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A L Garćıa- Perciante, L Franco-Pérez and A R Méndez
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E-mail: algarcia@correo.cua.uam.mx, lfranco@correo.cua.uam.mc,

amendez@correo.cua.uam.mx

Abstract. The dependence of the bulk viscosity with the relativistic parameter z = kT/mc2,
obtained through the complete Boltzmann equation [1, 2], is thoroughly analyzed. A complete
and rigorous examination of the relevant non-relativistic and ultra-relativistic limits is carried
out in the case of a hard disk model and compared with the results obtained in the relaxation
time approximation. The modifications of the non-vanishing bulk viscosity to the Rayleigh-
Brillouin is briefly discussed.

1. Introduction
The study of relativistic bidimensional fluids is a relevant and interesting topic which is still
in need of extensive analysis. Additional to its importance in the modelling of axisymmetric
systems, for example a charged fluid in the presence of a magnetic field, orbiting gases, or
accretion in gravitational potentials, the interest in the study of bidimensional systems in
relativistic scenarios has seen a substantial increase due to the new generation of thin materials
and their several applications. Also, relativistic fluids still pose a challenge, plagued with
unaswered questions and topics of intense debate even in very fundamental issues, numerical
simulations in low dimensionality have been one of the most valuable assets in order to
corroborate theoretical predictions.

The establishment of relativistic transport coefficients in a special relativistic framework
from the complete Boltzmann equation has only been addressed recently in the 2D scenario.
Indeed, in a separate publication (see Ref. [3]) the constitutive equations are established and
the transport coefficients expressed in terms of collision integrals which, for a hard disks model,
can be numerically evaluated. In particular, the bulk viscosity is expressed in terms of the
integral

I (z) =

∫ ∞
2
z

e−(x− 2
z )
(

1

x
+

3

x2
+

3

x3

)(
z2x2 − 4

)5/2
dx (1)

whose dependence on z is not trivial. Moreover, its convergence in the non-relativistic (z → 0)
and ultrarelativistic (z → ∞) limits is not completely justified. This is precisely part of the
goal of the present work, the formal establishment of the behaviour of Eq. (1) in the non-
relativistic and ultrarelativistic limits. Also, in order to address the effect of a non-zero bulk
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viscosity of the gas for the complete range of z we study the corresponding modifications on the
Rayleigh-Brillouin spectrum.

In order to accomplish such a task, the rest of the work is organized as follows. In sections 2
and 3 we briefly outline the procedure carried out in Ref. [3] in order to establish the analytical
expression for the bulk viscosity in the specific case of a hard disks model. Section 4 is devoted
to the analysis of the integral defined in Eq. (1) in the non relativistic and ultrarelativistic
limits, while section 5 addresses the modification that a non-vanishing bulk viscosity has on the
Brillouin peaks for a light scattering spectrum. The discussion of the results and final remarks
are included in section 6.

2. Boltzmann equation and Chapman-Enskog approximation
In this section, we provide a brief description of the procedure leading to the function I (z)
in Eq. (1), whose relevant limits are explored in the main part of this work. The complete
calculation will be published elsewhere (a preprint can be found in Ref. [3]) together with the
calculation of the rest of the relevant coefficients, to which the reader is refered to for further
details.

The starting point is the relativistic Boltzmann equation [2] in a flat spacetime with a (+−−)
metric which reads

vα
∂

∂xα
f (xν , vν) =

∫ ∫ (
f̃ f̃1 − ff1

)
Fσdχdv∗1, (2)

where f (xν , vν) is the one particle distribution function, F is the invariant flux, γ = uµvµ/c
2,

with vµ being the molecular 3-velocity measured in an arbitrary frame, uµ is the fluid’s 3-
velocity and σ and χ are the corresponding scattering cross section and solid angle in 2D. The
local equilibrium solution to Eq. (2) is given by a bidimensional Maxwell-Jüttner distribution,
that is

f (0) (vν) =
ne

1
z

2πc2z (1 + z)
e−

uαvα
zc2 (3)

where uα corresponds to the fluid’s 3-velocity. With such distribution one can establish statistical
definition for the state variables: n (number density), uν (hydrodynamic 3-velocity) and ε
(internal energy). Considering the particles frame (Eckart’s frame), one has

n =

∫
f (0) (vν) γdv∗, (4)

nuν =

∫
f (0) (vν) vνdv∗, (5)

nε = mc2
∫
f (0) (vν) γ2dv∗, (6)

from which one can obtain

nε = nmc2g (z) with g (z) =
2z2 + 2z + 1

z (z + 1)
. (7)

These quantities, in the absence of dissipation, follow Euler’s equations. In order to establish
the first order in the gradients distribution, the Chapman-Enkog solution to Eq. (2) reads

f (vν) = f (0) (vν) (1 + φ (vν)) , (8)

where the first order correction to the local equilibrium distribution function φ (vν) is given by
the solution of the linearized Boltzmann equation.
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f (0)
∫ ∫

f (0) (v1)
(
φ̃1 + φ̃− φ1 − φ

)
Fσdχdv∗1 = vα

∂f (0) (vν)

∂xα
. (9)

The dissipative fluxes, which arise from such deviation from equilibrium, are found as moments
of f (0) (v)φ (vν). In particular, for the energy momentum tensor, which is the focus of the
present work, one has

πµν = mhµαhνβ
∫
f (0) (v)φ (vν) vαvβd

∗v. (10)

Here hαβ = ηαβ − uαuβ/c2 is the spatial projector corresponding to the (2+1) representation
where uα corresponds to the temporal direction in the comoving frame.

The details of the calculation that follows can be found in Ref.[3]. However the authors
consider it worthwhile to point out here the particular step to which the occurrence of a finite
bulk viscosity in the relativistic regime, opposed to the zero value obtained for non-relativistic
gases, can be traced down to. Equation (9) is a linear integral equation, whose solution is a
superposition of the homogeneous and a particular solutions. It is from the latter that the
driving terms for the deviation will appear as the gradients of the state variables. In such a
term one finds, for the part that depends on the velocity gradient and will thus lead to viscous
dissipation,

(
vαf (0),α

)
visc.

= f (0)

{(
vβuβ
c2

)(
1

n
uαn,α +

1

T

(γ
z
− g (z)

)
uαT,α

)
+
vµv

βhαβ
zc2

uµ,α

}
(11)

where we have introduced the usual decomposition vα = vβhαβ +
(
vβuβ/c

2
)
uα, in this case

in a (2+1) framework. Notice that the proper time derivatives of the number density and
temperature are coupled with the velocity gradient through Euler’s equations

uαn,α = −nuα,α and uαT,α = −kp (z)Tuα,α (12)

where kp (z) = k/Cn = (z + 1) / (z (g (z) + 2 (z + 1))). Also, the term uαuµ,α is not included in
Eq. (11) since the momentum equation in the local equilibrium case couples it only with the
pressure gradient.

Introducing Eqs. (12) in Eq. (11) and splitting the velocity gradient in antisymmetric,
symmetric traceless parts and the trace times an identity tensor one can write(

vαf (0),α

)
visc.

=

[(
1

2
− kp (z)

)
γ2k
z

+ (kp (z) g (z)− 1) γk −
1

2z

]
uν,ν −

vµvα

zc2
σ̊µα, (13)

where σ̊µα is the symmetric traceless component of uµ,α. Notice that, in the non-relativistic
case, the term in brackets vanishes since in such a limit z → 0, γ → 1 and thus g (z) ∼ z−1 + 1
and kp (z) ∼ 1 − 2z. Due to this fact, the bulk viscosity is zero for the monoatomic ideal gas
at low temperatures. However, as will be verified in the next section, is non-zero for z 6= 0 and
increases rapidly for 0 < z < 1.

Once the driving term given by Eq. (13) is substituted in Eq. (9), a constitutive equation
for the scalar part of the Navier tensor can be found. Such a relation is written as

πµµ = 2µuα,α. (14)

Following the standard procedure (see for example Refs. [1, 4]) one can obtain a first
approximation for µ. The steps are carefully detailed in Ref. [3], here we only quote the
result:
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Figure 1. The dimensionless bulk viscosity as a function of the parameter z in the relativistic
scenario.

µ =
4z7

(1 + z)2
mc2

(2z2 + 4z + 1)2
[
γ2k , γ

2
k

]−1
, (15)

where

[H,G] = − 1

n2

∫
C (H)Gf (0)d∗v (16)

is the collision bracket, which satisfies

[H,G] = − 1

4n2

∫ (
H ′ +H ′1 −H −H1

) (
G′ +G′1 −G−G1

)
f (0)f

(0)
∗ Fσ(χ)dχdv∗1dv

∗d∗v. (17)

In the next section, the behavior of µ as a function of z for a hard disks model will be described.

3. The temperature dependence of the viscosity for a hard disk gas
The so-called collision integrals defined in Eq. (16) depend on a molecular interaction model
for the system. The simplest case in a bidimensional scenario consists on a hard disk model for
which the scattering cross section is given by

σ (χ) =
d

2

∣∣∣sin(χ
2

)∣∣∣ .
In such a case, as is shown in Appendix C of Ref. [3], the relevant collision integral is given by

[
γ2, γ2

]
=

2cz3d

15

1

(z + z2)2
I (z) , (18)

where the integral I (z) is given in Eq. (1). Thus, one can write the bulk viscosity for the system
as

µ(z) =
30mc

d

z6

(2z2 + 4z + 1)2
I (z)−1 . (19)

In the next section, the non-relativistic limit of this expression will be carefully addressed.
However, it can be seen at this point, by inspection of Fig. 1 that µ vanishes at z = 0. It
is important to notice that for z finite, µ 6= 0 and moreover, it increases very rapidly with
temperature.

Bulk viscosity for the monoatomic ideal gas is thus non-zero as long as T 6= 0 and becomes
relevant for some range of values of z. The fact that it reaches a maximum value, which can be
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numerically obtained as µmax ∼ µ (2.4886) ∼ 0.0359, and then decreases for higher temperatures
is also found in the three dimensional case and deserves a closer analysis. One can then conclude
that for a limited range of temperature, for each gas, viscosity is enhanced. This could lead to
faster damping/enhancing of instabilities.

4. Non-relativistic and ultrarelativistic limits of µ (z)
In this section, a formal proof of the non-relativistic and ultrarelativistic limits of the expression
for µ obtained in Ref. [3] and quoted in the previous section is detailed. As mentioned above,
inspection of Fig. 1 points towards the bulk viscosity approaching zero in the non-relativistic
and ultra-relativistic limits. This behavior is proven separately for each case. In particular, the
non-relativistic limit of this and other transport coefficients is far from trivial since the lower
integration limit tends to infinity and thus the usual techniques cannot be applied.

We thus begin by addressing the low temperature, non-relativistic, case. Let us start defining
the function

h(x, z) = e−(x− 2
z )
(

1

x
+

3

x2
+

3

x3

)(
z2x2 − 4

)5/2
, (20)

which corresponds to the integrand in I (z) and an auxiliary function

k(x, z) = e−(x− 2
z )
(

1

x2

)(
z2x2 − 4

)3
, (21)

both well defined on A = (x, z) ∈ IR2, | xz ≥ 2, z > 0.

Proposition 1. For all (x, z) ∈ A and z < 1, it is verified 0 < k(x, z) ≤ h(x, z).

Proof. The equality holds for x = 2/z. For x > 2/z we claim

e−(x− 2
z )
(

1

x2

)(
z2x2 − 4

)3
< e−(x− 2

z )
(

1

x
+

3

x2
+

1

x3

)(
z2x2 − 4

)5/2
which is equivalent to (

z2x2 − 4
)1/2

<

(
x+ 3 +

3

x

)
.

If we define x = 2α/z for α ∈ (1,∞), last inequality can be written as

2z
(
α2 − 1

)1/2
< 2α+ 3z +

3z2

2α

which holds for any α > 1 and for z ∈ (0, 1).

Theorem 1. µ(z)→ 0+ as z → 0+.

Proof. Since µ ≥ 0 for z > 0, we can establish that the limit vanishes by simply upper-bounding
the function by an auxiliary real-valued analytic function that tends to zero in such a limit.

From Proposition 1 we have

0 <

∫ ∞
2
z

k (x, z) dx ≤
∫ ∞

2
z

h (x, z) dx, (22)

where the integral on the left hand side can be computed as∫ ∞
2
z

k (x, z) dx = 8
(
−4z + 2z2 − 2z3 + 3z4 + 6z5 + 3z6

)
+ 64e2/z

∫ ∞
2/z

e−t

t
dt, (23)

= 96z5 +O(z6)
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for z ∈ (0, ε), where 0 < ε < 1 is such that the last expression becomes true, namely there exists
an M > 0 and ∣∣∣∣∣

∫ ∞
2
z

k (x, z) dx− 96z5

∣∣∣∣∣ ≤M ∣∣z7∣∣
for 0 < z < ε.

Thus we have

0 < µ(z) <
30mc

d

z6

(2z2 + 4z + 1)2
(
96z5 +O(z6)

)−1
,

which formally shows that µ→ 0+ as z → 0+ in the non relativistic limit.

The ultrarelativistic case is established in the following.

Theorem 2. µ(z)→ 0+ as z → +∞.

Proof. We realize that 2
z → 0, therefore

lim
z→∞

I (z) =
(

lim
z→∞

z5
)∫ ∞

0
e−xx2

(
x2 + 3x+ 3

)
dx

= 48 lim
z→∞

z5 .

Thus

lim
z→∞

µ(z) =
5

8

mc

d
lim
z→∞

z

(2z2 + 4z + 1)2
= 0.

as is claimed

Theorem 1 and 2 claim that the bulk viscosity becomes negligible in the limits. This implies
that, whatever effect it has on the dynamics of the fluids, it should only be relevant in a finite
interval of z. In order to assess the possible effect of bulk viscosity dissipation and provide an
example of an experiment that may lead to the measure of such effect, we carry out a linear
analysis of a free relativistic gas to first order in statistical density fluctuations.

5. Modification to the Brillouin peaks due to bulk viscosity
The transport equation for the relativistic gas can be readily established by multiplying Eq. (2)
by the collisional invariants and integrating in velocity space. The procedure is the standard
one, and leads to two conservation equations

Nν
,ν = 0, Tµν,ν = 0 (24)

where the particle flux is given by

Nν =

∫
f (vν) vνdv∗ (25)

and the energy momentum tensor is

Tµν = m

∫
f (vν) vµvνdv∗. (26)

The relation of such moments with the state variables is given, in Eckart’s frame and using the
(2+1) decomposition by Nν = nuν and Tµν = nεuµuν/c2+phµν+πµν+qµuν/c2+uµqν/c2. Such
expressions are then introduced in the balance equations (Eq. (24, 25)) and the state variables
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are assumed to be given by an equilibrium value plus a small fluctuation: X = X0 + δX.
The resulting system of equations, to first order in fluctuations (δn, δuµ and δT ) can be then
transformed to Fourier-Laplace space, in which the corresponding dispersion relation is given by

s3 + a1q
2s2 +

(
a2q

2 + a3
)
q2s+ a4q

4 = 0 (27)

where

a1 = −1

ρ

(
A− ρ

p
kp (z)LT +

1

c2
(Ln + kp (z)LT )

)
,

a2 = −kp (z)

ρ
ALT ,

a3 =
p

ρ
(1 + kp (z)) ,

a4 =
kp (z)

ρ
(LT − Ln) ,

here bulk viscosity enters in Eq. (27) through the relation A = 4η/3 + µ where η is the shear
viscosity, and LT and Ln are the transport coefficients appearing in the relativistic heat flux
constitutive equation [3, 7]. Equation (27) has the same structure as the dispersion relation in
the non-relativistic case which can be analyzed using Mountain’s method [8]. Following such
approximation, one can identify a purely decaying mode, corresponding to a real root given by
s1 = −a4q2/a3. The remaining two roots correspond to a conjugate pair

s2, 3 = −1

2

(
a1 +

a4
a3

)
± iq
√
a3 (28)

which leads to decaying, oscillating modes. Thus, the corrections due to the relativistic nature
of the molecular dynamics of the disks could be measured in a light scattering experiment where
a Rayleigh-Brillouin spectrum can be obtained. In particular, since the focus of this work is the
effect of the bulk viscosity, we are only concerned with the Brillouin doublet width, which is
given by the real part of the complex roots (Eq. (28)). The width of the central peak as well as
the location of the lateral ones is not affected by the presence of µ. Let’s call

W (µ(z)) = −1

2

(
a1 +

a4
a3

)
, (29)

the width of the Brillouin peaks. Also, in order to understand better the effect of µ, in Fig. 2
we show the ratio (W (µ)−W (µ = 0)) /W (µ = 0) as a function of z. Clearly W (µ 6= 0) and
W (µ = 0) are equal at z = 0, the ratio reaches a maximum for an intermediate value of z and
finally tends to zero for large values of the temperature.

6. Discussion and final remarks
The integral in Eq. (1) that results in a complete identification of the dependence of µ with the
temperature in the two-dimensional relativistic system is far of being simple. In this work we
showed that in both the non-relativistic and ultrarelativistic limits the bulk viscosity of a 2D
relativistic system vanishes and the formal proof was presented.

Dissipation in single component fluids in the absence of external forces is composed of two
effects: viscous and thermal. While thermal dissipation in relativistic systems modifies in a
somewhat dramatical fashion the structure of the transport equations, the viscous tensor effects
remain the same in form however the coefficients are significantly altered. In particular, the
Rayleigh-Brillouin spectrum is modified by the presence of a non-vanishing bulk viscosity in
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Figure 2. The ratio of the Brillouin widths (W (µ)−W (µ = 0)) /W (µ = 0) as a function of z.

the relativistic scenario. The dynamics of density fluctuations clearly depend on all dissipative
contributions. In general, the shape of the Brillouin peaks is given in terms of all the transport
coefficients (see Eq. (29)) but the presence of a non zero bulk coefficient in the intermediate
temperature regime leads to a slight modification of the spectrum, in particular the width of
the lateral peaks is altered, as is shown in Fig. 2 and Eq. (29). The analysis of the extreme
limits shown in this paper for all the transport coefficients in the (2+1) case is important in the
context of the development of new two-dimensional materials as graphene and will be addressed
elsewhere.
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