Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorALVARADO GARCIA, SERGIO JESUS-
dc.contributor.authorSEGURA GONZALEZ, CARLOS-
dc.contributor.authorSCHÜTZ, OLIVER-
dc.contributor.authorZAPOTECAS MARTINEZ, SAUL-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/368188">SERGIO JESUS ALVARADO GARCIA</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/597649">CARLOS SEGURA GONZALEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/173632">SAUL ZAPOTECAS MARTINEZ</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/7</dc:subject>-
dc.date.accessioned2020-06-10T15:02:05Z-
dc.date.available2020-06-10T15:02:05Z-
dc.date.issued2018-
dc.identifier.citationComputación y Sistemas, vol. 22, no. 2, 2018en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/429-
dc.description.abstractIn this paper, we argue that the gradient subspace approximation (GSA) is a powerful local search tool within memetic algorithms for the treatment of multi-objective optimization problems. The GSA utilizes the neighborhood information within the current population in order to compute the best approximation of the gradient at a given candidate solution. The computation of the search direction comes hence for free in terms of additional function evaluations within population based search algorithms such as evolutionary algorithms. Its benefits have recently been discussed in the context of scalar optimization. Here, we discuss and adapt the GSA for the case that multiple objectives have to be considered concurrently. We will further on hybridize line searchers that utilize GSA to obtain the search direction with two different multi-objective evolutionary algorithms. Numerical results on selected benchmark problems indicate the strength of the GSA-based local search within the evolutionary strategies.en_US
dc.description.sponsorshipComputación y Sistemasen_US
dc.language.isoInglésen_US
dc.publisherMéxico : Instituto Polítecnico Nacionalen_US
dc.relation.haspart2007-9737-
dc.rightshttps://doi.org/10.13053/CyS-22-2-2948. -
dc.rightshttps://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/2948/2486-
dc.subjectAlgoritmos computacionalesen_US
dc.subjectMotores de busqueda - Programaciónen_US
dc.titleThe gradient subspace approximation as local search engine within evolutionary multi-objective optimization algorithmsen_US
dc.typeArtículoen_US
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
The gradient subspace.pdf1.42 MBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.