Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorALVARADO GONZALEZ, ALICIA MONTSERRAT-
dc.contributor.authorGARDUÑO ANGELES, EDGAR-
dc.contributor.authorBRIBIESCA CORREA, ERNESTO-
dc.contributor.authorYANEZ SUAREZ, OSCAR-
dc.contributor.authorMEDINA BAÑUELOS, VERONICA-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/167254">ALICIA MONTSERRAT ALVARADO GONZALEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/81894">EDGAR GARDUÑO ANGELES</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/13478">ERNESTO BRIBIESCA CORREA</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/13619">VERONICA MEDINA BAÑUELOS</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/7</dc:subject>-
dc.date.accessioned2020-06-17T19:25:15Z-
dc.date.available2020-06-17T19:25:15Z-
dc.date.issued2016-
dc.identifier.citationComputational and mathematical methods in medicine, 2016en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/459-
dc.description.abstractWe present a novel approach to describe a P300 by a shape-feature vector, which offers several advantages over the feature vector used by the BCI2000 system. Additionally, we present a calibration algorithm that reduces the dimensionality of the shape-feature vector, the number of trials, and the electrodes needed by a Brain Computer Interface to accurately detect P300s; we also define a method to find a template that best represents, for a given electrode, the subject’s P300 based on his/her own acquired signals. Our experiments with 21 subjects showed that the SWLDA’s performance using our shape-feature vector was , that is,  higher than the one obtained with BCI2000-feature’s vector. The shape-feature vector is 34-dimensional for every electrode; however, it is possible to significantly reduce its dimensionality while keeping a high sensitivity. The validation of the calibration algorithm showed an averaged area under the ROC (AUROC) curve of . Also, most of the subjects needed less than  trials to have an AUROC superior to . Finally, we found that the electrode C4 also leads to better classification.en_US
dc.description.sponsorshipComputational and mathematical methods in medicineen_US
dc.language.isoInglésen_US
dc.publisherLondon : Hindawien_US
dc.relation.haspart1748-6718-
dc.rightshttp://dx.doi.org/10.1155/2016/2029791-
dc.rightshttps://www.hindawi.com/journals/cmmm/2016/2029791/-
dc.subjectAlgoritmosen_US
dc.subjectElectroencefalografíaen_US
dc.subjectMicroelectrodosen_US
dc.titleP300 detection based on EEG shape featuresen_US
dc.typeArtículoen_US
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
P300 detection.pdf1.96 MBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.