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Abstract

Introduction

Renin-angiotensin system (RAS) in brain cancer represents a scarcely explored field in

neuro-oncology. Recently, some pre- and clinical studies have reported that RAS compo-

nents play a relevant role in the development and behavior of gliomas. The angiotensinogen

(AGT) rs5050 genetic variant has been identified as a crucial regulator of the transcription of

AGT mRNA, which makes it a logical and promising target of research. The aim of this study

was to determine the relationship between the AGT rs5050 genetic variant in blood with

prognosis in astrocytoma.

Methods

A prospective pilot study was performed on forty-eight astrocytoma patients, who received

the standard-of-care treatment. Blood samples were taken prior to surgery and DNA was

sequenced using Ion Torrent next-generation sequencing and analyzed by Ion Reporter

software. Descriptive, bivariate, multivariate, and survival analyses were performed using

SPSS v21, STATA 12 and GraphPad Prism 7.

Results

Median follow-up was 41 months (range 1–48). Survival analysis showed a significant differ-

ence between the rs5050 genotypes (p = .05). We found lower survival rates in individuals
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with the GG-genotype of rs5050 AGT compared to patients with the TT- and TG-genotype

(2 months vs. 11.5 months, respectively [p = .01]). In bivariate and multivariate analyses,

GG-genotype was negatively associated with survival.

Conclusions

In patients with astrocytoma, AGT rs5050 GG-genotype was associated with poor progno-

sis. We propose this germline genetic variant as a complementary biomarker, which can be

detected practically and safely in blood samples or saliva.

Introduction

Gliomas are the most common intrinsic primary tumors of the central nervous system (CNS)

in the adult population worldwide, representing approximately 27% of all CNS tumors and

80% of CNS malignant tumors in the United States [1, 2]. Astrocytomas, oligodendrogliomas,

and ependymomas are three different glial cell-derived types of gliomas, astrocytomas being

the most frequent [2]. Glioblastoma (GBM), the most malignant astrocytic tumor, is consid-

ered an incurable disease with a mean survival of 15 months for patients treated with the stan-

dard-of-care [3, 4].

The World Health Organization (WHO) grading system belongs to a set of clinical criteria

aimed to predict treatment response and outcomes [5]. The WHO classification of tumors of

the CNS has become much more accurate with the use of molecular markers, making them an

integral part of deciding how to treat gliomas, reducing the interobserver variability and distin-

guishing new types and variants of tumors [6–8]. Although several biomarkers for diagnosis,

risk, and prognosis have been studied, most of them require tumor tissue to be detected [3, 9].

In recent years, biochemical pathways involved in diverse mechanisms, such as the Renin-

Angiotensin System (RAS) in blood-pressure control, are now being considered for playing a

significant role in carcinogenesis [10]. The RAS, besides its well-known systemic regulation of

the circulatory homeostasis, has a local or paracrine function [11]. Local expression of the RAS

has been described in multiple tissues, such as liver, kidneys, or pancreas [12]; and also in can-

cer tissues, such as breast cancer [13], colorectal cancer [14], and renal cell carcinoma [15].

The expression of RAS components have been linked to the hallmarks of cancer [10, 12], and

some of those components have been found to be upregulated in some cancer types, including

GBM [16–18]. RAS demonstrated involvement in sustaining proliferative signaling, evading

growth suppressors, resisting apoptosis, inducing angiogenesis, deregulating cellular energet-

ics, as well as in inflammation, cellular migration, invasion and metastasis [10, 11, 19].

One of the essential RAS components is the human angiotensinogen (AGT) gene. The

genetic variant rs5050 is a thymidine to guanosine substitution at nucleotide –58 of the 5´UTR

of the gene AGT. In in vitro studies rs5050 has been confirmed to have a functional effect on

promoter activity [20]. This has been consistent with studies that have found a correlation

between this genetic variant, including haplotypes that contain it, and differences in blood lev-

els of AGT [21, 22]. Additionally, the AGT rs5050 has been correlated with an increased risk of

developing gastric cancer [23].

Recently, the discovery of RAS peptides and receptors in GBM [17] has urged the planning

of clinical studies to elucidate the role of this new concept of the RAS in brain cancer [24–27]

[28]. A better-characterized analysis of RAS in gliomas has been already described previously
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[18]. The present study aimed to determine the relationship between the AGT rs5050 germline

genetic variant with prognosis in astrocytoma.

Methods

Source of data

This prospective analytical study and its informed consent were approved by the Institutional

Review Board of the National Institute of Neurology and Neurosurgery, Mexico City, Mexico,

before recruitment of patients. TRIPOD reporting guideline was implemented [29]. (S1 TRI-

POD Checklist).

Participants

A cohort of adult patients of both sexes, newly diagnosed with primary astrocytoma via histo-

pathology, without prior treatment, were included after signing consent form. Patients with

other glial cell-type tumors, prior treatments, or insufficient/degraded DNA samples, were

excluded. The included patients underwent surgery for therapeutic and/or diagnostic purpose

between 2013 and 2015. After surgery, complementary treatment with standard radiotherapy

and chemotherapy were administered to high-grade gliomas and cases with progressive grade

II glioma.

Outcomes

Demographic and clinical information was obtained from medical records by one of the

researchers in a blinded fashion. Long-term survival was considered�3 years. Patients were

grouped according to age into one of four groups for analysis purpose. The performance status

was assessed within 1-week before surgery by the Karnofsky performance status (KPS) [30],

which is an 11-level scale with scores ranging from normal activity (100) to death (0). A cutoff

point of KPS�70 was used for analysis. The histological grading was taken from the pathology

report, which was based on 2007 WHO classification. The extent of resection (EOR) was evalu-

ated using the postoperative T1-weighted MRI scan with contrast and classified as gross total

(100%), subtotal (>90%) or partial (70–90%) resection. The major outcomes were risk and

survival. Survival was defined as the lapse of time from when surgery is performed to the

patient´s death or last clinic visit.

Predictors

A sample of 5 mL of blood was taken from each patient before the surgery. Samples were

unidentified and labeled using a coding system for internal control, and then, submitted to the

laboratory. For DNA genomic extraction, Wizard Genomic DNA Purification Kit (Promega

Corporation, Madison, WI, USA) was used. As part of a more extensive study, Ion Torrent

NGS (Thermo Fisher Scientific, Waltham, MA, USA) was used for sequencing the genetic vari-

ant rs5050. Customized Ion AmpliSeq panel was designed using Ion AmpliSeq designer soft-

ware. Libraries were constructed using Ion AmpliSeq Library Kit v2.0 according to the

manufacturer’s instructions. The library was labeled with an individual adapter given in the

Ion Xpress Barcode Adapters Kit. Sequencing was done using Ion 316 chip. Protocols were

run on the NGS Ion OneTouch 2 System and the Ion OneTouch ES Instrument according to

the user manual. All barcoded specimens were sequenced on the Ion View OT2 Kit. Ion

Reporter software was used to perform primary to tertiary analysis, including optimized signal

processing, base calling, sequence alignment, and variant analysis. In 12.5% of the samples,
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orthogonal verification was performed and further verified by conventional Sanger sequencing

with 100% validation.

Sample size and missing data

Sample size was calculated as described by Schoenfeld [31] to determine the minimum sample

size for statistical purposes (S1 Table). Complete-case analysis was performed with no missing

data identified.

Statistical analysis methods

In order to compare the allelic and genotypic frequencies of astrocytoma patients in this study,

a control group was taken from the 1000 Genomes Browser Phase 3 version 3.7 [32][33][34],

where the proportion of the rs5050 AGT allele and genotype frequencies were obtained.

Hardy-Weinberg equilibrium (HWE) testing was performed on this control group. The wild-

type allele and genotype were defined as the most common in the population. We performed

descriptive statistics using means, medians, percentages, and maximum and minimum values.

The bivariate analysis used contingency tables, and chi-square test and odds ratio were calcu-

lated within a 95% confidence interval, and p-value was calculated by Fisher´s exact test.

Median follow-up time was calculated using the Schemper and Smith method. The effect of

each measured factor on time to death was identified using Kaplan Meier curves, Cox regres-

sion models, and Log-rank tests and were used to determine differences in survival function

between subgroups. A p-value < .05 of was considered statistically significant. All analyses

were performed using SPSS v21 (IBM, Armonk, North Castle, NY), STATA 12 (StataCorp

LLC, College Station, TX) and GraphPad Prism 7 (GraphPad Software, Inc., La Jolla, CA).

Results

Participants

Forty-eight astrocytoma patients were identified (50% males, 50% females, mean age 49.1,

range 22–79 years). The most common tumor location was in the left frontal and temporal

lobes, with 16.7% of patients in each location. 68.7% of cases corresponded to high-grade glio-

mas. Resection of>90% was achieved in 43.7% of patients, and partial resection in 56.3%. Out

of the 24 (50%) patients who received chemotherapy, 11 (45.8%) could cover the cost of temo-

zolomide, while the remaining patients received treatment regimes with carboplatin, vincris-

tine, chloroquine, cisplatin, and/or carmustine. Postoperative KPS was�70 in 79.2% of

patients, and<70 in 20.8%. Additional demographic data is shown in Table 1.

Model development

AGT rs5050 gene genetic variant. The rs5050 control group consisted of 2,504 genotypes

counted for the worldwide population, including 170 genotypes for the Mexican-ancestry pop-

ulation, which were in HWE after calculations. According to the 1000 Genomes Browser, the

distribution of the rs5050 AGT alleles and genotypes in the worldwide population is as follows:

T-allele was present in 82.4% while G-allele in 17.6%; and the TT-genotype was in 67.9%, TG-

in 29% and GG- in 3.1%. In the Mexican-ancestry population in Los Angeles, California, the

frequencies were: T-allele in 79.8% and G-allele in 20.2%; and the TT-genotype was in 62.7%,

TG- in 34.3% and GG- in 3.0%. From these data, the wild-type and the risk allele and genotype

were defined. Then, the proportion of the rs5050 frequencies in our cohort was identified. Out

of the 48 patients, the T-allele was present in 77.1% while G-allele in 22.9%; the genotypes cor-

responded to TT-, TG- and GG-genotypes in 58.3%, 37.5%, and 4.1%, respectively. When
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comparing genotypic and allelic frequencies, we identified that the allelic and genotypic fre-

quencies of our cohort were similar compared to the Mexican-ancestry population.

Table 1. Demographical and clinical characteristics.

n = 48 n (%)

Demographic Variables

Age� 49 ± 14.1

Sex M: 24 (50), F: 24 (50)

Morbidity

Hypertension 9 (18.7)

Diabetes Mellitus type 2 8 (16.6)

Smoking 15 (31.2)

Alcohol Abuse 5 (10.4)

Previous Neoplasm 4 (8.3)

Socio-economic Status

Very-Low income 28 (58.3)

Low income 17 (35.4)

Medium income 2 (4.2)

High income 1 (2.1)

Clinical Variables

Age� at Diagnosis

Grade II 40

Grade III 46.6

Grade IV 54.5

Tumor Location

Frontal 16 (33.3)

Temporal 14 (29.1)

Parietal 9 (18.8)

Occipital 2 (4.2)

Others 7 (14.6)

Initial Symptom

Headache 14 (29.1)

Motor deficit 9 (18.8)

Generalized Seizures 10 (20.8)

Cognitive Functions 8 (16.7)

Partial Seizures 2 (4.2)

Others 5 (10.4)

Karnofsky Performance Status

�70 38 (79.2)

<70 10 (20.8)

WHO Grade

Grade II 15 (31.3)

Grade III 5 (10.4)

Grade IV 28 (58.3)

Extent of Resection

>90% 21 (43.8)

<90% 27 (56.2)

� = years. M = male, F = female.

https://doi.org/10.1371/journal.pone.0206590.t001
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Additionally, we observed a slightly higher prevalence of the G-allele and GG- and TG-geno-

types in our cases in comparison with the worldwide population, which was not statistically

significant. Nevertheless, statistical analysis did not reveal AGT rs5050 to be a significant risk

factor (p = .48 and p = .34) (Table 2).

Model specification

Survival analysis. Median follow-up was 41 months (range 1–48). The mean survival was

14.8 (range 1–50) months. Long-term survival was reported in five (10.4%) patients. Out of the

40 deceased patients, 17 (42.5%) patients died at�0–6 months, 10 (25%) at>6 to�12 months,

8 (20%) at>12 to�24 months, and 5 (12.5%) at�24 months.

The patients were grouped by AGT rs5050 genotype, and the survival times were analyzed

to obtain the Kaplan-Meier curves. The survival analysis was performed with the rs5050 geno-

types (TT, TG, and GG) separately, and with every genotype against the other two genotypes

grouped. Survival analysis showed a trend towards significance when genotypes were studied

separately (p = .05) (Fig 1A). When comparing each genotype against the two remaining geno-

types in Kaplan-Meier survival curves, we found lower survival rates among individuals with

the GG-genotype of AGT rs5050 (2 months in the GG-genotype carriers vs. 11.5 months in the

group of TT- plus TG-genotype patients [p = .01]) (Fig 1B).

Bivariate analysis showed a statistically significant difference between the survival status

comparing GG- vs. TG-, and GG- vs. TT-genotypes (p = .011 and p = .016, respectively).

Table 3 presents the crude hazard ratio (HR) for survival, by cohort, at the end of the follow-

up period. Clinical variables analyses, such as histological grade, KPS, and EOR, among others,

were also conducted. Clinical markers of younger age (p = .02) (S1A Fig), lower histological

grade (p = .003) (S1B Fig) and higher KPS (p = .04) (S1C Fig) were also related to longer

survival.

Model performance

In the multivariate Cox proportional HR regression analysis, the model was adjusted for clini-

cal covariables that were considered relevant for survival. After adjusting for gender, KPS,

EOR, chemotherapy, radiotherapy, and WHO grade, AGT rs5050 genotype remained an inde-

pendent risk factor for survival with an adjusted HR of 1.000, 0.009 (95% C.I. 0.00–0.09, p =

.000) and 0.02 (95% C.I. 0.00–0.17, p = .000), for GG-, TG- and TT-genotypes, respectively.

Other covariables that were significant risk factors in this multivariate model for survival were

KPS (p = .025), WHO grade (p = .001), and non-chemotherapy (p = 0.000) after adjusting.

Table 2. AGT rs5050 allelic and genotypic frequencies (%).

(%)

Allelic Frequencies (n) T G

Present study (96) 77.1 22.9

MXL (134)� 79.8 20.2

Global (5,008)� 82.4 17.6

Genotypic Frequencies (n) TT TG GG

Present study (48) 58.3 37.5 4.1

MXL (67)� 62.7 34.3 3.0

Global (2,504)� 67.9 29 3.1

� 1000 Genomes Browser, version 3.7 (last updated: March 1, 2018)

MXL = Mexican-ancestry in Los Angeles, California.

https://doi.org/10.1371/journal.pone.0206590.t002
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Fig 1. Kaplan-Meier survival estimates. (A) Survival analysis of the AGT rs5050 genotypes (TT in green, TG in orange, and GG in red) separately, showing the shorter

survival in GG-genotype patients (p = .05). (B) Comparing GG-genotype against TT + TG-genotypes of AGT rs5050, patients harboring GG-genotype (in red) exhibited

lower survival rates compared to TT + TG (in green) genotypes patients (2 vs. 11.5 months [p = .01]).

https://doi.org/10.1371/journal.pone.0206590.g001
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Discussion

In this study, the statistical analysis revealed the GG-genotype of AGT rs5050 to be a signifi-

cantly poor prognosis factor. With a median follow-up of 41 months, GG-genotype carriers of

the AGT rs5050 presented a statistically significant shorter survival than the other two geno-

types (2 vs. 11 months, p = .01). The blood-detected GG-genotype reported this significant

correlation with poor prognosis demonstrating value not just as an independent variable but

also in the context of other variables. It would give the clinician an additional tool, which com-

bined with other factors, provides a basis for the pursuit of a personalized prognosis for these

patients.

Table 3. Crude hazard ratios for survival.

Cohort HR 95% CI P value

Age

1.032 1.01–1.06 0.010

Gender

Female 1.000 - -

Male 1.514 0.81–2.83 0.193

AGT rs5050 Genotype��

GG 1.000 - -

TG 0.130 0.03–0.62 0.011

TT 0.152 0.03–0.70 0.016

Karnofsky Performance Status��

0.976 0.96–0.99 0.003

Extent of Resection

>90% 1.000 - -

<90% 0.718 0.39–1.34 0.296

Radiotherapy

No 1.000 - -

Yes 0.890 0.48–1.66 0.718

Chemotherapy��

No 1.000 - -

Yes 0.858 0.45–1.63 0.639

WHO Grade��

II 1.000 - -

III 2.015 0.22–18.26 0.533

IV 4.590 0.62–34.09 0.136

Smoking

No 1.000 - -

Yes 1.195 0.61–2.33 0.604

Alcoholism

No 1.000 - -

Yes 1.130 0.40–3.19 0.817

Familial cancer history

No 1.000 - -

Yes 2.090 1.08–4.07 0.030

�� Study cohorts with p values < .05 in adjusted hazard ratios calculated using the Cox proportional hazard

regression analysis.

https://doi.org/10.1371/journal.pone.0206590.t003
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Limitations

Even though the size of the population was relatively small, the number of cases was sufficient

for statistical purposes to obtain valid results and to define the direction of further studies.

Another limitation of this study is the fact that was performed in a single tertiary referral cen-

ter, which is entirely dedicated to diseases of the nervous system. Our institution is one of the

main hospitals of the Department of Public Health in Mexico, which receives patients from all

throughout the central region of the country. The population of this study was composed of

Mexicans only. Recently, a US-based study using the zip code tabulation areas codes as a proxy

for socioeconomic status (SES), showed that SES did not affect prognosis in patients newly

diagnosed GBM [35]. For this reason, the SES of the patients included in this cohort, where

almost all of them were classified as very-low and low income, was not considered a bias for

survival. However, it is necessary to mention that most of these patients had to cover the cost

of their chemotherapy drugs, hindering the treatment with more standardized regimes among

the patients. Finally, a reasonable limitation is that O6-methylguanine DNA methyltransferase

(MGMT) and Isocitrate Dehydrogenase (IDH) mutation were not consistently investigated, as

a result of lack of financial resources, and as the patients were recruited before the updated

WHO classification was published [36]. Therefore, an attractive opportunity to examine in

upcoming studies is the full molecular characterization of the tumor tissue, to analyze the

interaction between the expression of AGT rs5050 in blood and these biomarkers currently

used.

Interpretation

AGT rs5050 gene and angiotensinogen. The AGT gene and its genetic variants have

been previously studied in the context of the pathogenic mechanisms of essential hypertension,

particularly the impact of plasma AGT levels on blood pressure. In vitro studies inferred that

the transcriptional cis-element of the AGT gene regulates blood pressure by managing plas-

matic levels of AGT [37]. Yanai et al. identified the 5´UTR of the human AGT gene as a regula-

tor for the transcription of AGT mRNA [38]. Ishigami et al. suggested that rs5050 might

influence the level of transcription of AGT mRNA in humans, and therefore modify the

plasma AGT concentration. However, they reported a weak correlation between the AGT
rs5050 and plasmatic AGT levels in a multiple regression analysis, and no differences in

plasma AGT concentration among the three genotypes in the analysis of variance [39]. Four-

teen years later and using a more sensitive and specific quantification system for human AGT,

Balam-Ortiz et al. found differences in AGT plasma levels between the genotypes of rs5050,

with the GG-genotype associated with the lowest levels. Their results of a bivariate analysis

(TT = 25.3±8.3 μg/mL; TG = 22.1±7.1 μg/mL; GG = 19.4±4.8 μg/mL) were statistically signifi-

cant (TT vs. TG, p = .03; TT vs. GG, p = .05; TT vs. TG+GG, p = .008). Their regression analy-

sis confirmed these differences of the plasmatic AGT levels in the H2 (which contains rs5050)

and H8 (which contains –58 wildtype) haplotypes. The H2 haplotype was associated with the

lowest plasma AGT levels (–5.1 μg/mL [95% C.I. –8.6 to –1.6], p = .004), while the H8 haplo-

type was linked to the highest plasma AGT levels (6.5 μg/mL [95% C.I. 2.5–10.6], p = .001)

[22].

AGT rs5050 and gliomagenesis. The mechanism through which the AGT gene influences

cancer behavior might stem from genetic variants, bioactive peptides, enzymes, and receptors

that have been recently summed to the RAS network [10, 19, 40]. Angiotensin peptides act

principally via the AngII receptor type 1 (AT1R) and type 2 (AT2R), and secondarily through

the Mas receptor [19, 40]. AT1R and AT2R are receptors with pleiotropic actions with oppos-

ing effects. When stimulated, AT1R favors cellular proliferation and angiogenesis while AT2R
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has antiproliferative attributes [10]. Growing data demonstrate that AT1R is present in several

types of neoplasms and that its expression is correlated with tumor growth and a more aggres-

sive disease [12, 41–43]. AT1R stimulates diverse intracellular signaling pathways, leads upre-

gulation of transforming growth factor beta, and induces vascular endothelial growth factor

(VEGF) [44–46]. The function of AT2R in cancer is less known. While AT2R has been mainly

described as an antiproliferative and proapoptotic mediator, proproliferative and angiogenic

effects in vivo have also been mentioned in conflicting reports, such as in an AT2R knockout

mouse model that showed that the inhibition of AT2R hinders tumor growth by reducing

VEGF expression [47].

The promoter activity of AGT rs5050 regulates the beginning of the pathway, decreasing

the transcription of AGT and its concentration in the plasma. Using well-established in vitro
and in vivo models, Célérier et al. demonstrated an antiangiogenic effect of AGT [48]. As they

concluded, these opposite effects of AGT, showing an antiangiogenic property as a serpin and

a proangiogenic activity as the precursor of AngII, might depend on local conditions that

define which of the effects prevails [48] (Fig 2). One of the advantages of the AGT rs5050 is

that is a germline genetic variant, and thus it can be found in the majority of the patient’s cells,

including leukocytes from blood and even in normal tissue neighboring neoplasms, unlike the

somatic mutations that are found heterogeneously in tumor tissue only [49]. With the knowl-

edge that the GG-genotype is related to decreased plasmatic AGT levels, and that AGT owns a

physiological antiangiogenic activity, we infer that the GG-genotype might contribute to a

proangiogenic tumor environment, and therefore, to more aggressive behavior and worse

outcomes.

Implications. To date, just a few clinical studies have explored the feasibility of a relation

between RAS components and gliomas [18]. Arrieta et al. described the potential of the AT1R

as prognosis biomarker [50]. Expression of both receptors, AT1R and AT2R were analyzed in

tumor tissue from astrocytoma patients, and a higher prevalence of the two receptors was

found in high-grade astrocytomas. AT1R and AT2R were associated with higher cellular pro-

liferation and angiogenesis. AT1R-positive tumors were related to a lower survival rate com-

pared to those which were AT1R-negative [50]. In another study, Lian et al. suggested the

insertion/deletion (I/D) genetic variant of the ACE gene as a risk biomarker for glioma, and

performed a case-control study in a Chinese population, which showed that glioma patients

had a significantly higher prevalence of the ACE DD-genotype detected in blood [51]. The

AGT rs5050 is so far the only RAS component that is simultaneously related to prognosis and

identified by a blood test, which would be both valuable and practical features for a biomarker

in a clinical setting. Recent studies have indirectly supported this notion of a relationship

between the RAS and prognosis in gliomas, by analyzing the impact of the use of AngII recep-

tor 1 blockers (ARBs) in survival: Carpentier et al. described the use of ARBs as a significant

prognostic factor for both progression-free survival (PFS) and OS in GBM patients treated

with the standard-of-care [25]; and, Levin et al. reported an OS benefit offered by ARBs in

recurrent GBM patients treated with low-dose Bevacizumab (BVZ) [46]. Recently, Urup et al.
proposed the AGT gene as a predictive biomarker of BVZ response [52]. In that retrospective

study, the low expression of AGT in the tumor tissue was associated with a prolonged PFS and

OS in recurrent GBM patients treated with BVZ [52]. As mentioned, the GG-genotype of

rs5050 has been correlated with lower AGT expression. Célérier et al. [48] reported that AGT

could exhibit an antiangiogenic effect as a serpin. Hence, the downregulation of AGT might

decrease the serpine-mediated antiangiogenic activity of AGT, and consequently, contribute

to a proangiogenic tumor microenvironment. This effect might cause the tumor to become

more susceptible particularly to anti-angiogenic therapy. This hypothetical mechanism could

explain, at least in part, the increased survival seen by Urup et al. [52] in those recurrent GBM
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patients with low expression of AGT when they were treated with BVZ, and also might be the

reason for the poor prognosis that was seen in the patients harboring GG-genotype (and not

treated with BVZ) in our study. In light of the evidence that the GG-genotype of rs5050 is

linked to the lower AGT expression, and that the lower AGT expression, in turn, is related to

longer survival particularly in these GBM subjects with anti-VEGF treatment, we might

hypothesize for future studies a plausible role of AGT rs5050 as a potential biomarker of BVZ

response.

Conclusions

The AGT r5050 germline genetic variant is proposed as a complementary biomarker to predict

survival, which is detected by a blood or saliva test, safely, less invasive, and before surgery.

The GG-genotype of AGT rs5050 was related to poor prognosis in our cohort, becoming the

first study that analyzes and identifies a blood RAS component as a prognosis factor. These

results encourage further and broader investigation to endorse this finding and to validate our

Fig 2. Hypothetical dual mechanism of the AGT rs5050 genetic variant. The 5´ upstream core promoter region of the human AGT gene, where rs5050 is identified,

has been recognized as an authentic regulator for the transcription of AGT mRNA [38]. Differences in the AGT plasma levels were found between the genotypes of

rs5050, with the GG-genotype associated with the lowest levels [22]. AGT expresses opposite effects, showing an antiangiogenic property, such as some Serpins family

members, and a proangiogenic activity as the precursor of AngII. It might depend upon local conditions that define which of the effects dominates [48].

https://doi.org/10.1371/journal.pone.0206590.g002
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conclusions in other populations. Future necessary studies regarding AGT rs5050 will include

its consideration as a treatment-response biomarker or as a druggable target.
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Wegman-Ostrosky.

Writing – review & editing: Sonia Iliana Mejı́a-Pérez, Nancy Reynoso-Noverón, Liliana
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