ V2(x, y, z). (37)
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On the other hand, let us consider the fundamental equation in quantum
finance, the so-called Black-Scholes equation (33)

∂C

∂t
= −

σ2S2

2

∂2C

∂S2
− rS

∂C

∂S
+ rC, (38)

where C is the option price, σ is a constant called the volatility and r is the
interest rate [1]. With the change of variable S = ex we obtain

∂C

∂t
= HBSC,

HBS = −
σ2

2

∂2

∂x2
+

(

σ2

2
− r

)

∂

∂x
+ r (39)

this non-Hermitian Hamiltonian is called Black-Scholes Hamiltonian. Now,
considering the one dimensional case of (37) and identifying

β2 =
σ2

2
, f(x) =

1

σ2

(

σ2

2
− r

)

x, V2(x) = r

we obtain HII = HBS.

One generalized Black-Scholes equation, (see [1]) is given by

HBSG = −
σ2

2

∂2

∂x2
+

(

σ2

2
− V (x)

)

∂

∂x
+ V (x). (40)

In this case, considering again the one dimensional case of equation (37) and
with

β2 =
σ2

2
, f(x) =

∫ x

0
du

1

σ2

(

σ2

2
− V (u)

)

, V2(x) = V (x)

we have HII = HBSG.

Moreover, the so-called barrier option case has Hamiltonian

HBSB = −
σ2

2

∂2

∂x2
+

(

σ2

2
− r

)

∂

∂x
+ V (x). (41)

Again, considering (37) in one dimension and with

β2 =
σ2

2
, f(x) =

1

σ2

(

σ2

2
− r

)

x, V2(x) = V (x)
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we have HII = HBSB.

As we have seen, several important Hamiltonians appearing in quantum
finance are particular cases of this new version of quantum mechanics.

6 Summary

A quantum mechanics is built by means of a non-Hermitian momentum oper-
ator. Moreover, It is shown that using this momentum operator it is possible
to construct two Hermitian and two non-Hermitian type of Hamiltonians.
Using these Hermitian Hamiltonians we have built, a generalized supersym-
metric quantum mechanics with a dual that can be constructed. It also
shown that, the non-Hermitian Hamiltonians of this theory may be related
to so-called quantum finance Hamiltonian.
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