Título: | Stability analysis for virus spreading in complex networks with quarantine |
Autor(es): | BERNAL JAQUEZ, ROBERTO SCHAUM, ALEXANDER ALARCON RAMOS, LUIS ANGEL RODRIGUEZ LUCATERO, CARLOS |
Temas: | Epidemias -- Modelos matemáticas Cuerentenas |
Fecha: | 2013 |
Editorial: | Uruguay : Universidad de la República |
Citation: | Publicaciones Matematicas del Uruguay, vol. 14, año 2013 |
Resumen: | The stability of a discrete-time complex network-based Markov process model for virus spreading with quarantine is studied on the basis of a (S → I → Q → S) state automaton. Size independent spectral properties of the underlying nonlinear dynamics are identified, and conditions for extinction are derived in dependence of quarantine rates, infection probability, recovery and interaction rate. Numerical simulations are presented to illustrate the underlying basic bifurcation behavior, whose understanding is the first step towards the development of adequately tailored control strategies for these kind of problems. |
URI: | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/432 |
Aparece en las colecciones: | Artículos |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Stability analysis.pdf | 2.8 MB | Adobe PDF | Visualizar/Abrir |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.