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Short Communication

An In Silico Cell Signaling-Based Approach for Exploring
the Activities Involved in Pre-Metastasis and Metastasis
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SUMMARY

In order to understand, identify and explore the
activities involved in metastasis, as well as possible
control points, in this work we model and simulate
the sequential steps that a cell must follow from
its transformation to metastasis, using the Cellulat
bioinformatics tool, an in silico experimentation
environment that complements and guides in vitro
experimentation concerning intra and intercellular
signaling networks.
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BODY

Metastasis is the clinical term for the process by which
tumor cells leave a primary cancer tumor to transfer to
different organs. The metastasis is considered to be
the true killer in cancer patients, since usually when this
process is triggered, it inevitably leads to death. To
prevent the spreading of cancer, the most important is
to avoid the metastasis of the primary tumor, as well
as to find markers that allow early identification of the
presence of a primary tumor [1]. Features that promote
metastasis - i.e., sustained proliferation, replicative
immortality, and evasion of growth suppression - allow
cancer cells to grow uncontrollably in a tumor large
enough to invade neighboring tissues. The ability of cells
to resist cell death and prevent their destruction caused
by the immune system response, allow them to survive
on their way to metastasis.

The intrinsic complexity of biological systems and
phenomena - such as protein-protein interaction,
protein-ligand docking and protein folding, just to
mention a few examples - has required the development
of a wide range of computational tools dedicated
to the modeling and simulation of them, so that
these computational approaches - also known as
computer simulation or in silico experimentation - can
complement, corroborate and enrich both the advances
in theoretical and experimental research in the study of
such systems. Regarding cancer research, in the last

years it has found valuable support in a wide range
of modeling and simulation approaches, which cover a
wide spectrum ranging from mathematical models - e.g.,
continuous models [2–4] and stochastic models [5–8] -
to computational models - e.g., Monte Carlo method and
cellular automata [9–11], Boolean networks [12], Petri
nets [13], artificial neural networks [14–16] and expert
systems [17]. These approaches have allowed the in
silico experimentation in cancer at the cellular, system
and patient level.

In order to understand, identify and explore the
activities involved in metastasis, as well as possible
control points, in this work we model and simulate
the sequential steps that a cell must follow from
its transformation to metastasis. We simulate
and explore the complex interaction patterns of
signaling pathways involved in pre-metastasis and
metastasis using the Cellulat bioinformatics tool
(http://bioinformatics.cua.uam.mx/node/10)
[18, 19], a computational simulation tool developed
by us and inspired by Biochemical Tuple Spaces for
Self-Organizing Coordination model (BTSSOC) [20].
The main idea behind the Cellulat bioinformatics tool
is to provide an in silico experimentation environment
that complements and guides in vitro experimentation
concerning intra and intercellular signaling networks.

Cellulat, as simulation tool, captures and mimics
the behavior of complex networks of elements that
interact with each other in different forms, i.e., linear,
non-linear, positive feedback, negative feedback, among
others. The interaction between two or more elements is
expressed as a rule, law or reaction, whose condition
and action are described as tuples of elements. The
BTSSOC model, on which the bioinformatics platform
was built, is strongly characterized by three key
elements: 1) the notion of tuple space [21], 2) the
concept of chemical reaction, which is characterized by
a kinetic parameter (rate), while the elements involved
are characterized by its availability or concentration, and
3) an action selection mechanism based on Gillespie’s
algorithm [22], a stochastic simulation algorithm
typically used to mimic systems of chemical/biochemical
reactions in an efficient and accurate way. On the
other hand, two characteristic features of Cellulat -
which makes it very suitable for the simulation of cellular
signaling systems - are its multi-compartmental nature
and multi-level representation. It is important to note
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Figure 1: Simulation of the metastasis cellular signaling pathways. Cells, cell compartments, chemical reactions and
reactants have been created as the initial components required by the simulation of activities involved in pre-metastasis and
metastasis. Signaling elements - e.g., proteins and enzymes - are represented by solid blue spheres. Each signaling element is
detailed by its name (acronym) and its initial concentration in micromoles. Red arrows indicate inhibition relationships and green
arrows indicate activation relationships.

here that the majority of cell signaling simulation tools,
suchas E-Cell [23], BetaWB [24, 25] and Cell Illustrator
[26], provide abstractions to model only intracellular
behavior. Thus, they are not suitable to model cells
in their social context, along with all those biological
mechanisms that involve two or more cells, that is
essential in the scenario discussed in this work.

The methodology followed in this work is based on a
continuous bidirectional feedback between the in silico
approach and theoretical and experimental knowledge.
That is, the proposed metastasis cellular signaling
model and the results of its corresponding computational
simulation- e.g., possible target elements or control
points - should provide valuable support to guide in
vitro experimentation; while the results of theoretical
and experimental research should lead to both the
improvement of the model - e.g., what other interactions
should be added to the model?- and the design of the
most appropriate in silico experiments - e.g., what virtual
knockout experiments to carry out?

Figure 1 shows the initial state of the simulation
once the simulation components - i.e., cells, cellular
compartments, chemical reactions and reactants -
have been created from the metastasis signaling
pathway model, conceived and corroborated as initial
phase of our methodological approach. The resulting
signaling network is made up of 31 nodes representing
signaling elements (i.e., proteins and enzymes), 7
nodes representing cell processes (such as cell death,
metastasis and proliferation), and 58 arcs representing
chemical reactions between the involved nodes (e.g.,
ITGB* + SRC -> SRC* and AKT* + GSK3* -> GSK3,

where the symbol ”*” means that the signaling element
is active). The overall signaling network extends across
3 cell compartments (i.e., cell membrane, cytosol and
nucleus) comprising key cellular signaling pathways
involved in growth and metabolism leading to survival,
proliferation, tumor progression and cell death, as well as
integration with the formation of intercellular interactions
(i.e., EGFR/MAPK, JAK/STAT, RAS/RAF/MEK/ERK and
PI3K/AKT signaling pathways).

The metastasis cellular signaling model evolved
significantly, from the first versions to later version,
after multiple theoretical/experimental feedbacks which
allowed to solve the following problems that emerged
during the execution of the associated simulation: 1) the
earliest models of metastasis cellular signaling did not
include all the required chemical reactions, particularly
negative feedback (or balancing feedback), 2) the initial
concentration of some reactants did not match the
required value, which prevented the expected solution
to be reached , 3) the estimated reaction rate constant
of some chemical reactions did not meet the required
value, avoiding that such reactions were executed at
the appropriate time by Gillespie’s algorithm, 4) the
relationship between the calculated rates of various
chemical reactions was not properly adjusted, having as
a result that some slower reactions were executed before
the faster reactions.

The aim of this work was to identify - at an in
silico level - a mechanism that prevents metastasis
which is the true killer in cancer. Different experiments
were made to prevent the cancerous cell from going to
metastasis or its survival in the successive steps. For
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this we gradually reduced each of the key signalling
elements which participate in the pathways that precede
metastasis - i.e., from the highest concentration of
1000 µM to the lowest concentration of 0.001 µM -
considering the kinetic parameters and concentration
values reported in literature. We saw how this simulation
tool can be applied to the simulation of the activities
involved in pre-metastasis and metastasis - particularly,
signaling in tumor cells mediated by ADAM9 - and the
identification of possible control points. By means of
in silico experiments, using the Cellulat bioinformatics
tool, we identified two possible key molecules to avoid
metastasis, ADAM9 and ITGB.

The cellular signaling model and its associated
simulation presented here provided invaluable support
for the in silico experiments and proved to be very
flexible, efficient and secure, both with regard to the
schemes it provides for the representation of the cellular
compartments, chemical reactions and reactants, as in
relation to the discrete stochastic algorithm used for the
selection and execution of chemical reactions with their
own kinetic parameters. As part of our future work,
1) we will integrate elements of ”host” cells into the
current cell signaling model, which favor the anchoring
of metastatic cells, and we will also consider elements
detected in exosomes, and 2) we will use other related
simulation tools, such as MCell [27] and Virtual Cell [28]
for comparison with Cellulat.
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