Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorCUATE GONZALEZ, OLIVER FERNANDO-
dc.contributor.authorPONSICH, ANTONIN SEBASTIEN-
dc.contributor.authorURIBE RICHAUD, LOURDES FABIOLA-
dc.contributor.authorZAPOTECAS MARTINEZ, SAUL-
dc.contributor.authorLARA LOPEZ, ADRIANA-
dc.contributor.authorSCHUTZE, OLIVER STEFFEN-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/553953">OLIVER FERNANDO CUATE GONZALEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/252793">ANTONIN SEBASTIEN PONSICH</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/595600">LOURDES FABIOLA URIBE RICHAUD</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/173632">SAUL ZAPOTECAS MARTINEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/98713">ADRIANA LARA LOPEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/253935">OLIVER STEFFEN SCHUTZE</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/7</dc:subject>-
dc.date.accessioned2020-06-17T19:48:08Z-
dc.date.available2020-06-17T19:48:08Z-
dc.date.issued2020-
dc.identifier.citationMathematics, vol. 8, núm. 1, 2020en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/460-
dc.description.abstractMulti-objective evolutionary algorithms are widely used by researchers and practitioners to solve multi-objective optimization problems (MOPs), since they require minimal assumptions and are capable of computing a finite size approximation of the entire solution set in one run of the algorithm. So far, however, the adequate treatment of equality constraints has played a minor role. Equality constraints are particular since they typically reduce the dimension of the search space, which causes problems for stochastic search algorithms such as evolutionary strategies. In this paper, we show that multi-objective evolutionary algorithms hybridized with continuation-like techniques lead to fast and reliable numerical solvers. For this, we first propose three new problems with different characteristics that are indeed hard to solve by evolutionary algorithms. Next, we develop a variant of NSGA-II with a continuation method. We present numerical results on several equality-constrained MOPs to show that the resulting method is highly competitive to state-of-the-art evolutionary algorithms. en_US
dc.description.sponsorshipMathematicsen_US
dc.language.isoInglésen_US
dc.publisherBasel, Switzerland : MDPIen_US
dc.relation.haspart2227-7390-
dc.rightshttps://doi.org/10.3390/math8010007-
dc.rightshttps://www.mdpi.com/2227-7390/8/1/7-
dc.subjectAlgoritmos genéticos - Problemas, ejercicios, etc.en_US
dc.subjectOptimización matemáticaen_US
dc.subjectOptimización combinatoriaen_US
dc.titleA new hybrid evolutionary algorithm for the treatment of equality constrained MOPsen_US
dc.typeArtículoen_US
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
A new hybrid.pdf1.76 MBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.