Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Título: The gradient subspace approximation as local search engine within evolutionary multi-objective optimization algorithms
Autor(es): ALVARADO GARCIA, SERGIO JESUS
SEGURA GONZALEZ, CARLOS
SCHÜTZ, OLIVER
ZAPOTECAS MARTINEZ, SAUL
Temas: Algoritmos computacionales
Motores de busqueda - Programación
Fecha: 2018
Editorial: México : Instituto Polítecnico Nacional
Citation: Computación y Sistemas, vol. 22, no. 2, 2018
Resumen: In this paper, we argue that the gradient subspace approximation (GSA) is a powerful local search tool within memetic algorithms for the treatment of multi-objective optimization problems. The GSA utilizes the neighborhood information within the current population in order to compute the best approximation of the gradient at a given candidate solution. The computation of the search direction comes hence for free in terms of additional function evaluations within population based search algorithms such as evolutionary algorithms. Its benefits have recently been discussed in the context of scalar optimization. Here, we discuss and adapt the GSA for the case that multiple objectives have to be considered concurrently. We will further on hybridize line searchers that utilize GSA to obtain the search direction with two different multi-objective evolutionary algorithms. Numerical results on selected benchmark problems indicate the strength of the GSA-based local search within the evolutionary strategies.
URI: http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/429
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
The gradient subspace.pdf1.42 MBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.