Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorZAPOTECAS MARTINEZ, SAUL-
dc.contributor.authorARIAS MONTAÑO, ALFREDO-
dc.contributor.authorCOELLO COELLO, CARLOS ARTEMIO-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/173632">SAUL ZAPOTECAS MARTINEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/257416">ALFREDO ARIAS MONTAÑO</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/20384">CARLOS ARTEMIO COELLO COELLO</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/7</dc:subject>-
dc.date.accessioned2020-06-19T15:01:52Z-
dc.date.available2020-06-19T15:01:52Z-
dc.date.issued2014-
dc.identifier.citationProceedings of the Genetic and Evolutionary Computation Conference July 2014en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/476-
dc.description.abstractIn this paper, we present a Multi-objective Particle Swarm Optimizer (MOPSO) based on a decomposition approach, which is proposed to solve Constrained Multi-Objective Aerodynamic Shape Optimization Problems (CMO-ASOPs). The constraint-handling technique adopted in this approach is based on the well-known epsilon-constraint method. Since the ε-constraint method was initially proposed to deal with constrained single-objective optimization Problems, we adapted it so that it could be incorporated into a MOPSO. Our main focus is to solve CMO-ASOPs in an efficient and effective manner. The proposed constrained MOPSO guides the search by updating the position of each particle using a set of solutions considered as the global best according to both the decomposition approach and the epsilon-constraint method. Our preliminary results indicate that our proposed approach is able to outperform a state-of-the-art MOEA in several CMO-ASOPs.en_US
dc.description.sponsorshipProceedings of the Genetic and Evolutionary Computation Conferenceen_US
dc.language.isoInglésen_US
dc.publisherNueva York : Association for Computing Machineryen_US
dc.relation978-1-4503-2662-9-
dc.rightshttps://dl.acm.org/doi/abs/10.1145/2576768.2598372-
dc.rightshttps://doi.org/10.1145/2576768.2598372-
dc.subjectInteligencia de enjambreen_US
dc.subjectOptimización matemáticaen_US
dc.subjectInteligencia computacionalen_US
dc.titleConstrained multi-objective aerodynamic shape optimization via swarm intelligenceen_US
dc.typeCapítulo de libroen_US
Aparece en las colecciones:Libros

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Constrained multi.pdf484.28 kBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.