Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorZAPOTECAS MARTINEZ, SAUL-
dc.contributor.authorCOELLO COELLO, CARLOS ARTEMIO-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/173632">SAUL ZAPOTECAS MARTINEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/20384">CARLOS ARTEMIO COELLO COELLO</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/7</dc:subject>-
dc.date.accessioned2020-06-19T17:28:20Z-
dc.date.available2020-06-19T17:28:20Z-
dc.date.issued2011-
dc.identifier.citationProceedings of the Genetic and Evolutionary Computation Conference July 2011en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/478-
dc.description.abstractSince the early days of multi-objective particle swarm optimizers (MOPSOs), researchers have looked for appropriate mechanisms to define the set of leaders (or global best set) from the swarm. At the beginning, leaders were randomly selected from the set of nondominated solutions currently available. However, over the years, researchers realized that random selection schemes were not the best choice, and additional information was incorporated in the leader selection mechanism (namely, information related to density estimation). Here, we study the use of mathematical programming techniques for defining the leader selection mechanism of a MOPSO. The proposed approach decomposes a multi-objective optimization problem (MOP) into several single objective optimization problems by using traditional multi-objective mathematical programming techniques. Our preliminary results indicate that our proposed approach is a viable choice for solving MOPs, since it is able to outperform a state-of-the-art multi-objective evolutionary algorithm (MOEA).en_US
dc.description.sponsorshipProceedings of the Genetic and Evolutionary Computation Conferenceen_US
dc.language.isoInglésen_US
dc.publisherNueva York : Association for Computing Machineryen_US
dc.relation978-1-4503-0690-4-
dc.rightshttps://dl.acm.org/doi/abs/10.1145/2001858.2002088-
dc.rightshttps://doi.org/10.1145/2001858.2002088-
dc.subjectInteligencia de enjambreen_US
dc.subjectOptimización matemáticaen_US
dc.subjectInteligencia computacionalen_US
dc.titleSwarm intelligence guided by multi-objective mathematical programming techniquesen_US
dc.typeCapítulo de libroen_US
Aparece en las colecciones:Libros

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Swarm intelligence.pdf398.46 kBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.