Título: | Puntos de equilibrio asintóticamente estables en nuevos sistemas caóticos |
Other Titles: | Asymptotically stable equilibrium points in new chaotic systems |
Autor(es): | CASAS GARCIA, K. QUEZADA TELLEZ, LUIS ALBERTO CARRILLO MORENO, SALVADOR FLORES GODOY, JOSE JOB FERNANDEZ ANAYA, GUILLERMO |
Temas: | Conducta caótica en sistemas Ecuaciones diferenciales no lineales Caos cuántico |
Fecha: | 2016 |
Editorial: | Guanajuato, México : Universidad De La Salle Bajío |
Citation: | Nova Scientia, vol. 8, núm. 16, 2016 |
Resumen: | In this paper ten new chaotic nonlinear autonomous systems are presented. These systems were found by using the Monte Carlo method and they characterized by having one of their equilibrium points asymptotically stable. These new systems does not present chaos in the sense of Shilnikov, but their bifurcation diagrams show a period-doubling route towards chaos. Kaplan-Yorke dimensions were also calculated, which is fractional order enclosed in a range of 2-3. |
URI: | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/346 |
Aparece en las colecciones: | Artículos |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Puntos de equilibrio.pdf | 1.27 MB | Adobe PDF | Visualizar/Abrir |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.