Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Título: A multi-objective meta-model assisted memetic algorithm with non gradient-based local search
Autor(es): ZAPOTECAS MARTINEZ, SAUL
COELLO COELLO, CARLOS ARTEMIO
Temas: Algoritmos computacionales
Computación evolutiva
Búsqueda en recursos electrónicos de información
Fecha: 2010
Editorial: Nueva York : Association for Computing Machinery
Citation: Proceedings of the Genetic and Evolutionary Computation Conference July 2010
Resumen: In this paper, we present an approach in which a local search mechanism is coupled to a multi-objective evolutionary algorithm. The local search mechanism is assisted by a meta-model based on support vector machines. Such a mechanism consists of two phases: the first one involves the use of an aggregating function which is defined by different weighted vectors. For the (scalar) optimization task involved, we adopt a non-gradient mathematical programming technique: the Hooke-Jeeves method. The second phase computes new solutions departing from those obtained in the first phase. The local search engine generates a set of solutions which are used in the evolutionary process of our algorithm. The preliminary results indicate that our proposed approach is quite promising.
URI: http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/479
Aparece en las colecciones:Libros

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
A multi-objective.pdf299.34 kBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.