Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorZAPOTECAS MARTINEZ, SAUL-
dc.contributor.authorMORAGLIO, ALBERTO-
dc.contributor.authorAGUIRRE, HERNAN-
dc.contributor.authorTANAKA, KIYOSHI-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/173632">SAUL ZAPOTECAS MARTINEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/0000-0003-2174-6015">KIYOSHI TANAKA</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/7</dc:subject>-
dc.date.accessioned2020-06-19T14:24:45Z-
dc.date.available2020-06-19T14:24:45Z-
dc.date.issued2016-
dc.identifier.citationProceedings of the Genetic and Evolutionary Computation Conference July 2016en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/474-
dc.description.abstractMulti-objective evolutionary algorithms (MOEAs) based on decomposition are aggregation-based algorithms which transform a multi-objective optimization problem (MOP) into several single-objective subproblems. Being effective, efficient, and easy to implement, Particle Swarm Optimization (PSO) has become one of the most popular single-objective optimizers for continuous problems, and recently it has been successfully extended to the multi-objective domain. However, no investigation on the application of PSO within a multi-objective decomposition framework exists in the context of combinatorial optimization. This is precisely the focus of the paper. More specifically, we study the incorporation of Geometric Particle Swarm Optimization (GPSO), a discrete generalization of PSO that has proven successful on a number of single-objective combinatorial problems, into a decomposition approach. We conduct experiments on manyobjective 1/0 knapsack problems i.e. problems with more than three objectives functions, substantially harder than multi-objective problems with fewer objectives. The results indicate that the proposed multi-objective GPSO based on decomposition is able to outperform two version of the wellknow MOEA based on decomposition (MOEA/D) and the most recent version of the non-dominated sorting genetic algorithm (NSGA-III), which are state-of-the-art multi-objective evolutionary approaches based on decomposition.en_US
dc.description.sponsorshipProceedings of the Genetic and Evolutionary Computation Conferenceen_US
dc.language.isoInglésen_US
dc.publisherNueva York : Association for Computing Machineryen_US
dc.relation978-1-4503-4206-3-
dc.rightshttps://dl.acm.org/doi/abs/10.1145/2908812.2908880-
dc.rightshttps://doi.org/10.1145/2908812.2908880-
dc.subjectInteligencia de enjambreen_US
dc.subjectEstructura de datos (Computación)en_US
dc.subjectAlgoritmos computacionalesen_US
dc.titleGeometric Particle Swarm Optimization for Multi-objective Optimization Using Decompositionen_US
dc.typeCapítulo de libroen_US
Aparece en las colecciones:Libros

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Geometric particle.pdf865.39 kBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.