Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorZAPOTECAS MARTINEZ, SAUL-
dc.contributor.authorDERBEL, BILEL-
dc.contributor.authorLIEFOOGHE, ARNAUD-
dc.contributor.authorBROCKHOFF, DIMO-
dc.contributor.authorAGUIRRE, HERNAN-
dc.contributor.authorTANAKA, KIYOSHI-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/173632">SAUL ZAPOTECAS MARTINEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/0000-0003-2174-6015">KIYOSHI TANAKA</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/7</dc:subject>-
dc.date.accessioned2020-06-19T14:46:15Z-
dc.date.available2020-06-19T14:46:15Z-
dc.date.issued2015-
dc.identifier.citationProceedings of the Genetic and Evolutionary Computation Conference July 2015en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/475-
dc.description.abstractMOEA/D is an aggregation-based evolutionary algorithm whichhas been proved extremely efficient and effective for solving multi-objective optimization problems. It is based on the idea of de-composing the original multi-objective problem into several single-objective subproblems by means of wel l-defined scalari zi ng f unc-tions. Those single-objective subproblems are solved in a cooper-ative manner by defining a neighborhood relation between them.This makes MOEA/D particularly interesting when attempting toplug and to leverage single-objective optimizers in a multi-objectivesetting. In this context, we investigate the benefits that MOEA/Dcan achieve when coupled with CMA-ES, which is believed to bea pow erful single-objective optimizer. We rely on the ability ofCMA-ES to deal with injected solutions in order to update differ-ent covariance matrices with respect to each subproblem definedin MOEA/D. We show that by cooperatively evolving neighboringCMA-ES components, we are able to obtain competitive results fordifferent multi-objective benchmark functions.en_US
dc.description.sponsorshipProceedings of the Genetic and Evolutionary Computation Conferenceen_US
dc.language.isoInglésen_US
dc.publisherNueva York : Association for Computing Machineryen_US
dc.relation978-1-4503-3472-3-
dc.rightshttps://dl.acm.org/doi/abs/10.1145/2739480.2754754-
dc.rightshttps://doi.org/10.1145/2739480.2754754-
dc.subjectAlgoritmos computacionalesen_US
dc.subjectComputación evolutivaen_US
dc.subjectInteligencia artificialen_US
dc.titleInjecting CMA-ES into MOEA/Den_US
dc.typeCapítulo de libroen_US
Aparece en las colecciones:Libros

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Injecting CMA.pdf921.88 kBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.