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Abstract: Clozapine (CLZ) is the only antipsychotic drug that has been proven to be effective in
patients with refractory psychosis, but it has also been proposed as an effective mood stabilizer;
however, the complex mechanisms of action of CLZ are not yet fully known. To find predictors of
CLZ-associated phenotypes (i.e., the metabolic ratio, dosage, and response), we explore the genomic
and epigenomic characteristics of 44 patients with refractory psychosis who receive CLZ treatment
based on the integration of polygenic risk score (PRS) analyses in simultaneous methylome profiles.
Surprisingly, the PRS for bipolar disorder (BD-PRS) was associated with the CLZ metabolic ratio
(pseudo-R2 = 0.2080, adjusted p-value = 0.0189). To better explain our findings in a biological context,
we assess the protein–protein interactions between gene products with high impact variants in the
top enriched pathways and those exhibiting differentially methylated sites. The GABAergic synapse
pathway was found to be enriched in BD-PRS and was associated with the CLZ metabolic ratio.
Such interplay supports the use of CLZ as a mood stabilizer and not just as an antipsychotic. Future
studies with larger sample sizes should be pursued to confirm the findings of this study.

Keywords: clozapine; mood stabilizer; refractory psychosis; pharmacogenomics; predictive model;
methylome; polygenic risk scores

1. Introduction

Antipsychotic drugs are effective in treating symptoms of psychosis and preventing
relapses [1–3]. Psychotic symptoms (hallucinations, delusions, and distorted behavior) can
be observed in different psychiatric disorders, such as schizophrenia (SZ), schizoaffective
disorder (SD), bipolar disorder (BD), and even in major depressive disorder (MDD) [1–6].
Among these patients, about 30% are considered refractory, and clozapine (CLZ), an
atypical antipsychotic, remains the treatment of choice for the population who has failed to
improve on two other previous antipsychotic treatments [7–9]. CLZ has also been proposed
as an effective mood stabilizer, although its mechanism of action is still unclear [10].

It is noteworthy that the mechanisms of action for approximately 18% of approved
therapeutic drugs at present, including CLZ, remain unknown [11–13]. CLZ is consid-
ered the last pharmacological option to treat refractory psychosis, thus knowledge of
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its mechanisms of action will help to improve patient treatment and drug reposition-
ing [14,15]. Among the strategies for pharmacological repositioning, the omics approach
of biological data has provided integrative data through computational and statistical
methods [14,16–18].

The plasma concentrations (lower range of utility = 250–400 ng/mL) [7] and metabolic
ratios of CLZ are broadly related to the prescribed dose, exhibiting a great variability
between individuals. The metabolic ratio is calculated as the ratio of unmetabolized
drug to its main metabolite, N-desmethylclozapine or norclozapine (NCLZ), in plasma
samples [19] and is optimally defined as approximately two [20]. Other CLZ-associated
phenotypes of interest that should be evaluated during its prescription are dosage and
response. CLZ dosage is controversial in terms of clinical response, effectiveness, and the
presence of side effects, and although several exploratory studies have been carried out in
this regard the relationship still remains unclear. Despite the wide variation in CLZ dosage
in clinical practice, there is a consensus that doses below 100 mg may be insufficient for
patients to respond to, thus the standard dose is usually between 300 and 600 mg [21–23].
In this context, an integrative omics data analysis of patients with refractory psychosis
would be of aid in identifying markers to improve or predict some of the CLZ-associated
phenotypes (i.e., metabolic ratio, dosage, and response).

The high interindividual variability of CLZ-associated phenotypes is due to interac-
tions between nongenetic, genetic, and epigenetic factors [8,24]. Genome-wide studies of
psychosis have explored polygenic risk scores (PRS), showing that most disorders associ-
ated with psychosis share a genetic basis [25]. Moreover, when comparing individuals with
a high PRS vs. individuals with a low PRS, a positive correlation between PRS and DNA
methylation changes has been observed (the higher the PRS, the greater the methylation
changes) [26].

Herein, we present an integration of clinical, genomic, and epigenomic data from
CLZ-treated patients with refractory psychosis in order to identify genes related to the
potential mechanisms of action of CLZ and its possible pharmacogenomics applications.

2. Results
2.1. Clinical and Demographic Characteristics of Patients

Table 1 shows the clinical and demographic characteristics of CLZ-treated patients. A
total of 75% of our patients were taking concomitant medications.

Table 1. Clinical and demographic characteristics of clozapine-treated patients (n = 44).

Characteristic Number (%) or
Mean ± Standard Deviation

Clinical diagnosis

Schizophrenia 31 (70.45%)

Schizoaffective disorder 9 (20.45%)
Bipolar disorder 4 (9.09%)

Number of Male Patients (%) 28 (63.60%)

Age (years) 37.40 ± 11.30
Age at onset 18.50 ± 9.80

School (Years) 13.30 ± 2.90

Number of patients who are smokers (%) 22 (50.00%)
Number of patients who are drinkers (%) 13 (29.50%)

CLZ Dose (mg/day) 202.60 ± 138.02

CLZ responders 36 (81.80%)
CLZ and its metabolite determinations

* Plasma concentrations of CLZ (ng/mL) 154.03 ± 191.97

CLZ: clozapine; NCLZ: norclozapine. * Determined by HPLC [27].
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2.2. Association Between Genetic Risk Scores and Clozapine-Associated Phenotypes

After the samples were genotyped using the Illumina Infinium PsychArray v1.2
BeadChip, we calculated the PRSs for schizophrenia (SZ-PRS), bipolar disorder (BD-PRS),
and major depressive disorder (MDD-PRS). Two nominal associations were observed
between PRS and CLZ-associated phenotypes—namely, MDD-PRS with the CLZ dose
(pseudo-R2 = 0.386, p-value = 0.0035) and SZ-PRS with the response to CLZ
(pseudo-R2 = 0.191, p-value = 0.0545); however, they did not remain significant after ad-
justment for multiple comparisons (adjusted p-values = 0.0759 and 0.2278, respectively)
(Figure 1). The only PRS that showed a significant association with any CLZ-related
phenotype was the BD-PRS. The BD-PRS was associated with the CLZ metabolic ratio
(pseudo-R2 = 0.2080, p-value = 0.0008, adjusted p-value = 0.0189).
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Figure 1. Results of polygenic risk score (PRS) analysis for major depressive disorder (A), bipolar disorder (B), and
schizophrenia (C) and their associations with clozapine-associated phenotypes. The X-axis contains the clozapine-associated
phenotypes and the Y-axis shows the proportion of variance explained by the PRS that was calculated by Nagelkerke’s
pseudo-R2 value. The colors of the bars are in accordance with the associated p-values (e.g., the redder the bar, the more
significant the p-value). Abbreviations: CLZ, clozapine; conc, concentration; MR, metabolic ratio; R, response; avg, average;
std, standard.

2.3. Functional Prediction of the SNPs Included in the BD-PRS Associated with CLZ
Metabolic Ratio

The BD-PRS associated with the CLZ metabolic ratio was constituted by 2112 single-
nucleotide polymorphisms (SNPs), of which 1288 were located in intronic regions, 223
in exonic regions, and 562 in intergenic regions. The SNPs that made up the BD-PRS
were found in 1370 genes. These genes were the top enriched in four pathways: circadian
rhythms (ADCY2, CACNA1C, CACNA1D, MAPK1), insulin secretion (ABCC8, ADCY9,
ATP1B2, KCNMA1), GABAergic synapse (CACNA1B, GABRA1, KCNJ6, SLC12A5), and the
thyroid hormone signaling pathway (AKT3, ATP1B3, RXRA, TP53) (Table 2). We found a
total of 17 SNPs that could have a high impact on the protein structure in genes such as
LRP8 and ADCY2, among others (Supplementary Tables S1–S3).
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Table 2. Functional single-nucleotide polymorphisms (SNPs) with a possible high impact on the polygenic risk score for bipolar disorder and clozapine metabolic ratios.

Location † Gene Symbol Gene Name Genetic Variant ID Minor Allele Frequency Protein ID Variant Location in
Coding Region

chr1:53712727 LRP8 LDL receptor-related protein 8 rs5174 T = 0.204 NP_004622.2:p.Arg952Gln Missense variant
chr1:151374025 PSMB4 Proteasome 20S subunit beta 4 rs4603 C = 0.273 NP_002787.2:p.Ile234Asn Missense variant

chr1:151733335 MRPL9 Mitochondrial ribosomal
protein L9 rs8480 G = 0.443 NP_113608.1:p.Glu210Val Missense variant

chr4:162307312 FSTL5 Follistatin-like 5 rs3749598 A = 0.216 NP_064501.2:p.Asp711Tyr Missense variant
chr5:7520768 ADCY2 Adenylate cyclase 2 rs13166360 T = 0.057 NP_065433.2:p.Val147Met Missense variant

chr5:898209847 LYSMD3 LysM domain containing 3 rs10069050 C = 0.375 NP_938014.1:p.Glu41Asp Missense variant
chr6:142396790 NMBR Neuromedin B receptor rs7453944 T = 0.307 NP_002502.2:p.Leu390Met Missense variant
chr7:64439701 ZNF117 Zinc finger protein 117 rs3807069 T = 0.307 NP_056936.2:p.Cys83Tyr Missense variant

chr7: 92733766 SAMD9 Sterile alpha motif
domain-containing 9 rs10279499 A = 0.091 NP_001180236.1:p.Val549Leu Missense variant

chr7:104717517 KMT2E Lysine methyltransferase 2E
(inactive) rs2240455 T = 0.216 NP_061152.3:p.Tyr292Ter * Stop_gained

chr7:129663496 ZC3HC1 Zinc finger C3HC-type
containing 1 rs11556924 T = 0.148 NP_057562.3:p.Arg363His Missense variant

chr8:1514009 DLGAP2 DLG associated protein 2 rs2301963 C = 0.284 NP_001333739.1:p.Pro464Gln Missense variant
chr12:108618630 WSCD2 WSC domain containing 2 rs3764002 T = 0.125 NP_055468.2:p.Thr266Ile Missense variant
chr15:84639350 ADAMTSL3 ADAMTS-like 3 rs2277849 T = 0.189 NP_997400.2:p.Leu869Phe Missense variant

chr16:3639827 SLX4 SLX4 structure-specific
endonuclease subunit rs3810813 A = 0.079 NP_115820.2:p.Ser1271Phe Missense variant

chr17:35988672 DDX52 DExD-box helicase 52 rs7224513 C = 0.239 NP_008941.3:p.Arg264Ser Missense variant

chr17:73513677 TSEN54 tRNA splicing endonuclease
subunit 54 rs11559205 C = 0.091 NP_997229.2:p.Ile137Leu Missense variant

† Physical location of the gene (hg19). Genetic variant and protein identifiers (ID) according to the Single Nucleotide Polymorphism Database (dbSNP) and the protein database at the National Center for
Biotechnology Information (NCBI). * Combined Annotation Dependent Depletion (CADD) prediction score = 35.
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2.4. Differentially Methylated Sites Between Patients Grouped by BD-PRS and CLZ
Metabolic Ratios

In order to explore whether BD-PRSs associated with the CLZ metabolic ratio could
alter DNA methylation patterns, we evaluated the differential methylation using the
Infinium MethylationEPIC array in subgroups of CLZ-treated patients according to their
metabolic ratios (CLZ/NCLZ) and BD-PRS values. The cut-off point for the metabolic
ratio was defined as 2.0 according to published recommendations [7], and the medians
were 3.2639 and 2.1922 for the high and medium BD-PRS cut-off points, respectively. Thus,
samples with a metabolic ratio < 2.0 or ≥ 2.0 were assigned a low or high metabolic ratio,
respectively. Accordingly, the following three groups were obtained for the BD-PRSs
(Figure 2): samples with a high metabolic ratio and a high BD-PRS (HH ≥ 3.2639), a
medium BD-PRS (M) for values <3.2639 but > 2.1922, and a low BD-PRS (L) of ≤2.1922.
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Figure 2. Subgroups of clozapine-treated patients according to their metabolic ratios and bipolar
disorder genetic risk score. Box plot showing the distribution of values and the cut-off points for the
metabolic ratios and genetic risk scores.

In the comparison between these subgroups (HH vs. M, HH vs. L, M vs. L) regarding
the differential methylation analysis, the associations were not statistically significant at
the genome-wide level (p-value < 5.0 × 10−8). We observed nominal associations after
comparing the HH vs. M (in three CpG sites), and M vs. L groups (in three different CpG
sites) (Table 3 and Table S2). No significance was found between the HH and L groups.
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Table 3. Differentially methylated regions in DNA samples according to their bipolar disorder-PRS and clozapine metabolic ratios.

Location † Gene
Symbol

CpG Site Feature Location
Relative to cgi

LogFC
Avg Methylation p-Value

High PRS Medium PRS Low PRS High-Medium
PRS

Medium-Low
PRS

TESPA1 cg23612423 3’UTR Open sea −0.14346761 0.5651155 0.42164789 0.52374574 9.06 × 10−7 4.01 × 10−2

chr2:21266669-
21266961 APOB cg16723488 TSS200 Island 0.09815776 0.37368773 0.4718455 0.39797591 8.38 × 10−6 2.42 × 10−5

chr2:21266669-
21266961 APOB cg05337441 Body Shore 0.08863618 0.15337978 0.2555618 0.16692562 2.46 × 10−5 3.02 × 10−6

chr8:58055960-
58056244 - cg11062466 IGR Shore 0.27464151 0.30018264 0.57482415 0.36696224 8.92 × 10−6 6.11 × 10−3

chr10:135170645-
135171954 C10orf125 cg05456948 TSS200 Island −0.04000716 0.19107189 0.15466524 0.1946724 3.04 × 10−04 1.54 × 10−06

STAG1 cg16760310 Body Open sea 0.02946489 0.932180391 0.96574714 0.93628225 1.09 × 10−3 7.21 × 10−6

† Physical location of the gene (hg19). CGI, CpG island. FC, fold-change. Avg, average. PRS, bipolar disorder-polygenic risk score. Chr, chromosome. UTR, untranslated region. TSS, transcription start site. IGR,
intergenic region.
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CpG sites with a nominal association (p-value < 5.0 × 10−5) between the H and M
groups were located on the TESPA1 and APOB genes. The CpG site for TESPA1 (cg23612423)
was hypomethylated in the H group, whereas the CpG site for APOB (cg16723488) was
hypermethylated in the M group. CpG sites with a nominal association between the M
and L groups were located on the APOB (cg05337441) and STAG1 (cg16760310) genes.
Both genes were hypermethylated in the M group. In contrast, the CpG site at FUOM
(cg05456948) was hypomethylated in the same group (Table 3).

2.5. Protein–Protein Interactions Between Gene Products with High Impact Variants in the Top
Enriched Pathways and Differentially Methylated Sites

A second pathway enrichment analysis was carried out, but this time the protein–
protein interactions included genes products of: (i) BD-PRSs showing variants with a high
functional impact, (ii) previous enriched pathways, and (iii) differentially methylated genes
between the three BD-PRS groups (Figure 3).
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This analysis revealed multiple interactions. For instance, APOB (a gene with dif-
ferentially methylated sites) interacts strongly with LRP8 (a gene that contains the mis-
sense variant p.Arg952Gln), which, in turn, interacts with genes enriched in the circadian
rhythm pathway (e.g., GRIN2B, GRIN2A, and GRIA4). Two of the aforementioned genes
(GRIN2B and GRIN2A) also interact with genes involved in the GABAergic synapse (i.e.,
GABRR1, GABRR3, and GABRA1) and with DLGAP2 (a gene that shows the missense
variant p.Pro464Gln). Interestingly, GRIA4 interacts with PRKCB and PRKCA, and both
genes are included in the BD-PRS and are enriched in the top four observed canonical
pathways—namely, circadian entrainment, insulin secretion, GABAergic synapse, and the
thyroid hormone signaling pathway. Moreover, the PRKCA and PRKCB genes interrelate
with ADCY2 (a gene that contains the missense variant p.Val147Met), which in turn inter-
connects with PLCG1 and links with TESPA1 (this gene shows differentially methylated
sites) (Table 3 and Table S1).

3. Discussion

Overall, CLZ has been utilized as an antipsychotic drug due to its simultaneous
affinity for both dopamine and serotonin receptors [28]. Nonetheless, its complex mecha-
nisms of action are not yet fully known, involving the modulation of norepinephrine, the
regulation of the endocrine system (including pregnenolone and cortisol), the intracellu-
lar system-dependent modulation of N-methyl-D-aspartate (NMDA) receptor expression,
brain-derived neurotrophic factor up-regulation, and the regulation of the arachidonic acid
cascade [29–32]. Herein, we performed an integration of the genomic and epigenomic data
of CLZ-associated phenotypes to identify genes related to the potential mechanisms of
action of CLZ and possible pharmacogenomic applications. First, we identified that the
BD-PRSs were associated with the CLZ metabolic ratios. The CLZ/NCLZ ratio may be
interpreted as the rate of hepatic metabolism of the antipsychotic administered orally (as is
the case). Consequently, the higher the ratio the lower the metabolism in the liver [7]. This
result might be related to the SNPs contained in the BD-PRS (Table 2), which were enriched
in the insulin secretion pathway and the thyroid hormone signaling pathway (Table S1).

The thyroid hormone signaling pathway is activated by the consumption of glucose-
rich foods [33], mainly through Ca2+ currents that are modulated by channels such as
CACNA1C or CACNA1D (genes found in the BD-PRS) [34–36]. It is known that individuals
with BD and psychosis have an increased risk of diabetes mellitus (i.e., high blood glucose
levels) [37–39]. In fact, it has been reported that CLZ response and diabetes mellitus share
genetic mechanisms [40–42], including recurrent genes such as CACNA1C in common
pathways (e.g., insulin secretion). Additionally, it has been documented that hyperglycemia
may reduce the response to the mood stabilizer treatments [43]. This reduction may be due
to a long-term consequence of hyperglycemia disrupting the hepatic expression of genes
involved in pharmacological metabolization [44–46]. Besides the effects that hyperglycemia
could have in CLZ-treated patients with refractory psychosis, we also identified relevant
gene enrichment in the thyroid hormone signaling pathway, including the RXRA/RXRG
genes. The retinoid X receptors (RXRA and RXRG) are considered xenobiotic sensors
that may induce the expression of the cytochrome P450 system [47–49]. In this sense, the
induction of cytochrome P450 enzymes would promote an increase in the CLZ metabolism;
however, if an increase in deleterious genetic variants affecting that pathway exists (as
shown in this study), then it will diminish the induction of CLZ-DMEs, and its metabolic
ratio will increase. An interesting finding that could be related to this effect of an increase
in risk variants in RXRA/RXRG is the observed hypomethylation in APOB in patients of
the HH group. PPARs, together with retinoid X receptors (RXRs), regulate the transcription
of APOB and APOE, among others [50–52]. In this context, the hypomethylation of APOB
could increase the gene expression in group HH patients as a mechanism of compensation
for the pathway dysfunction due to the increase in risk variants in genes from the retinoic
acid pathway [53–55].
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We also found that the LRP8 variant p.Arg952Gln (rs5174), which was included
in the BD-PRS, shows a high functional impact, and it has previously been associated
with psychosis [56]. The encoded protein, LRP8, is a receptor of RELN (whose abnormal
expression is associated with major neuropsychiatric disorders), but also functions as a
receptor for the cholesterol transport protein APOE [57]. It is known that the hepatic
APOE levels increase during CLZ treatment, as well as other genes participating in the
transport of cholesterol; however, if this LRP8 variant promotes a decrease in the receptor
function [58,59], one can hypothesize that the hypomethylation of APOB could also be a
compensatory mechanism for this decrease [60,61].

The identified relationship between APOB and LRP8 points towards an association
of CLZ with glutamatergic regulation. The receptor LRP8 interacts with NMDA receptor
subtypes 2B and 2A (GRIN2B and GRIN2A), thereby mediating reelin signaling [61,62].
NMDA receptors are generally located next to glutamatergic and GABAergic vesicles [63].
Interestingly, the GABAergic synapse pathway was found to be enriched in BD-PRS and
was associated with the CLZ/NCLZ ratio. This complex association of the GABAergic
synapse with BD-PRS and the metabolic ratio poses the question of whether CLZ could be
used as a mood stabilizer and not just as an antipsychotic. Indeed, GABAergic dysfunction
has been considered as a hypothesis of mood disorders [64]. This hypothesis was proposed
after treatment with valproate showed efficacy in BD patients, thus becoming the most
widely used mood stabilizer. CLZ, although not an approved drug for the treatment of
BD, has been used with some improvement in individuals with resistance to treatment
or in severe cases of mania [65,66]. Considering that CLZ might have some effect in
stabilizing mood, it should bind to GABAergic receptors. CLZ generally binds to dopamine
and serotonergic receptors; however, its binding to GABAergic receptors is still being
explored. Two studies in animal models have demonstrated that acute CLZ treatment
induces epigenetic changes in the GABAergic gene promoters [57,67,68]. In a molecular
docking study, the authors found that CLZ could bind to the receptor GABABR in the same
manner as baclofen does (an agonist of GABABR) [69]. Herein, the GABAergic synapse
was found to be enriched in BD-PRS and associated with the metabolic ratio, supporting
the potential effect of CLZ in the GABAergic synapse.

Another point that may support the use of CLZ as a mood stabilizer is the fact that
many BD-PRS variants are found in calcium-dependent genes (CACNA1C and CACNA1D).
CACNA1C is one of the genes that has been associated with BD in both genome- and
epigenome-wide association studies [70,71], modulating the cerebral cortex and hippocam-
pus function [72,73]. CACNA1C is generally hypermethylated in BD patients [71], and
these DNA methylation changes may depend on genetic variants close to the gene locus.

Finally, in the protein–protein interaction analysis, we identified that CACNA1C inter-
acts with ITPR3, which, in turn, interacts with TESPA1. Their corresponding genes were
included in BD-PRS and were found to be differentially methylated, respectively. ITPR3
is the inositol 1,4,5-trisphosphate receptor type 3, a second messenger that mediates the
release of intracellular calcium with ubiquitous expression [74–76]. ITPR3 and TESPA1 in-
teraction regulates calcium flux and modulates different immune system functions [77–79].
In this sense, we found that individuals with a high metabolic ratio and high BD-PRS
presented hypermethylation in TESPA1, which may be promoted by an increase in Ca2+

signaling due to the accumulation of deleterious variants in the calcium pathway (such as
those present in CACNA1C and ITPR3).

We included patients with psychosis that met the clinical criteria of SZ, BD, or SD,
but we should consider that these disorders constitute a well-recognized clinical spectrum.
In relation to this, there are clinical and epidemiological studies considering SZ and BD
as a single major psychosis phenotype, demonstrating the shared genetic liability and
overlapping polygenic component of the two illnesses [80,81]. SD has been less investigated
but shows substantial familial overlap with both SZ and BD [82]. The pharmacogenomics
of the antipsychotics response in this clinical spectrum has mainly focused on the study
of genetic variants associated with pharmacokinetics, whereas pharmacodynamics has
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not been explored in detail. In this regard, the obligated phenotypes for evaluation are
SZ-associated genes [83,84]. In the present study, we analyzed BD-PRS, SZ-PRS, and
MDD-PRS, and no association with CLZ response was found; however, evaluating other
associated genes, even when they are not within the strict diagnostic criteria, becomes of
some importance.

The findings of this study feature some limitations. First, the small sample size and
lack of patient biochemical data (e.g., lipid profiles) prevented us from further exploring
our results regarding other clinical variables. Second, because we used peripheral tissue,
some of our results might not be the same as those observed at the brain level (e.g., TESPA1,
a gene with differentially methylated sites, is highly expressed in leukocytes but not in the
brain). Third, we cannot rule out the possibility of other unidentified associations in these
samples, since we only analyzed the genes included in the microarrays we used. Fourth,
all the CLZ-treated patients included here had refractory psychosis, even though their
clinical diagnoses were different (SZ, SD, or BD), which might have affected the estimation
ability of our study (statistical power = 70%, calculated with the Graw algorithm for the
relationship between DNA methylation and CLZ-associated phenotypes) [85]. Thus, future
studies with larger sample sizes should consider the inclusion of these missing elements.

This study pioneers the exploration of genomics and methylomics simultaneously
in Mexican patients with psychosis in the context of CLZ treatment. Our results suggest
the use of CLZ as a mood stabilizer, primarily in the treatment of psychosis. Further-
more, we present methods integrating both omic technologies to better characterize the
pharmacogenomics of clozapine.

4. Materials and Methods
4.1. Patients

Forty-four unrelated patients with refractory psychosis (unresponsive to at least
two previous antipsychotic treatments) were consecutively recruited from the outpatient
service at the National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”
(NINN) in Mexico City. The inclusion criteria were patients with at least the two previous
generations having been born and brought up in Mexico and those with a Spanish surname.
The clinical diagnosis of SZ, SD, or BD was carried out based on the DSM-5 criteria [86]
and was performed by at least one psychiatrist specialized in psychotic disorders. All
the patients experienced CLZ monotherapy as an antipsychotic treatment for more than
18 weeks. The exclusion criteria were neurologic disease, heavy drinkers and/or heavy
smokers, substance abuse within the past 6 months, history of a head injury with a loss of
consciousness greater than 5 min or with documented neurocognitive sequelae, intellectual
disability, trauma in general, and medical illnesses that may be associated with significant
neurocognitive impairment.

This study was carried out in accordance with the latest version of the Declaration
of Helsinki and was approved by the local research and ethical committees (protocol
NINN_104/17, amended in 2018). Written informed consent was obtained from all partici-
pants after the nature of the procedures had been fully explained.

4.2. Clozapine and Norclozapine Plasma Concentrations.

Blood samples were taken at steady state (i.e., at week 18 of treatment). The prepara-
tion of plasma samples was carried out as previously reported [27], and plasma concen-
trations of CLZ and its main metabolite (ng/mL), N-desmethylclozapine or nor-clozapine
(NCLZ), were determined by HPLC, and the metabolic ratios of CLZ/NCLZ were also cal-
culated.

4.3. Analysis and Quality Control of Microarrays

Blood DNA was isolated by standard procedures after 18 weeks of treatment under
CLZ. The samples were genotyped using the Infinium PsychArray v1.2 BeadChip (Illumina,
San Diego, CA, USA) and then imputed. The genome-wide DNA methylation levels were
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measured using the Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA, USA).
The Genome Reference Consortium Human Build 37 (GRCh37/hg19) was used for all
the analyses.

DNA samples were hybridized with PsychArray according to the manufacturer’s
instructions and scanned on an iScan Microarray Scanner (Illumina). The genotypes
obtained with GenomeStudio (Illumina) were filtered for quality control following the
PLINK v.6.21 program criteria [87]. Thus, we discarded genetic variants and samples
with either a variant calling <95%, a minor allele frequency (MAF) < 0.05 (as reported in
the 1000 Genomes Project), and variants that were not in Hardy–Weinberg equilibrium
using a chi-square method with a value of p < 1 × 10−6. For the epigenomic analysis,
DNA was bisulfite-converted (Zymo, Irvine, CA, USA) and hybridized to EPIC while
following the manufacturer’s protocol. The fluorescence intensities were measured with
the iScan instrument and transformed into idat files with the algorithm implemented in
the GenomeStudio. Raw methylation data were filtered out using the following criteria in
the ChAMP package [88]: detection of p-value > 0.01, probes with less than 3 beads in <5%
of the samples, probes located on sites not-CpGs or associated with SNPs, sex chromosome
probes, multihit probes, and probes with rates greater than 0.1 were removed. After per-
forming the quality control, 741,030 probes remained, and a matrix of beta values was built
including the 44 patients. The matrix was adjusted for the differences in cell proportions
by a deconvolution method in the ChAMP package. Genotyping and microarray analyses
were carried out by specialized staff in the Microarray Unit of the National Institute of
Genomic Medicine Mexico City, Mexico (INMEGEN).

4.4. Analysis of Polygenic Risk Score

To calculate the polygenic risk score (PRS) for SZ, BD, and major depressive disor-
der (MDD), we used the latest available GWAS summary statistics from the Psychiatric
Genomics Consortium (i.e., SZ-PRS was derived from PGC wave-2 group, BD-PRS was
calculated using BIP2018 dataset, and MDD-PRS was generated from results of the PGC
GWAS and 23 and Me) as a training set [89–91] and our genotyped sample as the target.
Poisson correlations were used to test the associations between PRS and CLZ-associated
phenotypes—namely, disease improvement (CLZ response and non-response), the dose
of CLZ, the CLZ plasma concentrations, and the metabolic ratios (CLZ/NCLZ). Depend-
ing on the studied phenotype, logistic or linear regressions were performed with PRSice
v.2.3.3 [92]. PRSice uses two steps to construct the PRS. First, there is the clumping process,
where SNPs in linkage disequilibrium (LD) between the associated loci in the target sample
and the discovery sample are unified. Second, PRSice calculates the individual PRS using
different p-value thresholds for the associated variants in the discovery sample, thereby
calculating the best-fit PRS for the target sample (starting with a p-value threshold of 0.5
from the GWAS with increments of 0.00005). The best-fit model for the PRS explains the
greatest amount of variance in the phenotype by estimating Nagelkerke’s pseudo-R2 value.
We considered an association between PRS and CLZ phenotypes after 1000 permutations
to correct for multiple tests when the p-value was less than 0.05. Additionally, all the regres-
sions were adjusted for age, gender, and the 10 main components of global ancestry. Global
ancestry estimation was performed with the PC-AiR package [93] using the reference panel
of the Human Genome Diversity Project.

4.5. Analysis of Differentially Methylated Regions (DMRs)

The methylation patterns among groups were evaluated by linear models imple-
mented in the limma package [94], and the statistically significant p-value was <1 × 10−8.

4.6. Functional Annotation and Pathway Enrichment Analysis

The SNPs integrating the PRS were annotated using the Variant Effect Predictor (VEP,
web version) using the human genome reference assembly hg19. The VEP is a toolset for
the analysis, annotation, and prioritization of genomic variants that predicts the functional
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effect of variants in silico using different databases and prediction algorithms (CADD, SIFT,
PolyPhen2, and LoF) [95]. We classified SNPs based on their coding positions in exonic and
non-exonic variants. Exonic variants were filtered out if they were predicted as deleterious
in SIFT, and possibly or probably damaging in Polyphen. A CADD value higher than 25
was used for non-exonic variants. The functional enrichment analysis of the PRS genes
and differentially methylated genes was carried out by WebGestalt [96]. In addition, the
protein interaction analysis was carried out using STRING [97].

5. Conclusions

Our study is the first to show simultaneous genomic–epigenomic signatures in samples
from patients with refractory psychosis and those under CLZ treatment, which raises
several questions regarding the genetic/epigenetic determinants of BD-PRS for CLZ-
associated phenotypes and opens up many avenues for future studies. We strongly believe
that these are important results for this field.
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