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Abstract: A 2-switch on a simple graph G consists of deleting two edges {u, v} and {x, y} of G and adding the edges
{u, x} and {v, y}, provided the resulting graph is a simple graph. It is well known that if two graphs G and H have the
same set of vertices and the same degree sequence, then H can be obtained from G by a finite sequence of 2-switches.
While the 2-switch transformation preserves the degree sequence other conditions like connectivity may be lost. We
study the restricted case where 2-switches are applied to trees to obtain trees.
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1. Introduction

The tree graph of a connected graph G is the graph 7(G) whose
vertices are the spanning trees of G, and two trees P and Q are
adjacent if P can be obtained from Q by deleting an edge p of P
and adding an another edge ¢ of Q. It is easy to prove that 7'(G) is
always connected and Cummins [4] proved that if G has a cycle,
then 7'(G) is hamiltonian.

Some variations of the tree graph have been studied, like the
adjacency tree graph studied by Zhang and Chen[11] and by
Heinrich and Liu[8], the leaf exchange tree graph studied by
Broersma and Li[3] and by Harary, Mokken and Plantholt[6];
and the tree graph defined by a set of cycles studied by Li,
Neumann-Lara and Rivera-Campo [9].

Let n > 2 be an integer and consider the complete graph K,
with vertices vy,vs,...,0,. Let o = (dy,d,,...,d,) be the de-
gree sequence of a spanning tree T of K,,. We define the fixed
degree tree graph of K,, with respect to o, as the graph T,(K,,)
whose vertices are the spanning trees of K, with degree sequence
o; that is the spanning trees S of K, such that degg (v;) = d; for
i =1,2,...,n. Two spanning trees P and Q of K, are adjacent
in T,(K,) if there are non-adjacent edges p and r of P and non-
adjacent edges ¢ and s of Q, such that Q can be obtained from P
by deleting p and r and adding ¢ and s. An example appears in
Fig. 1.

This transformation of graphs is known as a 2-switch.
Havel [7] and Hakimi [5] (see also Berge [2]) proved that if two
simple graphs G and H with vertex set V are such that dg(v) =
dp(v) for each v € V, then H can be obtained from G by a finite
sequence of 2-switches. Bereg and Ito[1] gave a formula for the
minimum number of 2-switches needed to obtain H from G.

A graph H obtained from a tree 7 by a 2-switch may not be a
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tree. In this article we present some results related to the connec-
tivity and traversability of the graphs 7,-(K,,), in which all vertices
are trees. For a connected graph G, the distance d(u,v) between
two vertices u and v of G is the length of a shortest path joining u
and v in G. The diameter, diam(G), of a connected graph G is the
maximum distance among the vertices of G.

2. Preliminary Results

We say that a sequence of integers o = (d}, da, ..., d,) isan ar-
boreal sequence of order n if there exists a tree 7" with n vertices
v1,02,...0, such that dr(v;) = d; fori =1,2,...,n.

We need the following well known results.

Theorem 1. A sequence o = (dy,d>,...,d,) of integers is an
arboreal sequence if and only if
1<di<n-1fori=1,2,...,n and

di+dr+...+d, =2(n-1).

Theorem 2. [10] Let o = (dy,d>,...,d,) be an arboreal se-
quence of order n. The number of spanning trees of K, with de-
gree sequence o is

(n—-2)!
(di = DNdr = D!...(d, = DY

Theorem 3. Let G be a graph with maximum degree A and for
i =1,2,...,A let n; be the number vertices of G with degree i.
Then

A

D o) +dgw) = ) Pn.

{u,}eE(G) i=1

Theorem 2 gives the order of 7,,(K,). The degree of a vertex
in T,(K,) corresponding to a tree P is given by the number of
pairs of non-adjacent edges in P. Then by a counting argument
we have the following theorem.

Theorem 4. For every arboreal sequence o, the graph T,(K,,) is

2) 72
i=1
tices of degree i and A is the largest integer in o.

A
a [(”) -1 Z izni}—regular graph where n; is the number of ver-
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Fig.1 T,(Ks)witho =(1,2,1,3,1).

Proof. Let o be an arboreal sequence, let P be a vertex of
T,-(K,) and let e = {u,v} be and edge of P. Since the number
of adjacent edges to e is dp(u) + dp(v) — 1, the number of non-
adjacent edges to e is n — dp(u) — dp(v). Adding over all edges of
P and using Theorem 3 we obtain:

n—dp() —dp(v) _nn-1) dp(u) + dp(v)

2 2 2
{u,v}eE(P)

n 1 &
_ _ 2.
_(2) 52

i

{u,v}eE(P)

3. Main Results

Let o = (di,d>, . ..,d,) be an arboreal sequence. For any ver-
tex v of K, we denote by o(v) the integer d;, where i is such that
v = v;. Let v be a vertex in K, such that o-(v) = 1. For each vertex
u with o(u) > 1, let H,(u) be the subgraph of 7, (K,,) induced by
those spanning trees of K, with degree sequence o in which v is
adjacent to u.

Lemma 5. Let o be an arboreal sequence of order n > 4. Let v
be a vertex of K,, such that o(v) = 1. For each vertex u of K,, with
o(u) > 1 the graph H,(u) is isomorphic to T,,(K, — v), where A,
is the arboreal sequence of order n — 1 given by 4,(u) = o(u) — 1
and 1,(w) = o(w) for each vertex w with w € V(K,) — {u, v}.
Proof. Let® : V(H,(u)) — V(T,,(K, —v)) be given by @(P) =
P —v. Since {v, u} is a terminal edge of P and dp(v) = 1, then P—v
is a spanning tree of K, — v; it is clear that ® is a bijective func-
tion. If two trees P and Q are adjacent in H,(u), then there exist
edges p and r in P different from e = {v, u} and edges ¢ and s in
Q, also different from e, such that Q = (P—{p, r})+1{g, s}. Clearly
0(Q) =0-v=((P-v)—{p,rh+{g, st = (OP)—{p,r}) +1q, s}.
Therefore @(P) and O(Q) are adjacent in T, (K, — v). Analo-
gously if ®(P) and O(Q) are adjacent in T, (K, — v), then P and
Q are adjacent in H,(u). ]
Lemma 6. Let o be an arboreal sequence and let Q be a span-
ning tree of K, with degree sequence o. Let v be a vertex of K,
such that o(v) = 1. For each vertex u not adjacent to v in Q
with o(u) > 1, there exists a spanning tree P of K,, also with
degree sequence o, containing the edge {v, u}, and such that P is
adjacent to Q in Ty (K),).

Proof. Let u be a vertex not adjacent to v in Q and let x be
the vertex adjacent to v in Q. Since o(u) > 1, there is a ver-
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Fig. 2 T10.)(Ke) and T(122,1)(Ks).

tex y adjacent to u# in Q not lying in the vu path of Q. Let
P = (0 — {{v, x}, {u, y}}) + {{v, u}, {x,y}}. Clearly {v, u} is an edge
of P, and Q is adjacent to P in T5(K,,). |
Theorem 7. Letn > 4 be an integer. For every arboreal sequence
o, diam(T5(K,)) < n—3. In particular, T5(K,,) is connected.
Proof. The result holds for n = 4, see Fig.2. We proceed by in-
duction assuming that for an integer m > 4, diam(T y(K,,)) < m—3
for every arboreal sequence A . We prove that diam(T,(K,+1)) <
m — 2 for any arboreal sequence o

Let v be a vertex of K,,,; for which o(v) = 1 and let P and
0 be vertices of T,(K,,.1). If there is a vertex u of K,,,; with
o(u) > 1 such that both P and Q are vertices of H,(u), then
d(P,Q) < diam(H,(u)) = diam(Ty(Kps1) —v) < m — 3 by
Lemma 5 and by the induction hypothesis, where A is the arboreal
sequence of order m given by A(u) = o(u) — 1 and A(w) = o(w)
for w € V(K,,) — {u, v}.

If P is a vertex of H,(u) and Q is a vertex of H,(w) with u # w,

then by Lemma 6 there is a vertex R of H,(u) which is adja-
cent to Q in Ty (K,.1). In this case d(P,Q) < d(P,R) +1 <
diam(H,(w))+1 = diam(T,(K,p11)-0v)+1 < (m=3)+1 =m-2. O
Theorem 8. Let n > 4 be an integer and o an arboreal sequence.
For each tree in T, (Ky,), there exists a hamiltonian path in T (K,,)
that starts in P.
Proof. The result holds for n = 4, see Fig.2. We proceed by
induction assuming that for an integer m > 4 and for every ar-
boreal sequence A and every spanning tree Q of K, with degree
sequence A, the graph 7,(K},,) contains a hamiltonian path starting
in Q. We prove the result for 7, (K,41)-

As in the proof of the previous theorem consider a vertex v of
K1 for which o(v) = 1 and let uy, ua, ..., u, be the vertices of
K1 with o(u;) > 1. Fori = 1,2,...,r let A; be the arboreal
sequence of order m given by A;(u;) = o(u;) — 1 and 4;(w) = o(w)
forv # w # u;.

Let P be a vertex of T, (K,+1). Without loss of generality let
us suppose P is a vertex of H,(u;). By Lemma 5 the graph H,(u;)
is isomorphic to 7, (K,+1 — v) and by the induction hypothesis
T4, (Kju+1 —v) contains a hamiltonian path that starts in P — v; this
implies that H,(u;) contains a hamiltonian path 7' that starts in
P. Let Q; denote the other end of 7. By Lemma 6 there exists a
vertex P, of H,(u;) which is adjacent to Q in T(K,,11). Again
by Lemma 5 and by the induction hypothesis, there is a hamilto-
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Fig.3 Hamiltonian path joining Ps and Qs in T,(Ks).

L X

nian path 7, of H,(u,) that starts in P, and ends at some vertex
Q,. Clearly this process can be continued to obtain a hamiltonian
path of T,-(K,,.1) that starts in P. ]
Theorem 9. Ifn >5and o, =(1,2,2,...,2,1), then Ty, (K,) is
hamiltonian.

Proof. Let vy,0y,...,0, denote the vertices of K,. We prove
by induction that for each integer n > 5 and for each ordering
Vi, Uiy, - - ., U;, Of the vertices of K, the graph 7, (K,,) contains a
hamiltonian path that starts in P, = (v;,v;,,...,0;) and ends in
On = (Viy» Vi, Vi, s+ -5 Viy, U,). The result follows since P, and
Q, are adjacent in T, (K,).

We show the case n = 5 and the inductive step for the ordering
v, = v, fork = 1,2,...,n. All other orderings may be treated
analogously. Figure 3 shows that 7, (Ks) contains a hamilto-
nian path that starts in Ps and ends in Qs. We proceed by in-
duction assuming that for certain integer m > 5 and for each
spanning path P = (vj,,v;,...,0;,) of K, the graph T, (K,,)
contains a hamiltonian path that starts in P and ends in Q =
(Vi s Vi, (s Vi 5» - - -5 Uiy, Uj,,) and consider the graph T, . (Ky+1),

where o, is the arboreal sequence (1,2,2,...,2,1) of order
m+ 1. Let
1
P, = 1,00, 0ms1) = Py,
1
Ot = V1,02, Uy V15 -+, U3, Vg 1).

Fori=2,...,m-2,let

i —
Pl = (01,041, 0i425 o+ Uy V2,035« + + 5 Vg Ut 1)
i
Oe1 = (U101, Vi - o3 02, Vs U1+ - -5 Vi 25 U 1),
and let
m—1
P = 01, 0m,02,03, o, U1 U 1)s
m—1 _ _
Qm+1 = (U1, Vs Upe1s - - -5 02, Ung1) = Qg

Fori=1,2,...,m—1let H; be the subgraph of T, . (K1), in-
duced by the spanning paths of K,,;; in which v; is adjacent to
vi+1. By Lemma 5, H; is isomorphic to T, (Kyy+1 — v1), where
A4 1s the arboreal sequence of order m given by A1 (viy1) = 1
and A;41(v)) = 2if 1 # j # i + 1. By the induction hypothesis
T,,., (K1 —v1) contains a hamiltonian path that starts in Pin VI
and ends in Qiﬂ +1 — V1. This implies that H; contains a hamiltonian
path R; that starts in P!

i
m+1 m+1°
i+1

Finally, observe that for i = 1,2,...,m — 2, P =

m+i

and ends in Q
! o~ v v b vis2, et 1+ {01, vis2), {Vie1s U }) which im-
plies that Q' .| and P'*! are adjacent in T, (Ky1). There-
fore Ri, Ry, ..., R, can be joined to form a hamiltonian path in
Ty, (Kps1) that starts in P, = P! ., and ends in Oyt = Q7]

m+1°
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Fig.4 Casem+ 1 =7 in Theorem 9.
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see Fig.4 for thecasem + 1 = 7. O

The fixed degree tree graph may be defined for any connected
graph G as follows: Let o~ be the degree sequence of a spanning
tree Q of G and let T,(G) be the graph whose vertices are the
spanning trees S of G such that dg(u) = do(u) for each vertex
u of G. As in the case G = K,,, two trees P and S are adjacent
in T,(G) if there are non-adjacent edges p and r of P and non-
adjacent edges ¢ and s of S, such that S can be obtained from P
by deleting p and r and adding 7 and s.

A fixed degree tree graph 7,-(G) of a connected graph may no
longer be connected as shown in Fig.5. For complete bipartite
graphs we have the following results.

Let n and m be positive integers. A sequence o of order n + m
is (n, m)-arboreal if there is an spanning tree T of K, ,, that has o
as its degree sequence.

Let (X, ¥,,) be the bipartition of the complete bipartite graph
Knyn Let X = {x1,%2, ..., %), Yo = {y1.Y2,...,yn) and 0 =
(aj,az,...,am,b1,by,. .., by,) be an (m,n)-arboreal sequence. For
any vertex x of X,,, we denote by o(x) the integer a;, where i is
such that x = x; and we denote o(y) the integer b;, where i is
such that y = y; for any vertex y of Y,,. Let x be a vertex in X,
such that o(x) = 1. For each vertex y with o(y) > 1, let H,(y) be
the subgraph of T,+(K,,,) induced by those spanning trees of K,,, ,
with degree sequence o in which x is adjacent to y.

Lemma 10. Let o be an (m,n)-arboreal sequence with m > 3
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Fig.6 The graph T, (K33).

and n > 3, and let (X,,,Y,) be the bipartition of the complete bi-
partite graph K, ,. Let x be a vertex of X,, such that o(x) = 1.
For each vertex y of Y, with o(y) > 1 the graph H,(y) is isomor-
phic to Ta (K —x), where A, is the (m— 1, n)-arboreal sequence
given by 4,(y) = o(y) — 1, 4,(w) = o(w) for each vertex win Y,
with w # y and A,(v) = o(v) for each vertex vin X,, with v # x.
Theorem 11. Let n and m be positive integers. The graph
T+ (K ) is connected for every (m, n)-arboreal sequence o.

The proofs are similar to those of Lemma 5 and Theorem 7,
respectively, and are omitted here.

For n > 3, let 0, be the (n,n)-arboreal sequence given by
Tun(x1) = 1 = 0pulyn), opu(x)) = 2 fori = 2,3,...,n and
onn(yj) =2for j=1,2,...,n—1;and let o, be the (n+ 1, n)-
arboreal sequence given by o,1,(x1) = 1 = 0p10(Xn41),
Opnpin(x) = 2 fori = 2,3,...,nand 041 ,(y;) = 2 for j =
1,2,...,n.

Theorem 12. Let n > 3 be an integer. The graphs T, (K, ) and
Ty,.,,(Kus1,) are hamiltonian.

Proof.  'We prove that for any ordering x;,, x;,, ... x;, of X,, and
any ordering y;,,y;,,...,yj, of ¥, the graph T, (K, ,) contains a
hamiltonian path that starts in P, = (X, Y, Xiy» Yjos - - - » Xiy» Yj,)
and ends in O, = (Xi;,Yj,_,»Xj,_>---»Xir»Yj»Xi,»Yj,) and that
for any ordering x;,, X, ..., X;,, X, of X,+1 and any ordering

YjisYjrs---»Yj, of ¥y, the graph T,y | (Kj41,,) contains a hamilto-
nian path that starts in Ry1, = (Xijs Yjis Xiss Yjos - - > Xiy» Yjos Xiyy)
and ends in S, = (X, Y, Xi,> > Xips Yj,» Xip,, ). The results

follows since P, , and Q,, are adjacent in 7, (K,,), and since
Ry and S .11, are adjacentin Ty, (Kjy11,0)-

We show the base of induction and the inductive steps for
Top.rKpsrm) and T (Kpps1 me1) for the ordering x;, = xi,
y;, = y; for all corresponding values of k and I. All other order-
ings may be treated in an analogous way.

Let p be the order of the complete bipartite graph K, , or K1 .
For p = 6, Fig. 6 shows that T, , (K3 3) contains a path that starts
in P33 and ends in Qs 3.

We proceed by induction assuming p =t > 6, that Ty, (Kinm)
contains a hamiltonian path between the vertices P,,,, and Q,,
for t = 2m, and that Ty, (K;u41,,) contains a hamiltonian path
between the vertices Ry+1, and S 41, for t = 2m + 1. We then
consider the case with p = ¢ + 1 vertices.

For p odd, in Ty (Kyps1.m), let

1 _ —
Pm+1,m - (xlyyl7x2’ yZ,---,xm-H) - Rm+1,m

1
Opitm = XL Y1 X Y1 Xin—1s -+ > X2, Y Xims1)-
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Fork=2,...,m—1,let

k _
Prritm = (XU Yoo Xier 1> Ykt -+ o s Xims Y15 X253+« 5 Xy Y Xin 1)

X
Oritm = U Ykes Xy Yh—1s -+ s Y1s Xms Y1 -+ + > Xk 1> Yms Xome 1)

and let

7 _
Pm+1,m - (xhym,-xmaylsXZawa-wym—l,xm-ﬂ)

n _ —
Qm+1,m - (xl, Yms Xms Ym—15 - - - 7yl’xm+l) - Sm+1,m-

For k = 1,2,...,m let Hy be the subgraph of T, ., (Ky+1.m),
induced by the spanning paths of K1, in which x; is adjacent to
yx. By Lemma 10, Hy is isomorphic to T (Kp+1,m — X1) Where
ok is the (m,m)-arboreal sequence givén by a'f‘n,m(yk) = 1,

m,m

ok o) = 2ifi # k, ok, (x,) = Land ok, (x)) = 2if 1 # j # m.

m,m m,m
By the induction hypothesis, for & = 1,2,...,m — 1,

T, (Kp+1m — x1) contains a hamiltonian path that starts in

P¢  _x; and ends in Q%

m+1,m m+1,m
a hamiltonian path Ay that starts in P

—x1. This implies that Hy, contains
k k

m+1,m m+l,m*

Also by the induction hypothesis, Ton (K41, — X1) contains

mm

and ends in Q

a hamiltonian path that starts in (x;,,y;,, Xi,, Yjps- -5 Xips Yj,) =
(omets Ym—1s -+ - Y2, X2, Y15 X Yn) - and - ends in (., 5,5
Xjrs oo os Xiga Yjrs Xins Yjn) Xt 15 Y15 X2, -+ s X Ym)- - As

above, this implies that H, contains a hamiltonian path A,,

that starts in (Xpe1s Ym1s -« - » Y2, X2, Y15 Xim» Y X1) and ends in

(X1, Y15 X2, +« + s Xy Yy X1)-
Notice  that  (Xps1sYm-15- - s Y2, X2, Y15 Xims Y, X1)  and
(Xm+1>Y1sX25 - - > Ym, X1) are, respectively, the paths P”

m+1,m
and Q"  traversed backwards. Therefore A,, is a hamiltonian

3 i 1 n
path of H,, that starts in P/ | andendsin Q| .

Observe that for k = 2,3,...,m — 1, an’mﬂ = Q1

ey b e wedy + I wed (o -1}y and that PP =

m—1

it — UXG Ut b A%, Yy + X0, U {Xa1, Y1 1, which

implies that Pi +1.m and Qf;jr'l . are adjacentin Ty, ., (K11, for
k=2,3,...,m. Therefore A}, A,,...,A, can be joined to form a

o (Kps1.m) that starts in R,,41,, = P!

hamiltonian path in 7, m+lm

and ends in S 41, = Q.| ., see Fig.7 for the case p = 9.

For p even, in To(Kyy+1,m+1) let
1

Ryiimer = (X1Y1, X2, Y25+« oy Xy Ym) = Pt 1
1

Sm+1,m+1 = (-xl, Y1 Xms Ym—15 Xm=15 -« X2, ym)

Andfork =2,...,m,let

R et = L ks Xt s Ykt s Xons Y12, Y - < X, Y
Shctmet = LYl X Yot - > Yt Xows Yt - - - Xkt 1 Yim)
= Om+imsl-
For k = 1,2,...,m let H; be the subgraph of
To .1 (Kint1,m+1), induced by the spanning paths of K41 ,,+1 in

which x; is adjacent to y;. By Lemma 10, Hj is isomorphic to
k

i1 18 the (m + 1, m)-arboreal se-

T, (Kp+1me1 — x1) where o

m+1,m
quence giVCIl by O-ﬁ1+1,m(yk) =1 O-ﬁﬁ—l,m(ym) =1 O—]:n+1,ln(yi) =2
ifm#i#k and o}, (x;)=2if j# 1.

By the induction hypothesis, Tyt~ (Kps1m+1 — X1) contains

k

a hamiltonian path that starts in R — x; and ends in

m+1,m+1
Sl]/<n+1,m+l —x for k = 1,2,...,m. As above, this implies that
H,. contains a hamiltonian path By that starts in RZ +1.m+1 and ends
619
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X1 X5
Y1 Ya
1 A] 1
P54 % Xy - Os4
Y2 Y3
X3
A
P§,4 % ---2- @ Q§4
3 A 3
P5’4 & - -3 - @ ’
@ - @ 4
54 EEEm 54
Fig.7 Case p =9 in Theorem 12.
X1 Ys
Y1 X5
1 B 1
Rss x2 Yqmom Sl
Y2 X4
X3 Y3
B
R;S @ - -2 - @ S;S
B
- % o @ N
B
- @ o @ S;{S
Fig.8 Case p = 10 in Theorem 12.
ok
m Sm+1,m+l :
Finally observe that for k = 2,3,....m, R‘

Sk mer = 1) (s iy + (v, yas (X, a1 1) which implies
that RY . and S&1 . are adjacent in Ty, (Kut1ms1).
Therefore By, By, . .., B, can be joined to form a hamiltonian path

in T, (Kins1me1) that starts in Py e = R} +1ms1 and ends
in Quitmer =80, .- see Fig. 8 for the case p = 10. O
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