DC Field | Value | Language |
dc.contributor.author | CLAPP JIMENEZ LABORA, MONICA ALICIA | - |
dc.contributor.author | DING, YANHENG | - |
dc.contributor.author | HERNANDEZ LINARES, SERGIO | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/1169">MONICA ALICIA CLAPP JIMENEZ LABORA</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/122716">SERGIO HERNANDEZ LINARES</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/1</dc:subject> | - |
dc.date.accessioned | 2020-06-08T18:55:20Z | - |
dc.date.available | 2020-06-08T18:55:20Z | - |
dc.date.issued | 2004 | - |
dc.identifier.citation | Electronic Journal of Differential Equations (EJDE), vol. 2004, núm. 100, August, 2004 | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/413 | - |
dc.description.abstract | We prove a critical-point result which provides conditions for the existence of infinitely many critical points of a strongly indefinite functional with perturbed symmetries. Then we apply this result to obtain infinitely many solutions of non-symmetric super-quadratic noncooperative elliptic systems, allowing some supercritical growth. | en_US |
dc.description.sponsorship | Electronic Journal of Differential Equations (EJDE) | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | Texas State University | en_US |
dc.relation.haspart | 1072-6691 | - |
dc.rights | https://www.researchgate.net/publication/26394084_Strongly_indefinite_functionals_with_perturbed_symmetries_and_multiple_solutions_of_nonsymmetric_elliptic_systems | - |
dc.subject | Ecuaciones diferenciales elípticas - Soluciones numéricas | en_US |
dc.subject | Perturbación (Matemáticas) | en_US |
dc.subject | Punto crítico | en_US |
dc.title | Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|