DC Field | Value | Language |
dc.contributor.author | ALVARADO GARCIA, SERGIO JESUS | - |
dc.contributor.author | SEGURA GONZALEZ, CARLOS | - |
dc.contributor.author | SCHÜTZ, OLIVER | - |
dc.contributor.author | ZAPOTECAS MARTINEZ, SAUL | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/368188">SERGIO JESUS ALVARADO GARCIA</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/597649">CARLOS SEGURA GONZALEZ</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/173632">SAUL ZAPOTECAS MARTINEZ</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/7</dc:subject> | - |
dc.date.accessioned | 2020-06-10T15:02:05Z | - |
dc.date.available | 2020-06-10T15:02:05Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Computación y Sistemas, vol. 22, no. 2, 2018 | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/429 | - |
dc.description.abstract | In this paper, we argue that the gradient
subspace approximation (GSA) is a powerful local
search tool within memetic algorithms for the treatment
of multi-objective optimization problems. The GSA
utilizes the neighborhood information within the current
population in order to compute the best approximation
of the gradient at a given candidate solution. The
computation of the search direction comes hence for
free in terms of additional function evaluations within
population based search algorithms such as evolutionary
algorithms. Its benefits have recently been discussed
in the context of scalar optimization. Here, we
discuss and adapt the GSA for the case that multiple
objectives have to be considered concurrently. We
will further on hybridize line searchers that utilize
GSA to obtain the search direction with two different
multi-objective evolutionary algorithms. Numerical
results on selected benchmark problems indicate the
strength of the GSA-based local search within the
evolutionary strategies. | en_US |
dc.description.sponsorship | Computación y Sistemas | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | México : Instituto Polítecnico Nacional | en_US |
dc.relation.haspart | 2007-9737 | - |
dc.rights | https://doi.org/10.13053/CyS-22-2-2948. | - |
dc.rights | https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/2948/2486 | - |
dc.subject | Algoritmos computacionales | en_US |
dc.subject | Motores de busqueda - Programación | en_US |
dc.title | The gradient subspace approximation as local search engine within evolutionary multi-objective optimization algorithms | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|