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� Optical soliton solutions for the
perturbed nonlinear Schrodinger’s
equation are revealed.

� Quadratic-cubic nonlinearity is
considered.

� Bright optical solitons are retrieved
by the help of the IADM.

� The numerical results together with
high level accuracy plots are
exhibited.

� The method proposed herein works
with high degree of accuracy.
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Cubic-quartic soliton transmission having power law of nonlinearity refractive index.
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This paper numerically retrieves cubic-quartic solitons having power law of nonlinearity refractive index.
An improvement of the Adomian decomposition scheme is the adopted algorithm of this work. The
results are displayed along with the established error analysis.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

One of the emerging concepts from mathematical photonics is
‘‘cubic-quartic (CQ) solitons” [1–7,9,10]. This appears when group
velocity dispersion (GVD) runs low and hence discarded. This
was first introduced a couple of years ago as a follow-up to the con-
cept of ‘‘quartic solitons” which was a prequel paper to the first
paper on CQ solitons [8]. It is noted that quartic solitons cannot
be analytically studied and therefore one must remain contended
with numerical solutions only. In order to understand the behavior
of solitons in absence of GVD the concept of CQ solitons was
subsequently introduced. Later spectrums of results have started
pouring in with CQ solitons.
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While all of the works thus far on CQ solitons are analytical in
character, it now time to take a fresher look at such solitons from
a numerical perspective. The current paper thus addresses CQ soli-
tons from a numerical standpoint. The algorithm that displays the
results is an improved version of Adomian decomposition method
(IADM) scheme. The focus is on power law nonlinearity refractive
index. The details of the scheme are inked and the results are dis-
played in the upcoming sections.

The model

The cubic-quartic (CQ) NLSE including third and fourth order
dispersion but without GVD is given by [1]:

iqt þ iaqxxx þ bqxxxx þ c j qj2mq ¼ 0; m 2 N: ð1Þ
Here, in Eq. (1), qðx; tÞ the complex-valued wave amplitude that
governs the evolution of a nonlinear wave, x is a longitudinal vari-
able and t is a co-moving time and i ¼

ffiffiffiffiffiffiffi
�1

p
. Besides a and b respec-

tively represent coefficients of third and fourth order dispersions.
Finally c is the coefficient of power law of refractive index where
m stands for the power law factor.

Exact analytical bright and singular soliton solutions for the CQ
model (1) were recently obtained in [1] with the help the of the
undetermined coefficients method and before in [8] pure-quartic
solitons propagation was studied.

Cubic-quartic bright optical solitons

The bright CQ 1-soliton solution to (1) was found by the authors
in [1] and is given by

qðx; tÞ ¼ Asech
2
m½Bðx� mtÞ�ei½�jxþxtþh0 �: ð2Þ

In Eq. (2), m is the soliton velocity, x is the angular velocity, j is
the soliton frequency, and h0 is the phase center.

The amplitude A and the inverse width B of the CQ 1-soliton are
given by

A ¼ � ðmþ 2Þð3mþ 2ÞP2
2

2bcðm2 þ 2mþ 2Þ2
" # 1

2m

; B

¼ m
2

� P2

bðm2 þ 2mþ 2Þ
� �1

2

; ð3Þ

where P2 ¼ 3a2
8b .

The velocity m and the angular velocityx of the CQ 1-soliton are
given by

m ¼ �3aj2 þ 4bj3; x

¼ bj3ðbj� aÞðm2 þ 2mþ 2Þ2 � 9j2ðmþ 1Þ2ða� 2bjÞ2
bðm2 þ 2mþ 2Þ2

; ð4Þ

where the soliton frequency j, is related to the coefficients of the
model by j ¼ a

4b.
Material and methods

A modification of the standard Adomian decomposition method
(ADM) was proposed by A. M. Wazwaz first in [11] and shortly
after the modification was improved in [12] by A. M. Wazwaz
and S. M. El-Sayed. This improvement to the Adomian decomposi-
tion method was established based on the assumption that the ini-
tial condition can be decomposed into a series of functions in the
spatial variable. We will use the IADM to solve the Eq. (1) in the
case of bright solitons through several examples.
Supposing that qðx; tÞ ¼ u1ðx; tÞ þ iu2ðx; tÞ, Eq. (1) can be split
into real and imaginary parts

� Ltu2 � aR3u2 þ bR4u1 þ cN1ðu1;u2Þ ¼ 0

Ltu1 þ aR3u1 þ bR4u2 þ cN2ðu1;u2Þ ¼ 0; ð6Þ
where Lt ¼ @

@t and L�1
t ¼ R t

0ð�Þds. Each Rj is a linear differential oper-

ator, that is, Rj ¼ @j

@xj ; j ¼ 3;4 and the nonlinear terms N1 and N2

are given for the cases m ¼ 1 and m ¼ 2 respectively, by

N1ðu1;u2Þ ¼ u2
1 þ u1u2

2

N2ðu1;u2Þ ¼ u3
2 þ 2u2

1u2 � u1u2;

(
ð7Þ

N1ðu1;u2Þ ¼ u5
1 þ 2u3

1u
2
2 þ u1u4

2

N2ðu1;u2Þ ¼ u5
2 þ 2u2

1u
3
2 þ u4

1u2:

(
ð8Þ

As the operator Lt is invertible, applying the operator L�1
t to both

sides of Eqs. (5) and (6), we get

u1ðx; tÞ ¼ Reðqðx;0ÞÞ � L�1
t ðaR3u1 þ bR4u2 þ cN2ðu1;u2ÞÞ ð9Þ

u2ðx; tÞ ¼ Imðqðx;0ÞÞ þ L�1
t ð�aR3u2 þ bR4u1 þ cN1ðu1;u2ÞÞ; ð10Þ

where u1;0ðx; 0Þ ¼ Reðqðx;0ÞÞ and u2;0ðx; 0Þ ¼ Imðqðx;0ÞÞ.
Assume that Eq. (1) has the following series solution [13]:

qðx; tÞ ¼ u1ðx; tÞ þ iu2ðx; tÞ ¼
X1
n¼0

u1;nðx; tÞ þ i
X1
n¼0

u2;nðx; tÞ:; ð11Þ

The components uj;n for j ¼ 1;2 will be determined recur-
rently. Also the nonlinear operators N1 and N2 are decomposed
as follows:

Njðu1;u2Þ ¼
X1
n¼0

Aj;nðuj;0;uj;1; . . . ;uj;nÞ; j ¼ 1;2 ð12Þ

where fAj;ng1n¼0 is the so-called Adomian polynomials sequence. A
novel method to calculate the Adomian polynomials was recently
proposed in [14], namely

Aj;0ðuj;0Þ ¼ Njðuj;0Þ ð13Þ

Aj;nðuj;0;uj;1; . . . ;uj;nÞ ¼ 1
2p

Z p

�p
Nj

Xn
k¼0

uj;keikx
 !

e�inxdx; n P 1:

ð14Þ
As we can see, in this algorithm tedious calculations of high

derivatives are not required.
Hence from Eqs. (9), (10) (11) and (12), we have the following

iterative algorithm to compute the solution components:

u1ðx;tÞ¼
X1
n¼0

f nðxÞ

�L�1
t aR3

X1
n¼0

u1;nðx;tÞ
 !

þbR4

X1
n¼0

u2;nðx;tÞ
 !

þ c
X1
n¼0

A2;n

 !
;

ð15Þ

u2ðx;tÞ¼
X1
n¼0

gnðxÞ

þL�1
t �aR3

X1
n¼0

u2;nðx;tÞ
 !

þbR4

X1
n¼0

u1;nðx;tÞ
 !

þ c
X1
n¼0

A1;n

 !
;

ð16Þ
According to IADM, we are assuming that the initial conditions

will be decomposed in series, namely:



Table 1
The absolute error when t = 0.1, t = 0.2, t = 0.3 and t = 0.5 for case m = 1 and subcase (i).

x Error when t = 0.1 Error when t = 0.2 Error when t = 0.3 Error when t = 0.5

�1.00 1.7 � 10�9 3.7 � 10�9 3.1 � 10�8 6.4 � 10�8

�0.50 3.1 � 10�8 6.8 � 10�8 4.5 � 10�7 5.1 � 10�7

0.00 2.0 � 10�8 5.5 � 10�7 2.1 � 10�7 6.6 � 10�8

0.50 2.6 � 10�9 1.4 � 10�8 6.1 � 10�8 8.1 � 10�8

1.00 4.4 � 10�10 7.1 � 10�9 2.3 � 10�8 5.5 � 10�8

Fig. 1. Comparison of proposed method solution by IADM and exact solution for �1 < x < 1 and (a) t = 0.1, (b) t = 0.2, (c) t = 0.3, (d) t = 0.5. (e) Profile of the solution q(x,t) and
(f) density plot of the solution. Case m = 1 and subcase (i) with N = 15.
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Reðqðx;0ÞÞÞ ¼
X1
n¼0

f nðxÞ; Imðqðx;0ÞÞ ¼
X1
n¼0

gnðxÞ: ð17Þ

Now we proceed to approximate solution components u1;nðx; tÞ
and u2;nðx; tÞ for n P 0 using IADM by the following recursive
relationships:
u1;0ðx; tÞ ¼ f 0ðxÞ;

u1;kþ1ðx; tÞ ¼ f kþ1ðxÞ �
R t
0ðaR3ðu1;kðx; fÞ

þbR4ðu2;kðx; fÞÞ þ cA2;kÞdf; k P 0:

8>>><
>>>:

ð18Þ



Table 2
The absolute error when t = 0.1, t = 0.2, t = 0.3 and t = 0.5 for case m = 1 and subcase (ii).

x Error when t = 0.1 Error when t = 0.2 Error when t = 0.3 Error when t = 0.5

�1.50 1.9 � 10�10 3.5 � 10�10 4.0 � 10�9 5.2 � 10�8

�1.00 2.1 � 10�10 3.7 � 10�10 4.8 � 10�9 7.4 � 10�7

�0.50 2.6 � 10�9 1.8 � 10�8 3.3 � 10�8 2.5 � 10�6

0.00 2.8 � 10�8 2.0 � 10�9 5.6 � 10�8 5.0 � 10�7

0.50 1.8 � 10�9 2.4 � 10�9 4.1 � 10�9 2.3 � 10�7

1.00 2.2 � 10�9 3.0 � 10�10 3.7 � 10�9 2.0 � 10�8

1.50 1.4 � 10�10 2.2 � 10�10 1.1 � 10�10 4.1 � 10�9

Fig. 2. Comparison of proposed method solution by IADM and exact solution for �1.5 < x < 1.5 and (a) t = 0.1, (b) t = 0.2, (c) t = 0.3, (d) t = 0.5. (e) Profile of the solution q(x,t)
and (f) density plot of the solution. Case m = 1 and subcase (ii) with N = 15.
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Table 3
The absolute error when t = 0.1, t = 0.2, t = 0.3 and t = 0.5 for case m = 2 and subcase (iii).

x Error when t = 0.1 Error when t = 0.2 Error when t = 0.3 Error when t = 0.5

�1.00 2.0 � 10�10 1.7 � 10�9 6.2 � 10�9 7.2 � 10�8

�0.50 3.3 � 10�10 5.3 � 10�8 8.8 � 10�8 6.1 � 10�7

0.00 5.0 � 10�9 6.9 � 10�7 7.1 � 10�7 7.8 � 10�6

0.50 4.6 � 10�10 6.0 � 10�8 5.3 � 10�8 6.8 � 10�7

1.00 6.4 � 10�10 3.8 � 10�9 6.3 � 10�9 2.9 � 10�8

Fig. 3. Comparison of proposed method solution by IADM and exact solution for �1 < x < 1 and (a) t = 0.1, (b) t = 0.2, (c) t = 0.3, (d) t = 0.5. (e) Profile of the solution q(x,t) and
(f) density plot of the solution. Case m = 2 and subcase (iii) with N = 15.
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Table 4
The absolute error when t = 0.1, t = 0.2, t = 0.3 and t = 0.5 for case m = 2 and subcase (iv).

x Error when t = 0.1 Error when t = 0.2 Error when t = 0.3 Error when t = 0.5

�1.50 8.9 � 10�10 7.5 � 10�9 5.1 � 10�9 7.3 � 10�8

�1.00 7.6 � 10�9 7.4 � 10�9 4.9 � 10�8 6.7 � 10�7

�0.50 1.2 � 10�9 6.8 � 10�8 8.3 � 10�7 6.7 � 10�6

0.00 2.9 � 10�8 6.0 � 10�9 5.6 � 10�7 4.3 � 10�6

0.50 1.0 � 10�9 1.6 � 10�9 7.2 � 10�8 6.4 � 10�7

1.00 2.9 � 10�9 5.5 � 10�9 8.7 � 10�9 3.1 � 10�8

1.50 4.0 � 10�10 3.9 � 10�10 6.4 � 10�9 8.1 � 10�8

Fig. 4. Comparison of proposed method solution by IADM and exact solution for �1.5 < x < 1.5 and (a) t = 0.1, (b) t = 0.2, (c) t = 0.3, (d) t = 0.5. (e) Profile of the solution q(x,t)
and (f) density plot of the solution. Case m = 2 and subcase (iv) with N = 15.
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u2;0ðx; tÞ ¼ g0ðxÞ;
u2;kþ1ðx; tÞ ¼ gkþ1ðxÞ þ

R t
0ð�aR3ðu2;kðx; fÞ

þbR4ðu1;kðx; fÞÞ þ cA1;kÞdf; k P 0:

8><
>: ð19Þ
From the above consideration, the solution will be approxi-
mated by two truncated series:
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qðx; tÞ ¼ u1ðx; tÞ þ iu2ðx; tÞ �
XN
n¼0

u1;nðx; tÞ þ i
XN
n¼0

u2;nðx; tÞ: ð20Þ
Results and discussion

In this section we give several examples to illustrate the effi-
ciency and validity of the IADM and its application for the solution
of the Eq. (1) in the case of bright solitons.

Case m ¼ 1

Consider the CQ-NLSE model in Eq. (1) with the dispersion
parameters and the power law of refractive index given in the fol-
lowing subcases:

(i) a ¼ 1
2 ; b ¼ �1 and c ¼ 1.

(ii) a ¼ 1
2 ; b ¼ �2 and c ¼ �1.

Case m ¼ 2

Consider the CQ-NLSE model in Eq. (1) with the dispersion
parameters and the power law of refractive index given in the fol-
lowing subcases:

(iii) a ¼ 1; b ¼ �2 and c ¼ 2.
(iv) a ¼ 2; b ¼ �1 and c ¼ �3.

To perform the simulations, we also consider the initial condi-
tion at t ¼ 0 from Eq. (2)

qðx;0Þ ¼ Asech2½BðxÞ�ei½�jxþh0 �: ð21Þ
Next we will present the simulation of the two cases (and the

two subcases of each) above:

� In Table 1, we examine some values of t and compare with the
results obtained from the exact solution for casem ¼ 1 and sub-
case (i). For the same case and with the same parameters, the
2D simulations for values of from t ¼ 0:1; 0:2; 0:3; 0:5 and 3D
profile of the approximate solution and its respective density
plot are shown in Fig. 1(a), (b), (c), (d), (e) and (f), respectively.

� In Table 2, we examine some values of t and compare with the
results obtained from the exact solution for casem ¼ 1 and sub-
case (ii). For the same case and with the same parameters, the
2D simulations for values of from t ¼ 0:1; 0:2; 0:3; 0:5 and 3D
profile of the approximate solution and its respective density
plot are shown in Fig. 2(a), (b), (c), (d), (e) and (f), respectively.

� In Table 3, we examine some values of t and compare with the
results obtained from the exact solution for casem ¼ 2 and sub-
case (iii). For the same case and with the same parameters, the
2D simulations for values of from t ¼ 0:1; 0:2; 0:3; 0:5 and 3D
profile of the approximate solution and its respective density
plot are shown in Fig. 3 (a), (b), (c), (d), (e) and (f), respectively.

� Finally, in Table 4, we examine some values of t and compare
with the results obtained from the exact solution for case
m ¼ 2 and subcase (d). For the same case and with the same
parameters, the 2D simulations for values of from
t ¼ 0:1; 0:2; 0:3; 0:5 and 3D profile of the approximate solution
and its respective density plot are shown in Fig. 4(a), (b), (c), (d),
(e) and (f), respectively.

Conclusions

This paper discussed CQ solitons by the aid of IADM. The
numerical results speak for itself with the display of impressive
profiles for bright solitons. The results of the scheme thus pave
way for future results. They will stem from CQ solitons from bire-
fringent fibers having various nonlinear structures. Further along,
the results will be extended to the model with DWDM networks.
Those results will be available shortly down the road. Therefore
those knowledge-hungry folks are suggested to hold it with
patience!.
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