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Abstract

Employing the Klein-Gordon equation, we propose a generalized

Black-Scholes equation. In addition, we found a limit where this gen-

eralized equation is invariant under conformal transformations, in par-

ticular invariant under scale transformations. In this limit, we show

that the stock prices distribution is given by a Cauchy distribution,

instead of a normal distribution.

1 Introduction

The Black-Scholes equation is one of the most useful in finance [1, 2]. This
equation can be obtained from different approaches, for example as a limit
from Cox-Ross-Rubenstein model or from stochastic calculus. However,
Black-Scholes equation is based in some ideal assumptions, for example that
there are not arbitrage and that the stock prices follow a normal distribu-
tion. Whereby, in some cases the Black-Scholes equation can not provide
realistic predictions. This fact has been noted by different authors. Actually,
before the Black-Scholes equation was proposed, Mandelbrot noticed that
some stock prices do not follow a normal distribution, but a Cauchy distri-
bution [3]. In order to obtain a more realistic Black-Scholes equation, various
authors haven been proposed different generalized Black-Scholes equations.
For instance using a stochastic volatility [4], multifractal volatility [5], jump
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processes [6], Levy’s distributions [7] and fractional differential equations [8].

Interesting, recently diverse mathematical techniques of physics have been
applied in finance successfully [9, 10, 11]. For example, quantum mechanics
is a natural framework to study financial models with stochastic volatility or
stochastic interest rate [9]. Furthermore, statistical mechanics can be used
to study financial risk [10] and fluid theory can be employed to study foreign
exchange markets [11]. Moreover, statistical arbitrage can be studied with
relativistic statistical mechanics [12]. Additionally some financial crashes
can be seen as a phase transition [13, 14], it is worth mentioning that when
a system is in a phase transition some of its quantities are invariant under
scale transformations [15]. In the relation between physics and finance, a re-
markably result is that the Black-Scholes equation can be mapped to the free
Schrödinger equation [9]. Then, the Black-Scholes formula can be obtained
using quantum mechanics. It is worth mentioning that in this mapping the
particle mass m is related with the volatility σ in the way m→ 1/σ2. Thus,
an stock price with high volatility is identified with a light weight particle,
while a massive particle is identified with a stock price with small volatility.
Now, it is well know that when σ is too large the Black-Scholes equation
does not make sense. While, when m is very small the Schrödinger equation
does not make sense too. In fact, in this last case the quantum mechan-
ics is changed by the relativistic quantum mechanics and the Schrödinger is
changed by the Klein-Gordon equation. In the Klein-Gordon equation a new
parameter is introduced, the speed of light, c̃. When c̃ → ∞ we obtain the
Schödinger equation.

In this paper, in order to obtain a generalized Black-Scholes equation,
we relate the Klein-Gordon equation with a new generalized Black-Scholes
equation. We show that there is a limit where the generalized Black-Scholes
equation is invariant under conformal transformations, in particular invariant
under scale transformations. In this limit, we show that the stock prices dis-
tribution is given by a Cauchy distribution, instead of a normal distribution.
Due that scale invariance is a characteristic of phase transitions [15], we can
think that when the modified Black-Scholes equation is invariant under scale
transformation the system is near from a phase transition.

This paper is organized as follow: In Section 2, it is shown the mapping
between the free Schrödinger equation and the Black-Scholes equation; in
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Section 3, it is proposed a relativistic Black-Scholes equation; in Section 4,
the conformal symmetry is studied; in Section 5, the Cauchy distribution is
obtained. Finally, in Section 6 a summary is given.

2 Black-Scholes equation and free Schrödinger

equation

The Black-Scholes equation is given by

∂C(S, t)

∂t
= −

σ2

2
S2∂

2C(S, t)

∂S2
− rS

∂2C(S, t)

∂S
+ rC(S, t), (1)

where σ is the volatility, S is the stock price, r is the annualized risk-free
inters rate and C is the option price. While the free Schrödinger equation is

ih̄
∂ψ

∂t̃
= −

h̄2

2m

∂2ψ

∂x2
, (2)

here m is the particle mass, h̄ is the Planck constant and ψ is the wave func-
tion.

Remarkably, using the mapping

t̃ = it, h̄ = 1, m =
1

σ2
, x = lnS, (3)

ψ(x, t) = e
−

(

1
σ2

(

σ2

2
−r

)

x+ 1
2σ2

(

σ2

2
+r

)2

t

)

C(x, t) (4)

the free Schrödinger equation (2) becomes the Black-Scholes equation (1).

3 Relativistic quantum finance

It is well known that when m→ 0 the Schrödinger equation does note make
sense. While, if σ2 is not small the BS equation does not make sense too. In
physics the case m → 0 is not studied in the usual quantum mechanics, but
in the relativistic quantum mechanics. In this last theory, the Schrödinger
equation is changed by the Klein-Gordon equation

−
h̄2

c̃2
∂2ψ(x, t)

∂t̃2
+
∂2ψ(x, t)

∂x2
−m2c̃2ψ(x, t) = 0, (5)
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where c̃ is the light speed. Notice that when m → 0, the Klein-Gordon
equation makes sense. Furthermore, it can be shown that when c̃ → ∞ the
Klein-Gordon equation becomes the Schrödinger equation.

Now, using the mapping

t̃ = it, h̄ = 1, m =
1

σ2
, x = lnS, (6)

c̃2 = q, ψ(x, t) = e
−

[

1
σ2

(

σ2

2
−r

)

x+

(

1
2σ2

(

σ2

2
+r

)2

−
q

σ2

)

t

]

C(x, t) (7)

the Klein-Gordon equation becomes

1

q

∂2C(S, t)

∂t2
+





2

σ2
−

1

qσ2

(

σ2

2
+ r

)2




∂C(S, t)

∂t
+ S2∂

2C(S, t)

∂S2

+
2r

σ2
S
∂C(S, t)

∂S
+





1

4qσ4

(

σ2

2
+ r

)4

−
2r

σ2



C(S, t) = 0. (8)

This equation can be written as

σ2

2q

∂2C(S, t)

∂t2
+



1−
1

2q

(

σ2

2
+ r

)2




∂C(S, t)

∂t

= −
σ2

2
S2∂

2C(S, t)

∂S2
− rS

∂C(S, t)

∂S
+ rC(S, t). (9)

Furthermore, if we take the limit q → ∞, in this last equation we arrive
to the Black-Scholes equation (1). Then, the equation (8) is a generalized
Black-Scholes equation, which has the new parameter q.

4 Conformal symmetry

The usual Black-Scholes equation is invariant under the Schrödinger group
[16].

In orden to understand the symmetries for the equation (8) we take the
coordinates

z = lnS + i
√
qt. (10)
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Using this coordinates, the modified Black-Scholes equation (8) can be writ-
ten as

4
∂2C

∂z∂z̄
+ 2

(

Ā
∂C

∂z
+ A

∂C

∂z̄

)

+
(

AĀ−
q

σ4

)

C = 0, (11)

where

A = −
1

σ2





(

σ2

2
− r

)

−
i

2
√
q





(

σ2

2
+ r

)2

− 2q







 . (12)

We can see that the equation (11) is invariant under the following transfor-
mations

z′ = eiαz, α = constant, (13)

C ′ (z, z̄′) = e
1
2 [Az(1−eiα)+Āz̄(1−e−iα)]C(z, z̄). (14)

We have a special case, in fact when

q

σ4
<< ĀA, (15)

that is

0 <<
1

4q

(

σ2

2
+ r

)4

+ 2rσ2, (16)

the equation (11) becomes

4
∂2C

∂z∂z̄
+ 2

(

Ā
∂C

∂z
+ A

∂C

∂z̄

)

+ AĀC = 0. (17)

This last equation is invariant under the conformal symmetry

z′ = z′(z), (18)

C ′ (z′, z̄′) = e
1
2 [A(z−z′)+Ā(z̄−z̄′)]C(z, z̄). (19)

where

∂z′(z)

∂z̄
= 0, (20)
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namely z′(z) is an analytic function. Then, every analytic function provides
a symmetry for the equation (17).

Notice that the equation (20) implies that at first order any infinitesimal
transformation can be expressed as

z′ = z + ǫ(z), ǫ(z) =
∞
∑

−∞

ǫnz
n+1, ǫn = constant. (21)

Now, using the equation (19), we find

C ′ (z′, z̄′) ≈ C (z′, z̄′)−

[

ǫ (z′)

(

A

2
+

∂

∂z′

)

+ ǭ (z̄′)

(

Ā

2
+

∂

∂z̄′

)]

C (z′, z̄′) ,(22)

that is

δC (z′, z̄′) = C ′ (z′, z̄′)− C (z′, z̄′)

≈ −

[

ǫ (z′)

(

A

2
+

∂

∂z′

)

+ ǭ (z̄′)

(

Ā

2
+

∂

∂z̄′

)]

C (z, z̄) . (23)

Furthermore, using the equation (21) the option price transforms as

δC (z, z̄) =
∞
∑

−∞

(

ǫnln + ǭnl̄n
)

C (z′, z̄′) , (24)

where

ln = −zn
(

A

2
+

∂

∂z

)

, l̄n = −z̄n
(

Ā

2
+

∂

∂z̄

)

. (25)

These operator satisfy the Witt algebra

[ln, lk] = (n− k)ln+k,
[

l̄n, l̄k
]

= (n− k)l̄n+k,
[

l̄n, lk
]

= 0. (26)

Notably, the usual Black-Scholes equation has only a finite number of
symmetries, but the equation (17) has an infinity number of symmetries.
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In particular, if λ is a real number, the equation (17) is invariant under
the scale transformations

z′ = λz, (27)

C ′ (z′, z̄′) = e
1
2
(1−λ)(Az+Āz̄)C(z, z̄), (28)

which can be written as

S ′ = Sλ, (29)

t′ = λt, (30)

C ′ (S ′, t′) = C ′

(

Sλ, λt
)

= S
(λ−1)

σ2

(

σ2

2
−r

)

e

(λ−1)

2σ2

(

(

σ2

2
+r

)2

−2q

)

t

C(S, t).(31)

In general, the equation (8) is not invariant under scale transformations,
however in the limit (16) this symmetry is obtained. This phenomenon is
well known in phase transitions, in fact the scale invariance is a characteristic
of phase transitions [15]. Then, we can think that when the equation (16)
is satisfied, the system is near from a phase transition. Remarkably, when
a system is near from a phase transition there are fluctuations of all scales.
This phenomenon happened in some financial crashes [13, 14].

5 Cauchy distribution

Using the coordinates x, t and the function ψ defined in (7), the equation
(17) can be written as

1

q

∂2ψ(x, t)

∂t2
+
∂2ψ(x, t)

∂x2
= 0. (32)

Now, imposing the initial condition

ψ(x, 0) = f(x), (33)

the solution for the equation (32) is given by

ψ(x, t) =
∫

∞

−∞

dζG(x− ζ, t)f(ζ), (34)

where

G(x− ζ, t) =
1

π

√
qt

(x− ζ)2 + qt2
. (35)
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Notice that this last function is the Cauchy distribution. Using the mapping
(4), we obtain the option price

C(x, t) =
∫

∞

−∞

dζK(x− ζ, t)C(ζ, 0), (36)

here

K(x− ζ, t) =
e

1
σ2

[(

1
2

(

σ2

2
+r

)2

−q

)

t+

(

σ2

2
−r

)

(x−ζ)

]

π

√
qt

(x− ζ)2 + qt2
. (37)

The Cauchy distribution was first proposed by B. Mandelbrot as a distribu-
tion for stock price [3].

6 Summary

Employing the Klein-Gordon equation, we proposed a generalized Black-
Scholes equation. We found a limit where the generalized equation is in-
variant under conformal transformations, in particular invariant under scale
transformations. In this limit, we shown that the stock prices distribution is
given by a Cauchy distribution, instead of a normal distribution.
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