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Abstract

An ordered configuration of a vector field on an elastic curved surface induces a long-range interaction
with the Gaussian curvature of the surface through the Green function of the Laplace—Beltrami
operator of the surface. This in-plane orientational order configuration gives rise to a stress inducing a
competition between this effective interaction and the surface tension. In this work we obtain the
shape equation of the model from the surface tension term, that is a simpler way than those previously
presented in the literature. We show that the stress and therefore the induced force, is a vector field
tangent to the surface whose magnitude is given by the stiffness constant times the gaussian curvature
of the membrane. We found that the shape of the membrane can be either a minimal surface, a
developed surface or a hyperbolic one, depending on the particular regime. Explicit results are shown
in the case of the catenoid and the helicoid. Finally, we find the self-adjoint stability operator of the
model and obtain its eigenvalues for the nematic catenoid.

1. Introduction

Oriented configurations of vector fields on surfaces and its consequences have been of great interest over the
years[1,2]. This is due to vector fields over surfaces are models of two-dimensional systems such as liquid
crystals, superfluids, and fluid membranes [3—6]. Although the description of thermal fluctuations is interesting,
there is also interest in elucidating the limit of these phenomena in the case of zero temperature. For instance,
some classical configurations of fields are only possible if the surface is curved, as for the well known
phenomenon of geometric frustration [7]. In order to reduce the energy cost of this geometric frustration, the
field induces topological defects in its configuration. The presence of these topological defects has the effect of
shielding the Gaussian curvature of the surface. There is a force on the surface that appears as a consequence of
the curvature of the membrane and causes that the surface acquires between other morphologies, the shape of
cylindrical micelles, of tetrahedral and ellipsoidal vesicles [8].

Fluctuations in membranes with hexatic order were considered in the classical work by Nelson and Peliti [9].
In [10], research about equilibrium of nematic membranes was considered. In [11] authors deal with alternative
forms of free energies for nematic membranes. Hexatic undulations modes in curved geometries have been
studied in [12]. Patterns on curved surfaces of lamellar structures have been studied in [13]. In [14] authors apply
conformal mapping to analyze forces on curved surfaces. In [ 16] several very interesting topological results
about non-orientable nematics membranes were presented. Recently, in [15] the authors provide explicit
formulas for the curvature associated with splay and bend fields in two-dimensions and relate them with a
geometric frustration problem.

In these models the energy associated with ordered fields can be split into two parts. The first part is a bulk
term that involves Gaussian curvature mediated by the Green function of the Laplace—Beltrami operator on the
surface. The second term involves topological defects and also depends on the global shape of the surface

©2017 The Author(s). Published by IOP Publishing Ltd
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Figure 1. At each point of a given 2D surface embedded on R, the Gauss base is defined as {e;, e;, n}.

through the geometric potential evaluated at the point defects [7]. Far from the points where topological defects
are located, the in-plane orientational order induce a force that goes against the elastic forces induced by the
surface itself, either surface tension or elastic bending forces.

In this work, we obtain the shape equation of the membrane K (¢ + xR) = 0, which was previously
obtained in [17]. o is the surface tension, x the stiffness constant, K and R the mean and scalar curvature of the
surface respectively. Only normal deformations of the surface play a role, this is a consequence of the energy
invariance under surface reparameterizations. Thus, the effect of the tangential deformations will be evident in
the boundary terms Minimal surfaces K = 0 remain as solutions of the shape equations if the Canham—Helfrich
bending energy is added but if neglected, the corresponding solutions are hyperbolic-like surfaces R = —o/k,
[17,18]. In the hyperbolic case, the force coming from the in-plane order cancels out at every point on the
membrane with the force coming from the surface tension. In the in-plane ordering regime we also found that
developed surfaces R = 0, are solutions of the shape equations as well.

From the boundary terms, through translational invariance of the energy we can identify the conserved
Noether charge [20]. We obtain that the associated stress can be written as f* = —g% (o + kR)e;. A term
proportional to the scalar curvature appears. We note that there is no component of the stress in the outward
direction to the membrane, which is what one expects from purely intrinsic energy. Hence, in the case of
hyperbolic-like membranes the effective surface tension vanishes. On minimal surfaces the scalar curvature is
nota constant and the behavior of the stress does depend on the point where we evaluate. In a generic model,
rotational symmetry generates an orbital and also an intrinsic torque. In such a case, as there is no component in
the normal direction of the stress tensor, we do not have intrinsic torque either. In order to illustrate the results
both the force and torque on the catenoid and the helicoid are studied.

The paper is organized as follows, in section 2 we give a brief introduction to the geometric description of
curved surfaces. We also give a short presentation of the in-plane ordering energy starting with the Frank energy
for liquid crystals on a curved surface. Although this information has been included in several previous works,
this will be useful to establish definitions and notation along the paper. In section 3 we obtain the response of the
energy to infinitesimal deformations of the embedding function. Then we identify the Euler—Lagrange derivative
as well as the boundary terms The in-plane energy is written in isothermal coordinates so that the information of
the curvature and its deformations is encoded in the conformal factor. The stress tensor and the torque are
obtained in section 4. As a classical example of a minimal surface, in section 5 we present some results on a
catenoid and the helicoid is briefly considered. The in-plane force takes its maximum value at the waist of the
catenoid and decrease as we move away. Finally, we obtain the stability operator of the energy in section 6. In
section 7 summary and some conclusions are presented.

2. Geometric preliminaries

Let us consider a two-dimensional surface embedded in the three-dimensional euclidean space R?, with

x = (x!, x2, x*). We can write an explicit equation for the embedding as x = X(£%) parametrized by
coordinates 7, (a = 1, 2). The induced metric on the surfaceis givenby g, = e, - e, where dot stands for the
inner productin R?and e, = 9,X are the tangent vectors to the surface. The unit vector field normal to the
surfaceis definedas n = (e; X e,)/,/g. Therefore, these three vectors form a right-hand base as can be seen in
figure 1. Partial derivatives of the tangent vectors of the surface are described by the Gauss equation

Oaey = —Kgpn + F;beca (D
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where K, is a second order symmetric tensor called the extrinsic curvature of the surface (also known as the
second fundamental form), I'j,. are the Christoffel symbols needed to define the covariant derivative V,,
compatible with the induced metric such that V,g, = 0. Using this derivative the Gauss equation can be

rewritten simply as V,e, = —Kj;;, n. Asa consequence of the integrability conditions the extrinsic and intrinsic
curvature of the surface are related by the well-known Gauss—Codazzi—-Mainardi equations [21]
KKap — Kchb = Rap, @)
VoK', = VK. 3)

The inverse of the induced metric g’ is used in these equations to rise tangential indices, then K%, = g*K
and so on. Also K = g%K,; is the mean curvature of the surface and R = g"R is the scalar curvature. Thus,
we can then obtain the scalar version of equation (2) as

K? — K%K, = R. )
The Ricci tensor of the surface R, = R% .4 is a contraction of the Riemann tensor defined as
ViV — Vi VDA = RE gupA. %)

In the case of two-dimensional surfaces we know that R, = g, R/2.
With the covariant derivative we can write the Laplace—Beltrami operator of the surface as follows

Vif =8V f. (6)

Instead of using generalized coordinates £ we can parameterize the surface with the so-called isothermal
coordinates u“. The advantage of this coordinates is that the metric is conformally flat

ap = Woabs (7
where wis the conformal factor. In such coordinates the mean curvature can be conveniently written as
1 2 2
K=—-—n- VX =-n- VX, ®
w

where V? is the euclidean laplacian in the isothermal u“ coordinates, and the Laplace—Beltrami operator V; is
just w—! V2 in these coordinates. It is not difficult to write the curvature scalar as

~ Vilogw

R = )

w

Let us consider a unit vector field defined on the tangent plane to the surface, m = m“e,, then
m - m = g, m*m® = 1. The splay and bending energy of the field are modeled by the Frank energy which on
two-dimensional curved surfaces is given by

F— %fdA[K](Vam“)z + Ky (mVmy)?]. (10)

Here the field m “ describes the ordering direction of the nematic phase. When the coefficients satisfy
K; = K5 = K, equation (10) simplifies to

_ Kk b2
F—zfdA(%m), a1

where dA = /g d*¢ is the area element.
On the other hand, the energy density F can be expanded in terms of the extrinsic curvature as follows [6]
F =g (8,m) - (9pym),
= g“bVamCmec + mCKaCKgmd, (12)
where the Gauss equation was used. The first term in equation (12) is a contribution intrinsic to the surface,

while the second one has a quadratic coupling with the extrinsic curvature K,;, of the surface. By using
equation (2) we can write

F = (V;m")? + mKKypym? — m*R pm?,
= (V,m")? + moKK ,m? — % (13)

In the second line of equation (13) we used the fact that the Einstein tensor G,y = R, — (g,,/2)R = 0, for
two-dimensional surfaces. When integrated, the last term is a boundary term consequence of the Gauss—Bonnet
theorem. When the surface is a sphere, we note that only the intrinsic energy becomes relevant since the extrinsic
energy is a contribution to the surface tension. Some extrinsic effects in the Frank energy have also been studied
[19,22,28].
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If the direction of m“ is along the normal vector to the layers then the second term in equation (10) takes its
minimal energy along geodesics, i.e. m*V,m? = 0. That is, the layers are normal to the geodesic of the surface.
The extrinsic energy density can be identified as KK, m*m® = Kk, where &, is the normal curvature of the
geodesics [21]. It has a minimum along asymptotic curves on the surface where x,, = 0. On a cylindrical surface,
for instance, this energy vanishes if the director is aligned with the cylinder’s axis.

This field theory can be alternatively described in terms of the spin connection = €2, which is a vector
function defined in the tangent space of the surface [23], and is related with gaussian curvature as follows

V x Q= En. (14)
2
By using the orthonormal frame €, with o = {1, 2}, the field m is written in terms of the angle © with ¢ as
m = m%e,,
=cosO € + sinO e,. (15)

The intrinsic energy can be written as a function of this angle
F— g f dA g™ (9,0 — Q) (0 — ). (16)

For a cylindrical surface this energy reaches a minimal value for © = Const., as horizontal loops.

Asitis well known along in-plane ordering configuration, this energy can be written as a non-local
interaction of the Gaussian curvature mediated by the Green function of the laplacian defined on the surface [6].
By adding this to the bending energy of the membrane and taking into account the topological charges g;, the
energy is given by

H=o [da+ ?fdA K2+ 2 [ [ardn p© G €0(&), (17)

where R is the bending rigidity, p(§) = R(§) — S(§) involves the scalar curvature at the point &,
S = %Z :q;0 (&, &) stands for the charges and G (¢, ¢’) is the Green function of the operator
— Vé = —g%YV],V, on the surface. Without the topological charges this energy is known as the Liouville field

theory in quantum gravity [24]. In the next section we obtain the infinitesimal deformations of this energy
(neglecting the bending energy) and identify the shape equations.

3. Shape equation and boundary conditions

To find the shape equations we track the response of the energy in equation (17) (neglecting the bending energy)
to small deformations of the embedding functions, X — X + 6X. We project the deformation in the Gauss
frameas[27]

60X = 6”X + 6. X,
= d%, + P n. (18)
Under this deformation one can calculate the corresponding deformation of each geometric function defined on

the surface. Particularly relevant are the perpendicular deformations that have been calculated in detail [27]. The
deformation of the induced metric is

0g., = 2K ® + V,®p + V@, (19)
With this result the area element of the surface deforms as follows 6, /g = /g (V,®* + K®). Inisothermal

coordinates we have that the deformation of the conformal factor is given by 6 logw = (V,®* + K®). The
tangential deformation of the conformal factor is identified as

Ologw = V, @ = l8a(w ), (20)
w
whereas the normal deformation of the conformal factor can be written as
01 logw = K. 21)
We can now find the deformations of the scalar curvature. From its definition equation (9), we have
2
SR =_KRo - Y KD
w
2 c
5R = —RV@ — VP (22)
w
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and thus we can get

6(JER) = —V*(K®),
§I(JTR) = — VAV D). (23)

With these elements we can find the shape equations of the model. Write the deformation of the in-plane order
energy

6F = 18 [dA p© U, (24)
where the function U(&) defined by
U = [dGE €)p©), 25)

has been introduced. A technical problem for this calculation is to find the deformation of Green function. One
way is to use the switch with the Laplacian to pass the deformation to the Green function. This will be addressed
in an upcoming note. Here we use an idea based in a recent work by Giomi [17]. Let us write the energy in
isothermal coordinates such that the area element turns to dA = w d?u, then for 6F we have

6F = f Pu 5w p)Uw). (26)
In these coordinates we can write

wp = —V2logw — > q;6(u, uj), 27)

such that ¢ (wp) involves only deformations in equation (23). We then obtain the normal deformation of the
energy that includes the surface tension as

5 F = f dA £ + K f &u O,[PKAU — UK D)], (28)

where the Euler—Lagrange derivative is given by
€= (0 + kp)K, (29)

far from the topological defect positions p = R, as was anticipated in [17]. From equation (29), we see that
minimal surfaces K = 0 and hyperbolic-like surfaces R = —o/k, are solutions of the shape equations

K (o + kR) = 0,[17]. Different types of solutions appear by considering the regime where the surface tension
is negligible. In such a case developable surfaces also appear as solutions. As a consequence of invariance under
translations the tangential deformation of the energy is a boundary term. To see this explicitly we write

OF = [dAo + kp) V@ + K [[Pu B[V DU — UO(T.D)]. (30)
In the first term we can integrate by parts to obtain
fdA(a + kP VB = fdA V@0 + kp)] — deA V. (1)
Due to the relation
J& ®Vap = PVL(Jgp) = 6(JgP) (32)

we can write the second integral in equation (31) as
1
[aroip =4 [aap=g fdA(R - — 4 51-)] 0. (33)
V&
This integral vanishes because the first term is the Gauss—Bonnet invariant and the second one is the total defect’s
charge, thatis a constant. Therefore, the total deformation of the energy 6F = 6, F + ¢ F is given by
SF = fdA £ + fdAVaS{’ n fdAvas;, (34)
where we have defined the boundary terms
S = (0 + Kp),
Sy = (V@ + K®)o0U — UO* (V. D¢ + K D). (35)

For the case of a membrane without a boundary these terms vanish. Note that S7 involves the deformation of the
membrane’s area, that is
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Figure 2. For a curve on the surface with normal n, the vector T isits unittangentand 1 = T x n its normal along the surface. The
three vector fields { T, 1, n} define the so-called Darboux frame.

SA = f dAKKD + V,3%. (36)

This means that if the mass density of the membrane remains constant under deformations, then
K® + V,®? = 0, even at the boundary. In the presence of a boundary we can add the term

Fo=a § ds (37)
C
where 0y is the linear tension of the membrane’s boundary. Deformation of the boundary term is found to be
6 ds= & ds 5, 107 + wy), (38)
C C

where £ is the geodesic curvature of the boundary and x,, = Ky, ttb its normal curvature. At this point we
recall the Darboux frame adapted to the boundary, T = t“e, is the tangent vector field and 1 = [?e, anormal
vector to the curve such that1 = T x n (see figure 2). Accordingly, in this case we can write

SF = fdA £D + yf ds[(0 + KR + 0k, + 0k, D. (39)
C

On hyperbolic-like surfaces with R = —o/, the boundary conditions are given by x, = 0 and x, = 0,
[17,18]. The boundary of the membrane is an asymptotic geodesic curve. If the bulk is a minimal surface the
boundary terms involve the gaussian curvature. Then, in this case we have

R = —K®Kp,
=—(k; + 275 + KD, (40)

where we have defined x; = K, 1%" and 7, = Ka11b. Consequently, if the boundary curve is not fixed it satisfy
the following conditions

o — /Q(li? + 27'§ + /{f,) + opkg =0,
opk, = 0. (41)

4, Stress

Let us take an infinitesimal translation on the energy in equation (34). Then X = a which implies that
® = a-nand ®* = g®a - e,.Inthatcase Sy = 0 and therefore the only contribution comes from the S{ term.
We have

oF=a- [daEn - Vi), (42)
where the stress is given by the vector field

f*= —g“(0 + wpey, (43)

which is tangent to the membrane. It includes (a constant) surface tension, and the term kp consequence of the
in-plane order. Invariance under translations implies that

V.f?=En. (44)
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Figure 3. A patch ¥ on the surface and its boundary C. The unit vector 1 = e,£%, points outward in a normal direction to the boundary

On equilibrium shape solutions £ = 0 and the conservation law V,f* = 0 follows. From equation (42) we have
oF = —a- [aa vif. (45)

In this manner we can identify the force acting on the boundary C of the patch 3, [20]:
szZ AV, £ = § ds &, £,
K
o ase(1+5p) (46)

where € = e, is a vector field tangent to the membrane and in the normal direction to the loop C (see
figure 3).

Additionally to the surface tension, a force due to the in-plane ordered phase that is proportional to the
curvature of the membrane emerges. Depending on the curvature R this force increases or decreases the area of
the patch X. On hyperbolic-like surfaces with scalar curvature R = —o/k the force coming of the in-plane
ordered phase is cancelled with the surface tension.

An alternative route to find the stress tensor is using a general expression obtained introducing auxiliary
variables [25]. Starting from the functional energy H = f dA H one can define the tensors

T = _ 2 0GEH and H® = 6—H (47)
V& 0y OKap
In the basis {e,, n}, we can write the vector field as
fr — fabeb + fon, (48)
where
f =T% — H*“K., and f*=—-V,H®. (49)

In the case of the in-plane energy with surface tension o, we see that it does not depend on the extrinsic curvature,
so we have that H% = 0. We can write the deformation in isothermal coordinates

OF = %fdzu w gég, — gfdzu V2(g®8g,, ) U(u). (50)

After integrations by parts, neglecting boundary terms and using the fact that V2 = —wp = — /g p, the
second term of the last equation can be written as

ﬁ ab
P fdA P& 6gab‘ (51)

In this way only the symmetric tensor T’ given by

T — —g“ba(l + ﬁp), (52)
o
contributes to the stress tensor. In the surface tension regime, thatiswhen 0 < kR /o < 1, the surface’s shape
tends to a minimal surface with T% = —g%g, as expected [17].
If the shape of the membrane is such that its scalar curvature is R = —o/, the T® tensor vanishes at every
point of the membrane (except at the defect points). Note that the contracted tensor
T, = —2(0 + Kp), (53)

also vanishes for both hyperbolic-like membranes and developable surfaces if the surface tension is negligible.

7
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Let us now take an infinitesimal rotation 6X = b x X,thenwehavethat® = b - X x nand
®, = b - X x e,. Thus, we see again that V,®* + K& = 0and S5 = 0. Once again the only contribution
comes from S’ = b - X x f?. So that the energy deforms as

SF=b - fdA(gx X n — V,M9), (54)
where the vector field
M* = —X x e*(o + kp), (55)
is the torque about the origin M* = X x f“ Due to energy invariance under rotations we get
ViM? = £X X n, (56)

so that the conservation law V,M* = 0, follows along the shape solutions of the Euler—Lagrange equations
& = 0. Under an infinitesimal rotation the energy deformation is

513:—1;-]2 dA VM = ~b - ¢ ds IM",
=-b- 55c ds X x 1o + kp). (57)

In the next section the force and torque on the nematic catenoid, a minimal surface with in-plane order, are
obtained.

5. Minimal surfaces: the catenoid

Anillustrative example here we present the surface of the catenoid. It is a minimal surface that can be
parametrized as a surface of revolution as follows

X(z, ¢) = (acosh(z/a)cos ¢, a cosh(z/a)sin ¢, z). (58)

where a is the minimum radius at the waist, ¢ € [0, 27r]and z € (—00, 00). In these coordinates the
infinitesimal distance is given by a metric conformal to R?:

ds? = cosh?(z/a)(dz? + a*d¢?). (59)
In terms of the radial variable p = a cosh (z/a) we can write it as
2
ds? = ——dp? + p2de?, (60)
pt—a
which in turn can be simply written as
ds? = dI? + (a? + 1»)dy?, (61)

where now the variable > = p? — a?such that! = a arcsinh(z/a), has been introduced. In this way the
parametrization of the surface can be rewritten as

X(, ¢) = (W2 + a? cosp, JI> + a’sing, a arcsinh(l/a)). (62)

The tangential vectors are given by

I ! a
e =| ———cos ¢, sin ¢, >
2+ 22 12 + 42 V2 + a?
e; = (—I> + a?sing, VI + a* cos ¢, 0), (63)

and the unit normal outward to the surface is

n = ;(a cos ¢, asin ¢, —I). (64)

Va2 + I
The non-zero elements of the extrinsic curvature can be expressed in coordinates {/, ¢} and are the following

Kle—_ %  goo—__ % (65)
12 + aZ (lz + a2)2
The scalar curvature is found to be
2a?
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Figure 4. The nematic catenoid exists for h/R < 0.66. To overcome the force that reduces the area, the force
F = 2nr[o — 2a’k/(I* + a*)*] have to be implemented in the opposite direction.

The force acting on a line segment does not depend on the angular variable and is given by

F:f¢d51(0+n72), (67)
where
202k

On the waist of the catenoid I = 0 and the force per unitlengthisjust o — 2x/a?. It decreases as we move away
from the waist. Along the parallel such that I = J; the unit tangentis T = (—sin ¢, cos ¢, 0). The vector
1=-1 / JI¢ 4 a2 (ly cos @, Iy sin ¢, a) complements the Darboux frame on this loop, [21]. When integrated,
the radial component of the force is canceled and thus the total force on each horizontal loop is given
by F = —(2ma)(c — 2x/a*)k.

In the same way the torque acting on a segment of line is given by

2a%k
T=XX 1(0’ - m}, (69)

on the waist of the catenoid it is given by
2 .
T= —(0’ — —’j)a(sm P, cos ©, 0). (70)
a

In this example the resulting force due to the ordering implies an effective surface tension that up to leading
orderis o, = 0 — 2k/a* To obtain experimentally a catenoid of height 2k with a couple or rings with radius R
each, we need a force that is tangential to the surface and at the same time perpendicular to the ring, whose
magnitudeis F. = 2mRo.g. Where h/R < 0.66 (see figure 4). Note that on aloop of radius r < R the force
decreasesas F = 27mro.¢ < . This gives an upper limit to the force as a function of h expressed as
E. = 27thoyg /0.66. If we pull harder catenoid degenerates into two films on the rings. In order to have a better
description one should take into account the bending force. Induced stress due to bending is given by [25]

f1= R(K — KO)[K“h - %(K - Ko)g“h]eb — R(VK)n, (71)

that on a minimal surfaces with K = 0 becomes f* = —gK, (K + %KO ¢")e;. On horizontal loops of the
catenoid it is found that the bending induced force per unit length at a height zis

£, — fog, — R[L - lKg]l. 72)
acosh*(z/a) 2
From this we note that if spontaneous curvature K, vanishes, there is no stress induced by bending. Because of its
sign, the term — &K /2 has the effect of decreasing the area in the same way as the surface tension does.
Moreover, the effect of the first term on the right-hand side of equation (72) depends on the sign of K, [26].
Once again, the radial forces are canceled out when integrating around the loop. Hence, the required force to
build a nematic catenoid up to aloop of radius r < R and by considering (68) is

9
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Figure 5. The nematic helicoid. Blue lines correspond toa fixed ¢ = ¢, whilered curvesto p = p,.

2
- zl 2 (5 . ﬁ)]k, 73
a? a 2

where k = (0, 0, 1). Therefore the induced ordered tension, acting on horizontal loops o, = 2k /a?, could be
relevant in the spontaneous formation of tubular membranes, as this adds to the spontaneous tension
o, = kKo(1/a — Ky/2)[26].

Is worth mentioning the case of the helicoid as it is a surface related to catenoid by an isometry (see figure 5).
Let us see briefly some details about this case. The helicoid is a minimal surface that can be parametrized by

X(p, ) = (pcos¢, psing, p @),
= pp + pok, (74)

where p = (cos ¢, sin ¢, 0) is the unit vector along the radial direction. Wetake 0 < p < R;0 < ¢ < 27n
and p > 0.The tangent vectors to the helicoid are e, = pand e; = p¢o + pk, where ¢ = (—sin ¢, cos ¢, 0)
and therefore the induced metric can be written as

gpdeedet = dp? + (p? + pHdg? (75)
The area elementis dA = /p? + p? dp d¢. The normal unit vector to the surface is then
n = ,—ﬁ( p¢ — pk) and the scalar curvature

2 2
R=-—— (76)
( p2 + p2 )2
The induced force onto the surface is given by (46) where the components of the stressare f* = —(0 + kR)p
and f? = — ; 1”12 (p¢ + pk). The force on meridians (red curvesin figure 5)is F = f d¢ /g £, thatvanishes

when integrated over a period interval. The force on rulings (blue lines in figure 5) is given by F = j(; . dp. /g £%
the curvature is added to the surface tension to decrease the area of the helicoid.

6. Perturbations

We can now obtain some results about the stability operator of nematic membranes. Those are obtained from
the second variation of the energy. By taking a variation in equation (34) we have [27]

S F= f &€ 6 [ZK (0 + KR)ID.
- f dA OL @, (77)
where the stability operator is given by
L = —[o+ k(R + 2K)]V; + 26KK®V,V, + [0 + k(R — K)]R. (78)

It can be written in an explicit self-adjoint way as
L = VA"V, + B, (79)

10
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Table 1. The eigenvalues € for some values of m = 0, 1
andn =0, 1, 2, 3, 4, 5.

mn 0 1 2 3 4 5
0 -2 14/9 46/25 94/49 158/81 238/121
1 17/9 49/25 97/49 161/81 241/121

where

A = 2kK (K% — gK) — ¢ (o + KR),
B=[0o + k(R — K)]R + 2k(K* — g*K)V,V,K — KV R. (80)

Eigenvalues of this self-adjoint operator are real numbers. We can also check that a normal translation is a zero
mode of L. To see this take X = a, anormal translation such that ® = a - nand a - e, = 0. Then we can
write V,® = a - K e, Taking a further derivative we see that V,V,,& = —K; K, a - n. We also have that

Vi® = —K%Ky®. (81)

Hence, substituting this results into equation (78) we find that £ & = K &, and therefore on equilibrium shapes
itis a zero mode. On minimal surfaces the stability operator takes the form

Ly =(0+ KkR)(=V; + R). (82)

Solving the eigenvalue equation £, f = Ef helps us to analyze the stability of the surface. Let us look at the
example of the catenoid given in previous section, that is a minimal surface of revolution with negative curvature
equation (66), figure 4. In this example, taking advantage of the azimuthal symmetry, we express the solution as
f(z, $) = eM9Z(z). Moreover, using the fact that ¢ (0) = ¢ (27), we get that |m| = 0, 1, 2... If we rename
u=z/a, we can write the E = 0 equation:

Z"(u) + Z(u) = m*Z (u). (83)

cosh?u

The solution of this equation with m = 01is, Z(u) = C(utanhu — 1) + C, tanh u. The non-trivial critical
pointsuch that Z (1) = 0, appears if we take Cy = 0; one can find that u, ~ £1.19[29]. If we select the
positive value then the conditions for the catenoid to exists, are given by u < . and p < p,, whichin turns
implies that u/p < u./p. and therefore we obtain the well known result, h/R < 0.66. In thisway, z < aisa
condition that must be fulfilled forall z < h.

In order to find solutions if E = 0, we expand up to quadratic order in u. With this we are able to rewrite the
eigenvalue equation as

—Z"u) + m*Z — 2(1 — udZ = eu*Z, (84)

where the dimensionless quantity ¢ = Ea/ (0 — 2r/a?) has been defined. This equation is known as the
parabolic cylinder equation and can be written in its standard way if we change the variable
=22 — e)"/* u,aswellasidentify v = (2 — m? — 2 — €)/(2+/2 — ¢). Note that since vis a real
number, imposes the upper bound ¢ < 2. The most general solution to equation (84), is therefore given by
Z(u) = G D, () + C;D_,,_1(—ip), where C; and C, are constants and the parabolic cylinder function D, ()
appears, [30]. We take the boundary condition such that Z — 0as|u| — oo. The function D_,,_; (—iu) grows
exponentiallyif u — 00, so we choose C, = 0.

On the other hand if # — — o0, the behavior of the function is

—v—1,u2

/
D,(u) ~ =2 F(_‘;) ! [1+ (v+ D@+ 2)/22z% + ...], thusin this limit this function diverges unless

v =0, 1, 2.... Asimilar setting appears when we solve the Schréedinger equation for the harmonic oscillator.
Accordingly the fact that v takes non-negative integer values implies that

2 —m?Y
e=2— 1, (85)
14 2n
wheren =0, 1, 2, ... ,and |m| = 0, 1.Intable 1 we show some of the eigenvalues e and in figure 6 some of the
eigenfunctions. We see that eigenmodes with m = 0 includes the negative value ¢ = —2, that is, the nematic

catenoid is unstable under these symmetric perturbations. On the other hand, the stability of the catenoid under
m = 1 modes is evident. Of course this happens in the surface tension regime since, as was discussed by Giomi
[17], in the orientational regime, to be analyzed, the surface should have a constant negative curvature.

11
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-6 = -2 2 4 6

-14

Figure 6. The symmetric Z (1) functions (i.e.m = 0)for n = 0, 1, 2. The greater the value of n, the greater the number of nodes.
The nematic catenoid its unstable under these perturbations.

7. Concluding remarks

Taking into account in-plane ordering configuration of a vector field on a curved surface we have found the
corresponding shape equations K (o + kR) = 0 of the surface. We find that in the regime where the bending
energy is negligible not only minimal surfaces remains as solutions, but hyperbolic-like surfaces also appear
among others such that developable surfaces. It should be noted that this is possible even without the presence of
topological defects. Starting from the invariance of the energy under Euclidean transformations, we have found
the stressas f/(€) = —g® (0 + KR(£))ep. The fact that this vector field is tangent to the surface is not
surprising since it comes from a purely intrinsic energy. Because of this, the induced torque is only external. The
stress is a vector field that vanishes at each point in a hyperbolic-like membranes, R = —o/k. In the presence of
topological defects with charge g;, the stress is modified as f*(§) = — g0 + Kp()]ey,

where p(€) = R — ¥,4,6(&, &).

In the case of the nematic catenoid the force takes its largest value at the waist of the surface and decreases as
we move. Furthermore, we study the stability of the catenoid under azimuthal asymmetric perturbations, by
showing the positiveness of the eigenvalues of the stability operator. In contrast, the catenoid is unstable under
azimuthal symmetric perturbations. Several other geometries of interest can be studied. In the case of a closed
surface one can take into account the volume inside through a Lagrange multiplier P. In this case one have to take
into account that, due to the Poicaré—Hopf theorem, the total topological charge on the surface has the same
value as the Euler invariant y = 2. Thereby, there are topological defects to take into account, [31]. We return to
thisissue elsewhere.
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